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We present a novel application of the discipline of quantum

computation-information to the field of evolutionary phylogenetics.

The following results will be prefaced by a non-technical review of the

idea of how simulation of stochastic models can be achieved by

exploiting the behaviour of quantum systems.

A quantum simulation of phylogenetic evolution and inference, is

proposed in terms of trace preserving positive maps (quantum channels)

operating on quantum density matrices defined on Hilbert spaces encoding

states of biological taxa with K characters. Simulation of elementary

operations such as speciation (branching of trees, phylogenesis) and

phyletic evolution along tree branches (anagenesis), are realized

utilizing conditional control-not unitary gates and quantum channels

with unitary or complex matrix Kraus generators.

The standard group-based phylogenetic models are implemented via quantum

random walks with unitary Kraus generators (random unitary channels),

while more general models in the Lie-Markov class, such as the

Felsenstein and strand symmetric models, are realized via

post-measurement operations. Simulation of iterative cherry-growing and

cherry-pruning tree processes is formulated in the quantum setting.

Thus the central problem of phylogenetics -- the statistical estimation

of free parameters of stochastic matrices implementing the stochastic

evolution of characters along tree branches -- is addressed by

formulating an analogous quantum maximum likelihood estimation problem

for the free parameters of quantum channels operating along branches.
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Physics-Biology-Computation – an entangled golden braid?

1950’s:
DNA structure and the central dogma
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Physics-Biology-Computation – an entangled golden braid?

1950’s:
DNA structure and the central dogma

2000’s:
Quantum biology?

Olfaction = inelastic electron tunnelling?
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But ... what about quantum computation!?

“A 200-qubit quantum computer would have
the capability of a 2200-bit classical processor”
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The complex geometry of stochastic models
What we usually understand as a classical probability distribution is just the
shadow of a complex number construction which is much richer, and worth
studying in principle (c.f. Cardano’s use of complex numbers in the 16th
Century).

For example, here’s a cool way to build stochastic matrices:
Lemma: to each K × K doubly stochastic matrix M can be associated
a unitary matrix1 U such that M is the Hadamard product2 of U and its
complex conjugate, M = U ◦ U∗ .

The construction for the 2× 2 case is:

U = exp

(
0 η

−η∗ 0

)
=

( √
1− |z |2 z

−z∗
√
1− |z |2

)
, z =

sin η

η
,

∴ U ◦ U∗ ≡
(

1− |z |2 |z |2
|z |2 1− |z |2

)
,

The choice of U is non-unique. The geometry underlying the 2× 2
binary symmetric Markov model is the complex projective space CP

1.

1Sums of moduli-squares of elements in each row and column equal unity; different rows and
columns complex-orthogonal.

2Matrix multiplication element-by-element; the undergraduate’s dream formula!
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Introducing Schrödinger’s bug (alive or dead)

This little critter (bacterium, virus, prion) finds itself in a Petri dish with a
radioactive atom. It is small enough to be described by a quantum
wavefunction, but its quantum state is correlated to that of the radioactive
atom, which has a certain probability to decay:

|ψ〉 = z| 〉+ z ′ | 〉

If the atom is undecayed, the bug is ‘alive’, | 〉; if decayed, the bug is
‘dead’, | 〉.
The probabilities of these events, when the experimenter makes a test, are
the modulus-squareds of the complex amplitudes, |z |2 and |z ′|2 with
|z |2 + |z ′|2 = 1.
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This is usually discussed via a ‘thought experiment’ known as ‘Schrödinger’s
cat’ where the cat state is 50% ‘alive or dead’,

– or perhaps it should be known∗ as ‘Cat’s Schrödinger”,

(∗ with acknowledgements to Garret Lisi)
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‘dead’, | 〉.
The probabilities of these events, when the experimenter makes a test, are
the squares of the complex amplitudes, |z |2 and |z ′|2 with |z |2 + |z ′|2 = 1.

This situation is formalized by the notion of observation in quantum
mechanics – whereas standard Schrödinger evolution effects a change of the
state vector by a unitary transformation |ψ〉 → U|ψ〉, measurement entails
applying one or other of the appropriate projection operators P , P .

