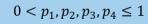
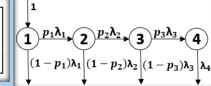
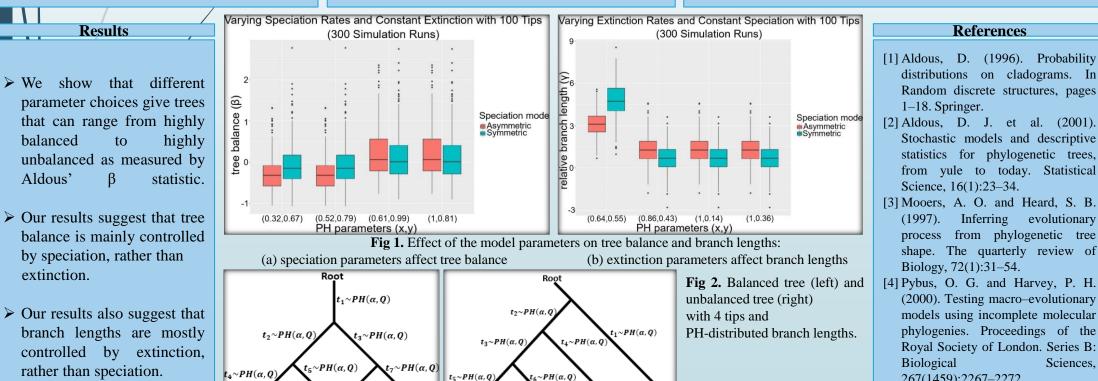


The Shape of Phylogenies Under Phase-Type Distributed Times to Speciation and Extinction

Albert Ch. Soewongsono, Barbara R. Holland, Małgorzata M. O'Reilly School of Natural Sciences (Mathematics)


albert.soewongsond


Introduction


- > We develop a mathematical 1 general Coxian phase-type (PH in order to examine factors balance and branch lengths of trees.
- > Adequate understanding of t phylogenetic trees can help ecological diversity [3].
- \succ Thus, a mathematical model macro-evolutionary examine (speciation and extinction eve Early models assuming constant speciation and extinction rates fail to represent empirical trees [2].

o@utas.edu.au		AUSTRALIA
	Methods	General Coxian PH Distribution
nodel using a I) distribution affecting tree is phylogenetic he shapes of o explain the	 We test the effect of the model parameters on tree balance and branch length (See Fig 1): ➢ We simulate 600 trees, each with 100 extant tips where (a) times to speciation follow a general Coxian PH distribution and times to extinction follow an exponential distribution, 	 A general Coxian PH distribution T~PH(α, Q) models time T to absorption in a continuous-time Markov chain with transient states 1,,n and an absorbing state 0. Example: Initial distribution vector: α = (1,0,0,0). Matrix Q of transition rates between transient states:
is required to y processes ents) on trees.	 and (b) vice versa (See Fig 1). We (a) vary parameters for the speciation process and assume constant parameters for the extinction process, and (b) vice versa. 	$\mathbf{Q} = \begin{bmatrix} -\lambda_1 & p_1\lambda_1 & 0 & 0 \\ 0 & -\lambda_2 & p_2\lambda_2 & 0 \\ 0 & 0 & -\lambda_3 & p_3\lambda_3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 4 \end{bmatrix}$

 \triangleright We compute tree balance via the β statistic [1] and branch lengths via the γ statistic [4].

 $\sim PH(\alpha, Q)$