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Some motivation.

Figure: Rise and fall of the Beringian steppe bison, Shapiro et al. [4].
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Bayesian vs Frequentist.

Frequentist Approach

Data comes from a
repeatable experiment.
The parameters are
constant.
The parameters are
fixed.

Bayesian Approach

Data comes from a
realised experiment.
The parameters are
unknown.
The data is fixed.
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Bayesian Statistics.

That is:
We aim to describe the probability of model parameters
given the data we have observed via

P(θ
∣∣X ) =

L(X
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P(X )
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∣∣θ) is the likelihood function for the data.

Adam Rohrlach



Bayesian Statistics.

That is:
We aim to describe the probability of model parameters
given the data we have observed via

P(θ
∣∣X ) =

L(X
∣∣θ)π(θ)

P(X )

where π(θ) is the ‘prior distribution’ for θ (my prior beliefs about
the possible parameter values).

Adam Rohrlach



Bayesian Statistics.

That is:
We aim to describe the probability of model parameters
given the data we have observed via

P(θ
∣∣X ) =

L(X
∣∣θ)π(θ)

P(X )

where P(X ) is the ‘marginal likelihood’ of the data (sometimes
called the ‘model evidence’).

Adam Rohrlach



ABCs History.

First considered by Donald Rubin in the 1980’s via the
‘Acceptance-Rejection Algorithm’ [1].

Particularly useful when obtaining the likelihood function
L(X

∣∣θ) is difficult or impossible to obtain.
Relies on being able to simulate data efficiently.
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The Rejection-Acceptance Algorithm.

Consider obtaining ` posterior samples using some
observed data X obs:

1: Set i = 0
2: while i < ` do

3: Sample θ∗ from π(θ)
4: Simulate X ∗ from f (X

∣∣θ∗)
5: if (X∗ = X obs) then
6: accept θ∗

7: i = i + 1
8: end if

9: end while
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Gives the true posterior distribution P(θ
∣∣X obs).

Extremely slow convergence in cases where our data has
high dimensionality.
Could consider accepting data that is ‘close enough’.
If “X ∗ = X obs” is unrealistic, try “X ∗ ≈ X obs”
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ABC Using Summary Statistics.

Gives the same posterior distribution ˆP(θ
∣∣S(X obs)) if S(X )

is sufficient.

Again, ˆP(θ
∣∣S(X obs))→ P(θ

∣∣X obs) as ε→ 0.
Convergence can now be faster.
Sufficient summary statistics rarely show up when
required.
Choosing a ‘best summary statistic’ was the focus of my
Masters [2].
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Approximately Sufficient Summary Statistics

We have insufficient summary statistics S = {S1, · · · ,ST}.

We have parameters of interest Φ = {φ1, · · · , φP}
Create Γ simulations, which gives Γ× T summary statistics
with known input parameters (call this TrainDat).
For each n ∈ {1, · · · ,P} perform linear regression on the
TrainDat such that we can get predictions

φ̂n = β̂
(n)
0 +

T∑
j=1

β̂
(n)
j sj

We now have a ‘best predicted parameter value’ if we have
summary statistics.
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Bayes Factors.

The Bayes Factor for Models i and j is:

Bij =
P
(
X
∣∣Mi
)

P
(
X
∣∣Mj
)

=
P
(
Mi
∣∣X)P (X ) /R(Mi)

P
(
Mj
∣∣X)P (X ) /R(Mj)

=
P
(
Mi
∣∣X)

P
(
Mj
∣∣X) ,

if R(·) has a uniform distribution.
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Bayes Factors.

The Bayes Factor for Models i and j is

Bij =
P
(
Mi
∣∣X)

P
(
Mj
∣∣X) .

This is just the ‘posterior ratio’ for Models i and j .
Imagine out of 300 retained posterior parameter samples:
200 are from model i , and 100 are from model j ,

=⇒ Bij = 200/300
100/300 = 2.

Adam Rohrlach



Bayes Factors.

The Bayes Factor for Models i and j is

Bij =
P
(
Mi
∣∣X)

P
(
Mj
∣∣X) .

This is just the ‘posterior ratio’ for Models i and j .

Imagine out of 300 retained posterior parameter samples:
200 are from model i , and 100 are from model j ,

=⇒ Bij = 200/300
100/300 = 2.

Adam Rohrlach



Bayes Factors.

The Bayes Factor for Models i and j is

Bij =
P
(
Mi
∣∣X)

P
(
Mj
∣∣X) .

