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Some motivation.

@ Consider the Beringian Steppe Bison.
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Some motivation.

@ Population numbers dropped at some time in the past.
@ Did it happen slowly over time?

@ Did it happen abruptly?
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otivatio

@ Population numbers dropped at some time in the past.

@ Did it happen
@ Did it happen

slowly over time?
abruptly?

@ If it did happen abruptly, when did it happen?
@ How can we work this out if all we have are some DNA
from old bones??

seql 0 cee
seq2.0 ATCCC
seq3_0 ATCCC
seqd 0 ATCCC
seq5_0 ATCCC
seqb_0 ATCCC
seq7 0 ATCCC
seq8 0 ATCCC

ATGCGATATGCTTAGTAGAATARAGATGGAGCGAGTACACATACTCTCTGATCT T TGCGC TGAACGCCGTCGTGAGGTGCGTCGTAACACTTAN

ATGTAATACTCGGCGTAAAATGAAGA TG TGGCCAGTACGGATACTATC TGATCT T TG TBE TGATCGCGAGCETGAGGTTGG"

ATGTAATCCTCGCCGTGGAATGAAGG TGGEGCGACTACGAATACTATATGACCTCTGTBECGATCTCEGGCETGAGE'
ATTTAATACTCGGCGTAAAATGAAGATGGGGCCAGTACGGATACTATC TGATCT TG TGECGATCGAGAGCGTGAGG'
ATGTGACACTCGGCGTGGAATGAAGA GGG TCGAGTAAGAATACTTTC TGATCTTCGTBECGETCGCGAGCETGAGE'
ATTTAATACTCGGCGTAAAATGAAGATGGGGCCAGTACGGATACTATC TGATCT T TG TGECGATCGAGAGCGTGAGG'
ATGTAATCCTCGGCGTGGAATGAAGA TGGEGCGACTACGAATACTATC TGACCTCTGTBECGATCGCEGG TG TGAGG"
ATGTAATCCTCGCCGTGGAATGAAGG TGGEGCGACTACGAATACTATATGACCTCTGTBECGATCGCEEGCETGAGE'

CGCGATACTAAA'
GTCGCGACAGTTAA
CGCCGCGACACTAAA'
CGTCGCGACACTTAA'
CGTCGCGACACTAAA'

GTCGCGACACTTAA

GTCGCGACACTTAA
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Some motivation.

Population size x generation length
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Radiocarbon years before present

Figure: Rise and fall of the Beringian steppe bison, Shapiro et al. [4].
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Frequentist Approach Bayesian Approach
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Bayesian vs Frequentist.

Frequentist Approach Bayesian Approach
@ Data comes from a @ Data comes from a
repeatable experiment. realised experiment.
@ The parameters are @ The parameters are
constant. unknown.
@ The parameters are @ The data is fixed.
fixed.
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Bayesian vs Frequentist.

In a frequentist analysis we:
@ Set « in advance and find L(X|Hp),
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Bayesian vs Frequentist.

In a frequentist analysis we:
@ Set « in advance and find L(X|Hp),
@ Accept Hp if L(X|Hp) > «,
@ Report point estimates and confidence intervals for
parameters.
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Bayesian vs Frequentist.

In a Bayesian analysis we:
e From 7(8) we (inductively) find P(6]X),
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Bayesian vs Frequentist.

In a Bayesian analysis we:
e From 7(8) we (inductively) find P(6]X),
@ Describe the posterior distribution of @,
@ Report highest posterior density intervals for parameters.
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Bayesian Statistics.

That is:

@ We aim to describe the probability of model parameters
given the data we have observed via

L(X|6)(8)

PO = —"px)

where L(X|0) is the likelihood function for the data.
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Bayesian Statistics.

That is:

@ We aim to describe the probability of model parameters
given the data we have observed via

L(X|6)~(8)

POIX) = =55

where 7(0) is the ‘prior distribution’ for & (my prior beliefs about
the possible parameter values).
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Bayesian Statistics.

