

Who Cares? The Evolution of Parental Care in Squamate Reptiles

Parental Care

any instance of parental investment that increases the fitness of offspring

Parental Care

- Majority of research on mammals and birds
- Care is ubiquitous in mammals and birds
- Constrains our ability to:
 - ask questions about the origins of care
 - Understand the role of parental care in the evolution of social complexity.
- Need alternative systems

Parental Care in Reptiles

- Most sophisticated care behaviour found in Crocodilians
- All species provide parental care
- Provisioning of offspring and care after nutritional dependence

Lizards and Snakes

- Establishing and maintaining nests, burrows and territories
- Care of fertilised eggs
- Provisioning of offspring before hatching or birth
- Care after hatching or birth
- Care after nutritional dependence

Lizards and Snakes

- Establishing and maintaining nests, burrows and territories ✓
- Care of fertilised eggs ✓
- Provisioning of offspring before hatching or birth
- Care after hatching or birth
- Care after nutritional dependence

Lizards and Snakes

- Establishing and maintaining nests, burrows and territories
- Care of fertilised eggs ✓
- Provisioning of offspring before hatching or birth
- Care after hatching or birth
- Care after nutritional dependence

Aims

- 1. Elucidate the evolutionary pathways (i.e. most common transitions) that have led to current diversity in reptilian care
- 2. Identify the divergence in key ecological, life-history or phylogenetic characteristics responsible for transitions between modes of care
 - In particular, parent offspring association
- 3. Understand the evolutionary constraints prohibiting the emergence of more sophisticated modes of care in non-crocodilian reptiles

Aims

- 1. Elucidate the evolutionary pathways (i.e. most common transitions) that have led to current diversity in reptilian care
- 2. Identify the divergence in key ecological, life-history or phylogenetic characteristics responsible for transitions between modes of care
 - In particular, parent offspring association
- 3. Understand the evolutionary constraints prohibiting the emergence of more sophisticated modes of care in non-crocodilian reptiles

Methods

Searched the literature for all reports of parental care behaviour across all squamate reptile species, recording:

- 1) All forms of parental care
- 2) Parity mode (oviparity vs. viviparity)

Mapped the data onto a recently published squamate reptile phylogeny (Pyron et al. 2013)

A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes

BMC Evolutionary Biology 2013, **13**:93 doi:10.1186/1471-2148-13-93

Robert Alexander Pyron (rpyron@colubroid.org)
Frank T Burbrink (frank.burbrink@csi.cuny.edu)
John J Wiens (wiensj@email.arizona.edu)

Pre-Hatching/Birth Care

Nest Construction

- Egg Attendance/Brooding

- Egg/Nest Guarding

Viviparity

Post-Hatching/Birth Care

- Parent Offspring association (POA)