This is just the ‘posterior ratio’ for Models i and j .
Imagine out of 300 retained posterior parameter samples:
200 are from model i , and 100 are from model j ,
=⇒ Bij

= 200/300
100/300 = 2.

Adam Rohrlach



Bayes Factors.

The Bayes Factor for Models i and j is

Bij =
P
(
Mi
∣∣X)

P
(
Mj
∣∣X) .

This is just the ‘posterior ratio’ for Models i and j .
Imagine out of 300 retained posterior parameter samples:
200 are from model i , and 100 are from model j ,
=⇒ Bij = 200/300

100/300

= 2.

Adam Rohrlach



Bayes Factors.

The Bayes Factor for Models i and j is

Bij =
P
(
Mi
∣∣X)

P
(
Mj
∣∣X) .

This is just the ‘posterior ratio’ for Models i and j .
Imagine out of 300 retained posterior parameter samples:
200 are from model i , and 100 are from model j ,
=⇒ Bij = 200/300

100/300 = 2.

Adam Rohrlach



A Fundamental Flaw of Bayes Factors.

It can be shown that [3]:

Bij =
P
(
Mi
∣∣X)

P
(
Mj
∣∣X) × hj

(
X
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)
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X
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(
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(
X
∣∣S(X )
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(
X
∣∣S(X )

)
That is, Bij will be biased unless the probability of seeing
the data, given the observed summary statistics, is equal
for each model.
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Post-Hoc Model Comparison.

Consider other problems with Bij (and any post-hoc model
comparison method).

Posterior distributions are sensitive to choices of prior
distributions.
A particularly poor choice of πj(θ) may reduce the number
of retained simulations under Model j , and hence inflate Bij .
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Post-Hoc Model Comparison.

We would like a model selection algorithm that avoids
comparing posterior distributions.

Given that our ‘semi-automatic summary selection’ version
ABC is an example of ‘supervised learning’, we could
consider a similar method for model selection.
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Multiple Logistic Regression.

Let X be our data (the collection of Γ× T summary
statistics),

Let xm =
(
sm

1 , · · · , sm
T
)

be the mth row of X (the summary
statistics from the mth simulation).
Let Y m be the category of the mth observation (the model
used for the mth simulation).
Let βc =

(
βc

0 , · · · , β
c
T

)
be the vector of coefficients for

category c.
We aim to best fit the model

ln

(
P(Y m = c

∣∣X )

P(Y m = q
∣∣X )

)
= βc · x ,,

for c = 1, · · · , J − 1.
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Multiple Logistic Regression.

We end up with a predictive model such that we can
predict for X NEW :

P(Y m = c
∣∣X NEW ) = pc

for each c ∈ {1, · · · ,q}, such that

q∑
i=1

pi = 1.
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Multiple Logistic Regression Example.

Consider two opposing models of population dynamics:
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Multiple Logistic Regression Example.

The Bottleneck Model:
A sudden reduction to between 20% and 40% of the
effective population size occurs before the species dies out.

The Exponential Model:
There was no sudden population size reduction, the
species just died out (relatively) slowly over 3000
generations.
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Multiple Logistic Regression Example.

However, we don’t know which model fits our data best.
If the data came from the Bottleneck Model, my prior belief
is that: N(16000) = 150,000,
N(15500) ∼ U(30,000,75,000) and
N(12000) ∼ U(300,12500).
If the data came from the Exponential Model, my prior
belief is that: N(16000) = 150,000,
N(15500) = 150,000 and
N(12000) ∼ U(300,7500).
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Multiple Logistic Regression Example.

I produced training data of this form with only 10,000 (5000
simulations from each model ≈ 2 mins), and fit the MLR
(call this trainDat).

I then produced another 10,000 independent simulations
(call this testDat).
Finally, I used the MLR to find which model I would predict
had produced each of the ‘testDat’ simulations.
The model predicted correctly for 99.53% of the testDat
simulations (total 4.5 minutes).
A corresponding Bayes Factor Analysis returned 17.03%
accuracy (total 21 minutes).
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Multiple Logistic Regression Example.
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Conclusions.

In my thesis we performed a four model Semi-Automatic
ABC Analysis.

Our MLR classification returned > 96% accuracy for
> 250,000 simulations.
A complimentary Bayes Factor analysis never returned a
correct post-hoc analysis for our simulated data.
Our method does not require ABC to be performed on all
possible models (just simulations).
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