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Application examples

Example 1: Microsatellite

The components of the model*:

@ Two-dimensional state space
S={(n,m):n=0,1,2,....m=0,1,...,n} (1)

consisting of

@ n - the number of repeat units
@ m - the number of those which are impure

© Appropriately chosen generator

Q = [q(ijy(k.0)] (2)

(slipped-strand mispairing, point mutation)

1T. Stark, B. McCormish, M. O'Reilly, B. Holland. A purity dependent Markov model for the time-evolution of
microsatellites. In preparation.



Application examples

Example 2: Gene family

The components of the model?:

@ Two-dimensional state space
S={(n,m:n=0,1,2,...;m=0,1,...,n} (3)

consisting of
@ n - the number of copies
@ m - the number of those which are redundant

@ Appropriately chosen time-inhomogenous generator

Q(t) = [9(i )k, (D] (4)

(duplication, loss, neofunctionalization,
subfunctionalization)

2A.I. Teufel, J. Zhao, M. O'Reilly, L. Liu, D. A. Liberles. On mechanistic modeling of gene content evolution:
Birth-Death models and mechanisms of gene birth and gene retention. Computation, 2:112-130, 2014.




Application examples

Neofunctionalization/Subfunctionalization

Figure 1in3
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3A. Force, M. Lynch, F.B. Pickett, A, Amores, Y. Yan, J. Postlethwait. Preservation of Duplicate Genes by
Complementaty, Degenerative Mutations. Genetics 151:1531-1545, 1999.



Application examples

Modeling assumptions

@ duplication rate ¢ > 0 per copy of a gene

@ loss rate a > 0 per redundant copy of a gene

@ loss rate b > 0 per non-redundant copy of a gene
@ neofunctionalization rate g > 0 per copy of a gene

@ subfunctionalization rate h(t) per copy of a gene, where t is
the time elapsed since the last state transition, given by the
density of a gamma distribution

a—144—pFt
ity = PO i (5)
M(a)
(a - shape parameter, § - rate parameter)

where -
(a) :/ xe *dx
x=0



Application examples

Diagram of transitions out of (n, m)

m(g+h(t))



Application examples

Application and Numerical work

In preparation.

4T. Stark, B. Holland, D. Liberles, M. O'Reilly



Classic Markov Chains

Continuous-time Markov Chain (CTMC)

CTMCs are used to model the evolution of environments.

Key parameters:
@ the set S of all possible phases
@ generator matrix T = [T}] of transition rates.

Standard measures:
@ P(t) = [P(t);] records the probabilities of observing phase
J attime t, given start in phase i
@ 7 = [r] records the stationary probabilities of observing
phase j.



Classic Markov Chains

Example - Hydro-Power Generation System

g

1 on-design, 2 off-design, 3 start, 4 stop, 5 idle, 6 maintenance



Classic Markov Chains

Standard Properties

P(t) is given by

7, whenever it exists, is the unique solution of

P = =«
™ = 1
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Classic Markov Chains

Standard Techniques

@ Embedded Chain - discrete-time Markov Chain (DTMC)
with the same S and matrix P = [pj;] of jump probabilities

given by
Tj

—Tj

pij =

@ Uniformized Chain - DTMC with the same S and matrix

Pr=1+-T,

1
9
where
¥ > max{—Tj}
)
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Classic Markov Chains

Simulating a CTMC

Two common methods:
@ a Generate the interarrival time 7; given current time t and
X(t) =i, from Exp()\;) with \; = —Tj.

b Attime t + t; the process jumps to some state j with
probability p; = Tjj/\;.

© a Generate t from Exp(Ty) forall k # i, k € S.
b Let7; = mingk{Ti} and k* be the corresponding value of k.

¢ The process jumps to state k* at time { + 7;.
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Markovian-modulated models

1-D Stochastic Fluid Model (SFM)

Model®: Two-dimensional state space (X(t), o(t)) with
level X(t), phase ¢(t) € S, generator T, rates r;

Buffer Y

d\;gt) =1 when ¢(t)=1i and Y(t)>0

sBean, N. G., O'Reilly, M. M. and Taylor, P. G. (2005). Hitting probabilities and hitting times for stochastic fluid
flows. Stochastic Processes and Their Applications, 115, 1530—-1556.
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Markovian-modulated models

Sample Path Example

fluid level

time
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Markovian-modulated models

Application example - Coral Bleaching




Markovian-modulated models

Results

Theoretical and numerical results for topics such as e.g.

@ Return to the original level

@ Draining/Filling to some level

@ Avoiding some taboo level

@ Unbounded, bounded and multi-layer buffers

@ Vaious transient/stationary measures of interest
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Markovian-modulated models

Uniformization of the 1-D SFM

Uniformization® produces a (level-homogenous)
Quasi-Birth-and-Death Process (QBD), a type of a CTMC with
two-dimensional state space (level n, phase k)

S={(nk):n=0,1,2,...;k=0,1,...,m} (6)
and generator such that the visits to the neighbouring levels
only are allowed,

(0) €(1) €(2) €(3)

) | B A, 0 0
a_ () | A Al A 0
T2 | 0 Ay A A
3) | 0 0 A A

64. N.G. Bean and M.M. O'Reilly. (2013) Spatially-coherent Uniformization of a Stochastic Fluid Model to a
Quasi-Birth-and-Death Process. Performance Evaluation, 70(9): 578-592
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Markovian-modulated models

Example: QBD transitions
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Markovian-modulated models

Uniformization of the 1-D SFM

The two examples at the start of this talk were QBDs!
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Markovian-modulated models

2-D Stochastic Fluid Model

Model with two levels’

Buffer X Buffer Y
dX(t) )
——= =¢; when H=i
ot j ()
ay(t .
dg) =r;, when ¢(t)=1i and Y(t)>0
75. N.G. Bean and M.M. O’Reilly. (2013) Stochastic Two-Dimensional Fluid Model. Stochastic Models, 29(1):

31-63.

20/25



Markovian-modulated models

Sample Path Example

20

Evolution of (i(t), X(t), Y(t)) in time

level Y(t)
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Markovian-modulated models

Stochastic Fluid-Fluid Model

Model with two interacting levels®

Buffer X Buffer Y
ax(t) .
T = Cj When Cp(t) =1
Y
ddgt) =ri(x) when o(t)=iX(t)=x and Y(f)>0

8.G. Bean and M.M. O'Reilly. (2014) The stochastic fluid-fluid model: A stochastic fluid model driven by an
uncountable-state process, which is a stochastic fluid model itself. Stochastic Processes and their Applications 124
(5): 1741-1772
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Markovian-modulated models

Results for the 2-D SFMs

@ Theoretical framework

@ Numerical solutions

Current work:

@ Time-dependent (cyclic) 1-D SFMs

23/25



Markovian-modulated models

Summary

Features of various Markovian-modulated models:

@ discrete-time/continuous-time

@ two-dimensional state space

@ discrete phase variable

@ discrete/continuous level variable

@ level-varying parameters

@ two, possibly interacting, level variables

Applications:

@ Aanalysis of systems that evolve in time

24/25


http://youtu.be/BMaeGBh_Lnc

Markovian-modulated models

Summary

Features of various Markovian-modulated models:

@ discrete-time/continuous-time

@ two-dimensional state space

@ discrete phase variable

@ discrete/continuous level variable

@ level-varying parameters

@ two, possibly interacting, level variables

Applications:

@ Aanalysis of systems that evolve in time

Thanks!

Matgorzata

http://youtu.be/BMaeGBh_Lnc
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