That is:

@ We aim to describe the probability of model parameters
given the data we have observed via

L(X|6)(8)

POIX) = =55

where P(X) is the ‘marginal likelihood’ of the data (sometimes
called the ‘model evidence’).
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ABCs History.

@ First considered by Donald Rubin in the 1980’s via the
‘Acceptance-Rejection Algorithm’ [1].
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ABCs History.

@ First considered by Donald Rubin in the 1980’s via the
‘Acceptance-Rejection Algorithm’ [1].

@ Particularly useful when obtaining the likelihood function
L(X|6) is difficult or impossible to obtain.

@ Relies on being able to simulate data efficiently.
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The Rejection-Acceptance Algorithm.

@ Consider obtaining ¢ posterior samples using some
observed data X ps:

1: Seti=0
2: whilei < ¢do

9: end while
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The Rejection-Acceptance Algorithm.

@ Consider obtaining ¢ posterior samples using some
observed data X ps:

: Seti=0
while / < ¢ do
Sample 6* from 7(0)

N

: end while
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The Rejection-Acceptance Algorithm.

@ Consider obtaining ¢ posterior samples using some
observed data X ps:

: Seti=0
while /i < ¢ do

Sample 6* from 7(0)
Simulate X* from f(X|6*)

Ll A

: end while
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The Rejection-Acceptance Algorithm.

@ Consider obtaining ¢ posterior samples using some
observed data X ps:

1: Seti=0

2: while /i < ¢/ do

3:  Sample 6" from 7(0)

4:  Simulate X* from f(X|6*)
5. if (X* = Xops) then

8: endif
9: end while
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The Rejection-Acceptance Algorithm.

@ Consider obtaining ¢ posterior samples using some
observed data X ps:

1: Seti=0

2: while i < 7/ do

3:  Sample 6" from 7(0)
4:  Simulate X* from f(X|6*)
5. if (X* = Xops) then
6 accept 6*

7 i=1i+1

8: endif

9: end while
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The Rejection-Acceptance Algorithm.

@ Gives the true posterior distribution P(G\Xobs).

THE UNIVERSITY
o/ADELAIDE
=

Adam Rohrlach



The Rejection-Acceptance Algorithm.
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@ Extremely slow convergence in cases where our data has
high dimensionality.
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The Rejection-Acceptance Algorithm.

@ Gives the true posterior distribution P(G\Xobs).

@ Extremely slow convergence in cases where our data has
high dimensionality.

@ Could consider accepting data that is ‘close enough’.
o If“X* = Xops” is unrealistic, try “X* ~ Xops”
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The Rejection-Acceptance Algorithm.

@ For some distance function p(X, Y), and some ‘tolerance’
parameter ¢, the algorithm now becomes:
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The Rejection-Acceptance Algorithm.

@ For some distance function p(X, Y), and some ‘tolerance’
parameter ¢, the algorithm now becomes:

1: Seti=0

2: while i < /¢ do

3:  Sample 6" from 7(0)

4:  Simulate X* from f(X|6)*
5. if (p(X*, Xops) < ¢€) then
6 accept 6*

7 i=i+1

8: endif

9: end while
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The Rejection-Acceptance Algorithm.

@ Gives an approximate posterior distribution P(B\)(obs).

THE UNIVERSITY
o/ADELAIDE
=

Adam Rohrlach



The Rejection-Acceptance Algorithm.

@ Gives an approximate posterior distribution P(B\)(obs).
® P(0]Xops) — P(8]Xops) as e — 0.
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The Rejection-Acceptance Algorithm.

@ Gives an approximate posterior distribution P(B\)(obs).

® P(0]Xops) — P(8]Xops) as e — 0.
@ Still slow convergence for small e.
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The Rejection-Acceptance Algorithm.

@ Gives an approximate posterior distribution P(B\)(obs).

