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» We develop a mathematical model using a
general Coxian phase-type (PH) distribution
in order to examine factors affecting tree
balance and branch lengths of phylogenetic
trees.

» Adequate understanding of the shapes of

phylogenetic trees can help to explain the

» A general Coxian PH distribution T~PH (e, Q) models time
T to absorption in a continuous-time Markov chain with
transient states 1,...,n and an absorbing state 0.

Example:
> Initial distribution vector: @ = (1,0,0,0).
» Matrix Q of transition rates between transient states:

We test the effect of the model parameters on

tree balance and branch length (See Fig 1):

» We simulate 600 trees, each with 100 extant
tips where (a) times to speciation follow a
general Coxian PH distribution and times to
extinction follow an exponential distribution,

ecological diversity [3].

» Thus, a mathematical model is required to
examine  macro-evolutionary  processes
(speciation and extinction events) on trees.
Early models assuming constant speciation

and (b) vice versa (See Fig 1).
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» We compute tree balance via the B statistic [1] '

and extinction rates fail to represent
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empirical trees [2]. and branch lengths via the vy statistic [4].
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