Can this really be an accurate account of the bug’s state?
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A better description is via the density matrix (or density operator)

ρ = |ψ〉〈ψ| = |z |2 | 〉〈 |+ zz ′∗| 〉〈 |+ · · ·

A density matrix can be more general than just |ψ〉〈ψ| for some state vector
– it is some array of complex numbers with special properties3 Instead of
|ψ〉 → U|ψ〉, time evolution is now ρ→ UρU†.

The resolution of the cat/bug paradox is that there are so-called decoherent
interactions with the rest of the environment, such as to remove off-diagonal
terms, leaving simply

ρ = |z |2 P + |z ′|2 P =

(
|z |2 0
0 |z ′|2

)
.

The bug-in-hand is just an element of a statistical ensemble, each of

whose members has probability |z |2, |z ′|2 of being found alive or dead,

respectively.

3A positive definite hermitean operator of unit trace.
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Quantum operations
The density operator is subject to time evolution, including dynamics as well
as formal measurement processes, according to generalised quantum
operations, parametrized by operators {U} such that

ρ→ E (ρ) =
∑

U

UρU†, where
∑

U

U†U = I .

Consider in particular the diagonal elements of E (ρ):

E (ρ)aa =
∑

b

Ma
bρ

b
b, and Ma

b =
∑

U

Ua
b

(
Ua

b

)∗≡ (U ◦U∗)ab

Note
∑

a

Ma
b ≡

∑

U

(
U†U

)b
b = 1, while

∑

b

Ma
b ≡

∑

U

(
UU†

)a
a

Prepare a diagonal density operator ρ =
∑

paPa, a classical mixed
state. Do a general quantum operation (e.g. unitary evolution plus
measurement) followed by decoherent diagonal truncation.
Then the underlying diagonal probability distribution transforms un-
der the resulting stochastic matrix M as p → p′ = Mp.
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Example: diagonal truncation via DFT

One can implement diagonal truncation via a sum of partial unitaries based on
discrete Fourier transforms of the projection operators Pa, a = 0, 1, · · · ,K − 1
which collapse a general state on to each of the basis states of the selected basis:
Firstly define

Ua =

K−1
∑

b=0

ωab
Pa ,

where ω = e2πi/K . Let q = 1/K . Then

Ediag (ρ) :=

K−1
∑

a=0

q UaρUa
† sends ρ → Ediag (ρ) ≡

K−1
∑

a=0

ρaaPa

– in precise correspondence with the decoherent maps of Schrödinger’s bug.

Note that the Ua are unitary operators but the (uniform) convex sum means that
they are implemented as measurement operations by a (fair) coin toss, that is, this
is a stochastic algorithm.
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Example: quantum random walk
Classical processes like an infinite state Markov chain with forward/backward transition
probabilities (birth/death process) can be decomposed into a ‘walker’ on the line Z, and
an auxiliary Bernoulli ‘coin’ with state space Z2 which determines whether the state
increases or decreases (that is, whether the ‘walker’ moves forward or backward).

◮ The quantum equivalent has product states, |a〉 ⊗ |m〉, m ∈ Z, a ∈ Z2.
◮ Start with the ‘walker’ in state |m〉 and the ‘qubit-coin’ in the mixture state

ρc = p|+〉〈+|+ q|−〉〈−| (with p + q = 1). Let P± be the coin projectors, and
E± the forward-backward shift operators, taking |m〉 to |m ± 1〉.

◮ Under the unitary operation Vclass = P+ ⊗ E+ + P− ⊗ E−, ρ = ρc ⊗ |m〉〈m| is
mapped (marginalizing over the qubit-coin) to

Eclass(ρ) = Trc
(

VclassρV
†
class

)

= p|m + 1〉〈m + 1|+ q|m − 1〉〈m − 1|

–an ensemble with probability p for moving up, q for moving down.

But for a quantum random walker we allow the coin to undergo some unitary
evolution first, before measuring:

Equ(ρ) = Trc
(

VquρV
†
qu

)

where Vqu =
(

P+ ⊗ E+ + P− ⊗ E−

)

· U ⊗ 1 .

Such quantum random walks have the remarkable property that the mean
displacement after N steps is typically O(N) (not O(

√
N) ) .
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Quantum simulation of stochastic models?