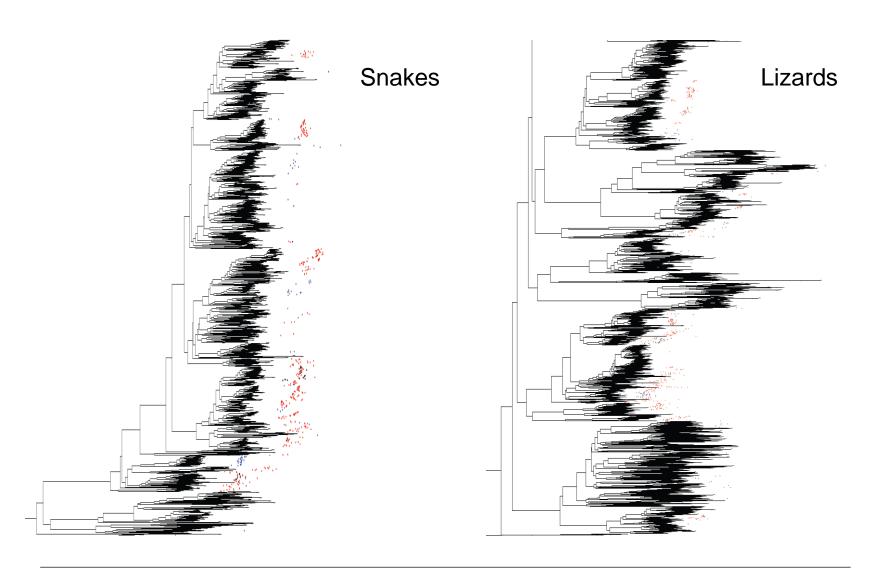
Distribution of Care in the Squamates

Pre Hatch/Birth Care	1134
Viviparity	842 (21%)
 Nesting behaviour 	229 (5.8%)
 Brooding/Egg attendance 	124 (3%)
Egg defense	100 (2.5%)
Post Hatch/Birth Care	79
 Parent Offspring Association 	79 (2%)
No Care Reported/Data Available	2781