® P(0]Xops) — P(8]Xops) as e — 0.
@ Still slow convergence for small e.
@ Data being ‘similar’ can still be very unlikely.
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ABC Using Summary Statistics.

What are summary statistics?
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ABC Using Summary Statistics.

What are summary statistics?

@ A summary statistic is a function of the data (i.e. the
sample mean X).

@ Summary statistics are used to reduce the dimensionality
of data.
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ABC Using Summary Statistics.

What are sufficient summary statistics?

e Sufficient summary statistics contain all of the information
about a parameter that is available in a sample (i.e. X is
sufficient for ).
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ABC Using Summary Statistics.

What are sufficient summary statistics?

e Sufficient summary statistics contain all of the information
about a parameter that is available in a sample (i.e. X is
sufficient for ).

@ A summary statistic S(X) is sufficient if it can be written in
Fisher-Neymann factorised form:

L(X]6) = g(X)he (S(X)|6)
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ABC Using Summary Statistics.

@ It can be shown P (8|Xops) = P (8] S(Xops))-
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ABC Using Summary Statistics.

@ It can be shown P (8|Xops) = P (8] S(Xops))-

@ That is, we can compare sufficient summary statistics to
obtain the exact posterior distribution for 6.
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The Modified Rejection-Acceptance Algorithm.

@ For some distance function p(S(X), S(Y)), and some
‘tolerance’ parameter ¢, the algorithm now becomes:

1: Seti=0

2: while i < /¢ do

3:  Sample 6" from 7(0)

4:  Simulate X* from f(X|6*)

5 if (p(S(X™), S(Xops)) < €) then
6 accept 6*

7 i=1i+1

8: endif

9: end while
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ABC Using Summary Statistics.

@ Gives the same posterior distribution P(O\Sfxobs)) if S(X)
is sufficient.
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@ Again, P(B\SZXobs)) — P(6|Xops) as € — 0.
@ Convergence can now be faster.
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@ Gives the same posterior distribution P(O\Sfxobs)) if S(X)
is sufficient.

@ Again, P(B\SZXobs)) — P(6|Xops) as € — 0.
@ Convergence can now be faster.

@ Sufficient summary statistics rarely show up when
required.
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ABC Using Summary Statistics.

@ Gives the same posterior distribution P(O\Sfxobs)) if S(X)
is sufficient.

@ Again, P(B\SZXobs)) — P(6|Xops) as € — 0.
@ Convergence can now be faster.

@ Sufficient summary statistics rarely show up when
required.

@ Choosing a ‘best summary statistic’ was the focus of my
Masters [2].
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Approximately Sufficient Summary Statistics

@ We have insufficient summary statistics S = {Sy,--- , St}.
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Approximately Sufficient Summary Statistics

@ We have insufficient summary statistics S = {Sy,--- , St}.
@ We have parameters of interest ® = {¢¢,--- , ¢p}

@ Create I simulations, which gives I' x T summary statistics
with known input parameters (call this TrainDat).
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Approximately Sufficient Summary Statistics

@ We have insufficient summary statistics S = {Sy,--- , St}.
@ We have parameters of interest ® = {¢¢,--- , ¢p}

@ Create I simulations, which gives I' x T summary statistics
with known input parameters (call this TrainDat).

@ Foreachne {1,---, P} perform linear regression on the
TrainDat such that we can get predictions

A +Z g
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Approximately Sufficient Summary Statistics

@ We have insufficient summary statistics S = {Sy,--- , St}.
@ We have parameters of interest ® = {¢¢,--- , ¢p}

@ Create I simulations, which gives I' x T summary statistics
with known input parameters (call this TrainDat).

@ Foreachne {1,---, P} perform linear regression on the
TrainDat such that we can get predictions

A +Z g

@ We now have a ‘best predicted parameter value’ if we have
summary statistics.
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Model Selection in ABC.

How do we choose which model we might wish to simulate data
under?
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Model Selection in ABC.

