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Goal Visual Methodology

Methodology/Features

Development of a R package for comprehensive QIRP=0.5 QRP=0.71
phylogenetic experimental design.
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Shannon Information Collapse: Rather than rely on quartet
decomposition, mutual information is used to collapse trees
iteratively into quartets, minimizing information loss.

Left: One iteration of the design search schema. Grey boxes
represent candidates for sampling. Shannon tree collapse is
performed with respect to the internode designated by the black

Loci G-

Loci F -

j> ] arrow. Data masks can be applied for inaccessible gene-taxa Uneven quartet branch length: PhylnformR previously
Phylogenetic trees represent a hodgepodge of interconnected LOCfD_ . combination. | | | |'m't?d thtehuser t(|3_| 2 d'S_t'nclt |en81:-chi_('” gccordarécedvglthll
hypotheses, only some of which are of interest to particular o Bottom: Embl.ematlc h\/p.othe5|s and ph\/logenles | | Ernee\cce)ltszbraﬁ(c);vl)e.n etrhesl Ii?cpoellr;esne 3 I?Jgrl’fe?czpan ed to allow
research programs. Determining the optimal gene-taxa sampling . Far bottom: Diagrammatic workflow of UltimateSignalNoise 5 Py -

LociA-

schema prospectively allows for hypothesis-driven data
collection and retrospective filtering to maximize the probability
of achieving sufficient power to resolve specific hypotheses.
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Automated iterative design schema: Given the input and
internode of interest, the program will generate a
m— gene-taxon sampling schema until QIRP reaches desired
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sometimes in conflict with one another, and that the resolution of this
conflict requires rlgoro_us thought about the sources of conflict _and [10 ‘ - ﬂ e I ° UItimateSignaINoise currentl\/ lacks the visualization
consequently the relative power of data to address phylogenetic . 5 I . _ _ S
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