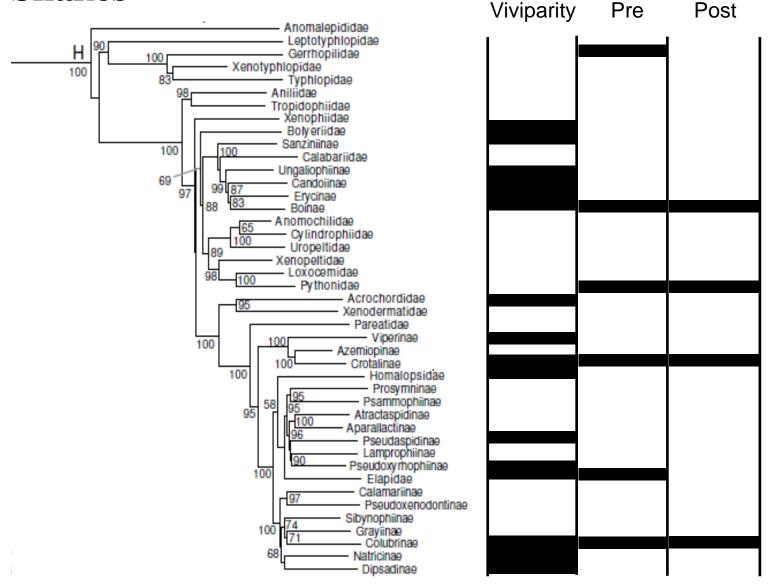
Distribution of Care in the Squamates

Overall, 28% of squamate species exhibit some form of care

- 43% at the family level

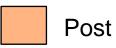


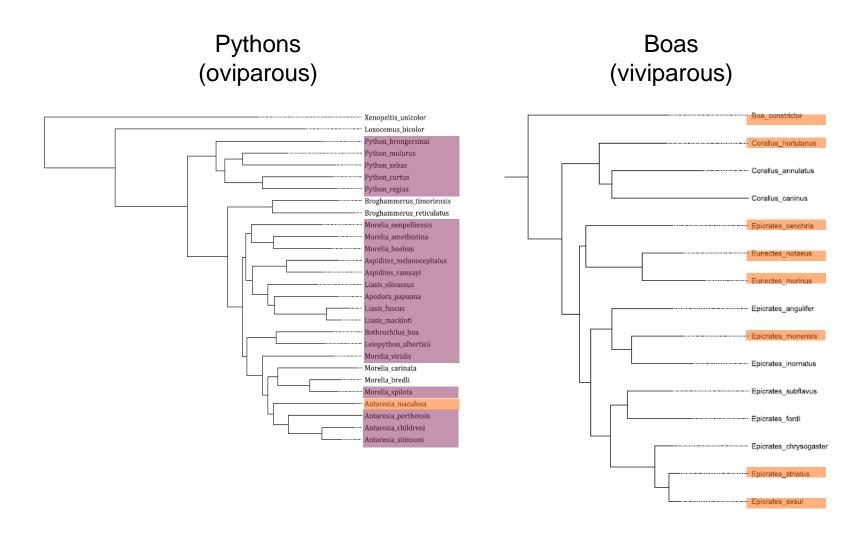
30% of fish families



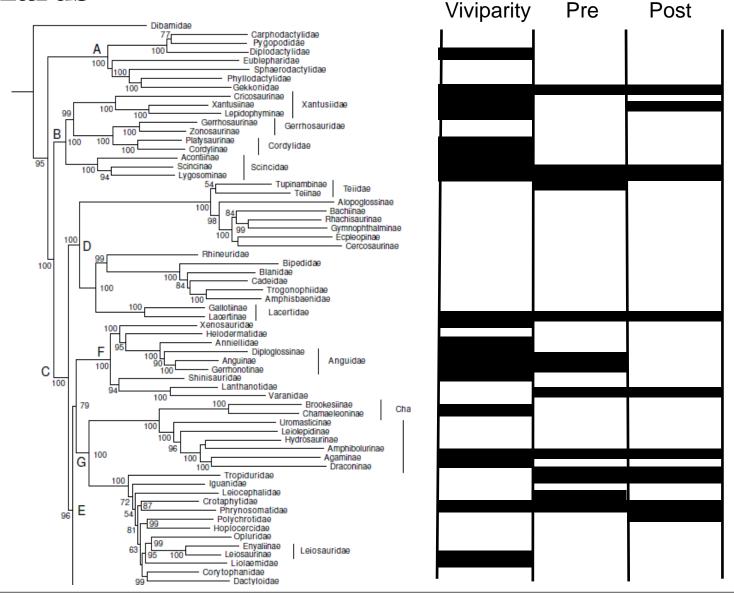
6-15% of anuran species 20% of salamander species

Squamate Tree


Snakes



Distribution of Care

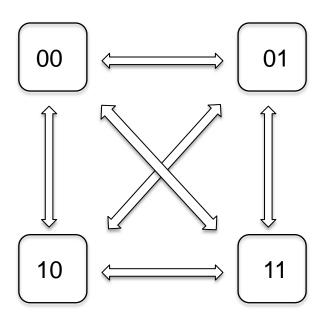


Pre

Lizards

Better do some analyses

Chi-square shows significance

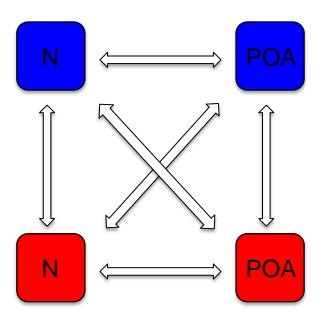

P < 2.2e-16

Better do some analyses

Chi-square shows significance

- P < 2.2e-16
- Need analytical technique that can separate transitions between states from speciation/radiation once a state has evolved
- MuSSE models
 - Extention of BiSSE

0-	oviparous
1-	viviparous
-0	No POA
-1	POA



Better do some analyses

Chi-square shows significance

- P < 2.2e-16
- Need analytical technique that can separate transitions between states from speciation/radiation once a state has evolved
- MuSSE models
 - Extention of BiSSE

BLUE oviparous
RED viviparous
N No POA
POA POA

A few snags...

For the 3952 spp. included in the Pyron et al. squamate phylogeny:

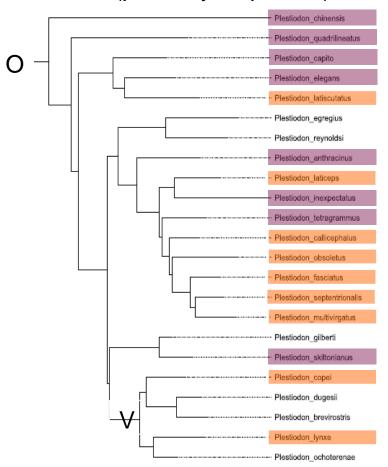
- Care data available for only 390 spp. Of those, POA reported in only 79.

Restrict analyses to a monophyletic group with decent amount of data available – Scincidae!

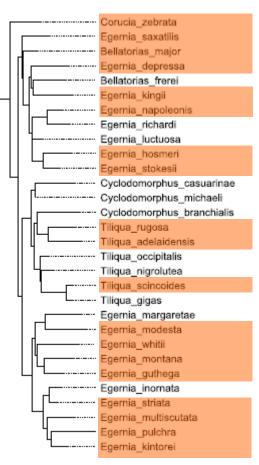
Scincidae

- Monophyletic group
- POA found in 29 spp.