@ Consider models M = {My,--- , My}
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Model Selection in ABC.

@ Consider models M = {My,--- , My}

@ We can add a step which selects which model we might
simulate under.
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The Very Modified Rejection-Acceptance Algorithm.

@ Let R(Mj) be the probability of Model k, and 74(0) be the
prior distribution for parameters under Model k.
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The Very Modified Rejection-Acceptance Algorithm.

@ Let R(Mjy) be the probability of Model k, and 7x(0) be the
prior distribution for parameters under Model k.

@ Consider obtaining ¢ posterior samples from a possible g
models using some observed data X yps:
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models using some observed data X yps:
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2: whilei < /do
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The Very Modified Rejection-Acceptance Algorithm.

@ Let R(Mj) be the probability of Model k, and 74(0) be the
prior distribution for parameters under Model k.

@ Consider obtaining ¢ posterior samples from a possible g
models using some observed data X yps:
1: Seti=0
2: while/ < ¢ do
3:  Randomly select some model k to simulate via R(-)
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The Very Modified Rejection-Acceptance Algorithm.

@ Let R(Mj) be the probability of Model k, and 74(0) be the
prior distribution for parameters under Model k.

@ Consider obtaining ¢ posterior samples from a possible g
models using some observed data X yps:

: Seti=0

while i < ¢/ do

Randomly select some model k to simulate via R(-)
Sample 6" from 7, (0)

Ll

10: end while
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The Very Modified Rejection-Acceptance Algorithm.

@ Let R(Mjy) be the probability of Model k, and 7x(0) be the
prior distribution for parameters under Model k.

@ Consider obtaining ¢ posterior samples from a possible g
models using some observed data X yps:

1: Seti=0

2: while /i < ¢/ do

3:  Randomly select some model k to simulate via R(+)
4:  Sample 6" from 7, (6)

5. Simulate X* from f(X|6%)

6: if (p(S(X™*), S(Xops)) < €) then
7 accept 6*
8 i=1i+1
9: endif
10:

end Whlle THE UNIVERSITY
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Model Selection in ABC.

@ How can we choose which M; best fits our data?
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Model Selection in ABC.

@ How can we choose which M; best fits our data?

@ Common approach is to use ‘Bayes Factors’ Bj;,
I#je {1a >q}
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Bayes Factors.

@ The Bayes Factor for Models i and j is:
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Bayes Factors.

@ The Bayes Factor for Models i and j is:

P (X|M))
o1 it
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Bayes Factors.

@ The Bayes Factor for Models i and j is:
(X|M

P (X|M;)

P (M;|X) P(X)/R
P (M| X) P

Bj =
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Bayes Factors.

@ The Bayes Factor for Models i and j is:

P (X|M)
P (X|M;)
P (Mi|X) P(X) /R
P (M;|X) P
P (M;|X)
P (M|X)’

Bj =

if R(-) has a uniform distribution.
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Bayes Factors.

@ The Bayes Factor for Models i and j is

P (M;|X)
o~ by
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Bayes Factors.

@ The Bayes Factor for Models i and j is

P (M;|X)
o~ by

@ This is just the ‘posterior ratio’ for Models i and j.
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Bayes Factors.

@ The Bayes Factor for Models i and j is

P (M;|X)
o~ by

@ This is just the ‘posterior ratio’ for Models i and j.

@ Imagine out of 300 retained posterior parameter samples:
200 are from model i, and 100 are from model j,
— B,‘j
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Bayes Factors.

@ The Bayes Factor for Models i and j is

P (M;|X)
o~ by

@ This is just the ‘posterior ratio’ for Models i and j.

@ Imagine out of 300 retained posterior parameter samples:
200 are from model i, and 100 are from model j,

___200/300
= Bj = T50/300

THE UNIVERSITY
) /ADrAIDE
o

Adam Rohrlach



Bayes Factors.