Quantum computing offers potentially huge advantages in terms of parallel
processing, memory, AND exponential speed-up. Under the bonnet of the
quantum processor is a toolkit of universal gates which can implement any
desired unitary up to error bounds, as well as perform measurements.
Roughly speaking, truth tables become matrices acting on qubits.

For phyletic evolution (K characters, L leaves) we need :

◮ L quantum ‘wires’ carrying quKit systems;
◮ Independent dynamics on each ‘wire’ with decohering maps

representing substitutional models (anagenesis);
◮ A system of entangling interactions between wires representing

speciation (cladogenesis).
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Anagenesis - some standard substitution models

Doubly stochastic case

Birkhoff’s theorem: a matrix is doubly stochastic if and only if it can be
expressed as a convex sum of permutation matrices.

For these, build elementary quantum operations representing arbitrary
permutation matrices (the convex sum entails a statistical mixture, whereby
the measurement is decided by a classical coin toss). In fact for the
permutations themselves, Uσ :=

∑ |σa〉〈a|, and a diagonal density operator
ρ =

∑
a p

a|a〉〈a|, we have under ρ→ UσρU
†
σ that

p → p′, p′a =
∑

b

K a
(σ)bp

b

where K(σ) is just the (square of) the matrix of σ, K a
(σ)b = (〈a|Uσ|b〉)2.

The Kimura models are symmetric, hence doubly stochastic:

MK = aK(AG)(CT) + bK(AT)(CG) + cK(AC)(GT) + (1− a− b − c)1

where for rates α, β, γ, we have a = e−αt , b = e−βt , c = e−γt .
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Felsenstein model

We need the stationary root frequency distribution, which is by construction
(up to scaling): πA = α, πC = β, πG = γ, πT = δ.

The corresponding diagonal operators (observables) are

1̂π :=
∑

a
πa|a〉〈a|, and 1̂π# := 1̂− 1̂π

As measurements, use Fπ
a,b =

√
πb|a〉〈b|, Fπ#

ab =
√
π
#
b |a〉〈b|, namely

1̂π =
∑

a,b
Fπ
ab

†Fπ
ab, 1̂π# =

∑
a,b

Fπ#

ab
†Fπ#

ab

Finally we need a convex sum of the measurement operation for (1̂π or 1̂π#)
and the trivial measurement 1̂ (but discarding π# outcomes ):

ρ→ (1− λ)
∑

a,b
Fπ
abρF

π
ab

† + λρ

which implements the Felsenstein transition matrix

MF = (1− λ)
∑

a,b
(Fπ

ab)
2 + λ1

where λ = e−µt for some overall rate µ.
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Putting it all together - trees and circuits – cladogenesis
It turns out that wires are K +1-state systems, with basis kets |0〉, |1〉, · · · |K 〉
including an additional ancilla or ‘reservoir’ state |0〉.
Prepare neighbouring wires in the mixed (unentangled) state ρ⊗ |0〉〈0| where
ρ is diagonal as usual.

The ‘control shift’ operator UCS acts across wires,

UCS|c〉|t〉 := |c〉|(t+ c)modK+1〉,

∴ UCS

( ∑
a
pa|a〉〈a|⊗|0〉〈0|

)
U†
CS

=
∑

a
pa|a, a〉〈a, a|

After entanglement via CS, a diagonal ρ representing an edge character
distribution produces a two-way probability array (GHZ state)

Pa,b =

{
pa, b = a ;
0, b 6= a .
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Conclusions
The probability distributions for standard parametrized phylogenetic models
on trees can be simulated in a quantum circuit setting using appropriate
quantum channels with suitable quantum operations (including generalized
measurements). The model parameters are mapped to either coupling
strengths or interaction times between entangled qubits, or probabilities of
random meaasurement steps determined by suitably biassed classical coin
tosses.
The circuit presentation identifies the quantum protocols required, but is not
necessarily the best for implementation, for which networks may be superior.
These models can also be realized in a pure quantum random walk
formalism, for a quantum walker on a suitably structured finite state space.
For such quantum simulations of stochastic models, a likelihood
measurement operator formalism also exists (∆E & PDJ, in preparation).
It remains to be seen if the full power of quantum algorithms is available for
computation in this setting.
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