@ The Bayes Factor for Models i and j is

P (M;|X)
o~ by

@ This is just the ‘posterior ratio’ for Models i and j.

@ Imagine out of 300 retained posterior parameter samples:
200 are from model i, and 100 are from model j,

_200/300 _
= Bj = To0/300 = 2-
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A Fundamental Flaw of Bayes Factors.

@ It can be shown that [3]:
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A Fundamental Flaw of Bayes Factors.

@ It can be shown that [3]:

Bj =

x| X

P (M,
(M;
P (M| X)
P (M X)

><><

E
0
>

\ii\ii
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A Fundamental Flaw of Bayes Factors.

@ It can be shown that [3]:

5 _ P(M[X) h(X|SX)
TP (MIX) " b (X]S(X))
P (M)|X)
~ P (M[X)

— hy (X|S(X)) = h; (X|S(X))
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A Fundamental Flaw of Bayes Factors.

@ It can be shown that [3]:

5 _ P(M[X) h(X|SX)
TP (MIX) " b (X]S(X))
P (M)|X)
~ P (M[X)

@ Thatis, Bj will be biased unless the probability of seeing
the data, given the observed summary statistics, is equal
for each model.
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Post-Hoc Model Comparison.

@ Consider other problems with B (and any post-hoc model
comparison method).
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Post-Hoc Model Comparison.

@ Consider other problems with B (and any post-hoc model
comparison method).

@ Posterior distributions are sensitive to choices of prior
distributions.
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Post-Hoc Model Comparison.

@ Consider other problems with B (and any post-hoc model
comparison method).

@ Posterior distributions are sensitive to choices of prior
distributions.

@ A particularly poor choice of 7;(0) may reduce the number
of retained simulations under Model j, and hence inflate B;.
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Post-Hoc Model Comparison.

@ We would like a model selection algorithm that avoids
comparing posterior distributions.
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Post-Hoc Model Comparison.

@ We would like a model selection algorithm that avoids
comparing posterior distributions.

@ Given that our ‘semi-automatic summary selection’ version
ABC is an example of ‘supervised learning’, we could
consider a similar method for model selection.
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Multiple Logistic Regression.

@ Let X be our data (the collection of I x T summary
statistics),
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Multiple Logistic Regression.

@ Let X be our data (the collection of I x T summary
statistics),

o Letx™ = (s",---, sT) be the m™" row of X (the summary
statistics from the m™" simulation).
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Multiple Logistic Regression.

@ Let X be our data (the collection of I x T summary
statistics),

o Letx™ = (s",---, sT) be the m™" row of X (the summary
statistics from the m™" simulation).

@ Let Y™ be the category of the m" observation (the model
used for the m" simulation).
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Multiple Logistic Regression.

@ Let X be our data (the collection of I x T summary
statistics),

@ Letx™= (s, s) be the m" row of X (the summary
statistics from the m™" simulation).

@ Let Y™ be the category of the m" observation (the model
used for the m" simulation).

@ Let B8°= (5§, -, %) be the vector of coefficients for
category c.
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Multiple Logistic Regression.

Let X be our data (the collection of ' x T summary
statistics),

Let x™ = (s, .-, sT) be the m" row of X (the summary
statistics from the m™" simulation).

Let Y™ be the category of the m™" observation (the model
used for the m" simulation).

Let 3° = (5§, - - , %) be the vector of coefficients for
category c.

We aim to best fit the model

In L:C‘)() — ﬁc e
P(Y™ = q|X) ’

forc=1,.--,J—1.
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Multiple Logistic Regression.

@ We end up with a predictive model such that we can
predict for Xnew:

P(Ym = C‘XNEW) = Pec

foreach c € {1,---,q}, such that
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Multiple Logistic Regression Example.

@ Consider two opposing models of population dynamics:

150000~
100000~
= Model
~ a Bottleneck
z = Exponential
50000~
0
. ! ! o Lo
0 4000 8000 12000 16000

Generations Before Present (t)
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Multiple Logistic Regression Example.

@ The Bottleneck Model:

e A sudden reduction to between 20% and 40% of the
effective population size occurs before the species dies out.

@ The Exponential Model:

e There was no sudden population size reduction, the
species just died out (relatively) slowly over 3000
generations.
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Multiple Logistic Regression Example.

@ However, we don’t know which model fits our data best.

@ If the data came from the Bottleneck Model, my prior belief
is that: N(16000) = 150, 000,
N(15500) ~ U(30,000, 75,000) and
N(12000) ~ U(300, 12500).

o If the data came from the Exponential Model, my prior
belief is that: N(16000) = 150, 000,
N(15500) = 150,000 and
N(12000) ~ U(300, 7500).
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Multiple Logistic Regression Example.

@ | produced training data of this form with only 10,000 (5000
simulations from each model ~ 2 mins), and fit the MLR
(call this trainDat).

THE UNIVERSITY

o/ADELAIDE
=

Adam Rohrlach



Multiple Logistic Regression Example.

@ | produced training data of this form with only 10,000 (5000
simulations from each model ~ 2 mins), and fit the MLR
(call this trainDat).

@ | then produced another 10,000 independent simulations
(call this testDat).
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Multiple Logistic Regression Example.

@ | produced training data of this form with only 10,000 (5000
simulations from each model ~ 2 mins), and fit the MLR
(call this trainDat).

@ | then produced another 10,000 independent simulations
(call this testDat).

@ Finally, | used the MLR to find which model | would predict
had produced each of the ‘testDat’ simulations.
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Multiple Logistic Regression Example.

@ | produced training data of this form with only 10,000 (5000
simulations from each model ~ 2 mins), and fit the MLR
(call this trainDat).

@ | then produced another 10,000 independent simulations
(call this testDat).

@ Finally, | used the MLR to find which model | would predict
had produced each of the ‘testDat’ simulations.

@ The model predicted correctly for 99.53% of the testDat
simulations (total 4.5 minutes).
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Multiple Logistic Regression Example.

@ | produced training data of this form with only 10,000 (5000
simulations from each model ~ 2 mins), and fit the MLR
(call this trainDat).

@ | then produced another 10,000 independent simulations
(call this testDat).

@ Finally, | used the MLR to find which model | would predict
had produced each of the ‘testDat’ simulations.

@ The model predicted correctly for 99.53% of the testDat
simulations (total 4.5 minutes).

@ A corresponding Bayes Factor Analysis returned 17.03%
accuracy (total 21 minutes).
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Multiple Logistic Regression Example.

@ Recall the two opposing models of population dynamics:

150000~
100000~
= Model
~ a Bottleneck
z = Exponential
50000~
0
. ! ! o Lo
0 4000 8000 12000 16000

Generations Before Present (t)
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Multiple Logistic Regression Example.

Comp.2
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Conclusions.

@ In my thesis we performed a four model Semi-Automatic
ABC Analysis.
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Conclusions.

@ In my thesis we performed a four model Semi-Automatic
ABC Analysis.

@ Our MLR classification returned > 96% accuracy for
> 250,000 simulations.
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Conclusions.

@ In my thesis we performed a four model Semi-Automatic
ABC Analysis.

@ Our MLR classification returned > 96% accuracy for
> 250,000 simulations.

@ A complimentary Bayes Factor analysis never returned a
correct post-hoc analysis for our simulated data.
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Conclusions.

@ In my thesis we performed a four model Semi-Automatic
ABC Analysis.

@ Our MLR classification returned > 96% accuracy for
> 250,000 simulations.

@ A complimentary Bayes Factor analysis never returned a
correct post-hoc analysis for our simulated data.

@ Our method does not require ABC to be performed on all
possible models (just simulations).

THE UNIVERSITY
) /ADrAIDE
o

Adam Rohrlach



Thanks.
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