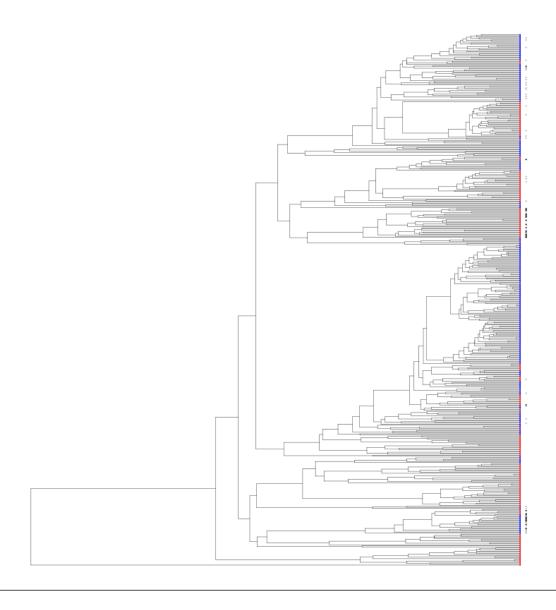
Distribution of Care



Pre



Post


Plestiodon (primarily oviparous)

Egernia (viviprous)

Tree of Scincidae

Approaches

Run Models with:

- 1. Whole data set (including NA's for care)
- 2. Reduced data set, including only those species for which care data are available
- 3. Dummy data sets in which NA's were replaced with randomly assigned care values based on a given probability of care occurring (0.02)

Ran all of these:

Constrained and unconstrained speciation and extinction rates

Speciation and Extinction Constrained

	00-01	00-10	00-11	01-00	01-10	01-11	01-00	10-01	10-11	11-00	11-01	11-10
All data	2	4	6	1	7	4	6	5	3	7	7	5
NA's excluded	4	6	7	1	7	4	2	7	3	7	7	5
Rand. datasets	6	3	7	1	7	4	7	7	5	7	7	2

Speciation and Extinction Constrained

	00-01	00-10	00-11	01-00	01-10	01-11	01-00	10-01	10-11	11-00	11-01	11-10
All data	2	4	6	1	7	4	6	5	3	7	7	5
NA's excluded	4	6	7	1	7	4	2	7	3	7	7	5
Rand. datasets	6	3	7	1	7	4	7	7	5	7	7	2

Speciation and Extinction Constrained

	00-01	00-10	00-11	01-00	01-10	01-11	01-00	10-01	10-11	11-00	11-01	11-10
All data	2	4	6	1	7	4	6	5	3	7	7	5
NA's excluded	4	6	7	1	7	4	2	7	3	7	7	5
Rand. datasets	6	3	7	1	7	4	7	7	5	7	7	2

Speciation and Extinction allowed to vary

	00-01	00-10	00-11	01-00	01-10	01-11	01-00	10-01	10-11	11-00	11-01	11-10
All data	3	6	6	6	1	6	5	6	2	4	6	6
NA's excluded	3	4	6	1	6	6	6	6	2	6	5	6
Rand. datasets												

Randomized Data Sets
Speciation and Extinction Constrained

	00-01	00-10	00-11	01-00	01-10	01-11	01-00	10-01	10-11	11-00	11-01	11-10
1	6	3	7	1	7	4	7	7	5	7	7	2
2	6	3	7	1	7	4	7	7	5	7	7	2
3	5	3	7	1	7	4	7	7	5	7	7	2
4	4	6	8	1	1	4	8	8	7	8	8	3
5	6	3	7	1	7	4	7	7	5	7	7	2
6	5	3	7	1	7	4	7	7	6	7	7	2
7	5	3	7	1	7	4	7	7	6	7	7	2
8	4	6	8	1	2	5	8	8	6	8	8	3
9	6	3	7	1	7	4	7	7	5	7	7	2
10	5	3	7	1	7	4	7	7	5	7	7	2
11	5	3	5	1	7	4	7	7	7	7	7	2

Where to from here?

- Conduct more thorough analyses to get at the apparent association between viviparity and POA
 - Extend to whole tree
- Look into multi-trait analysis to see if the current distribution of care modes can be explained by some logical sequence of transitions

e.g.
$$N \longrightarrow B \longrightarrow ED \longrightarrow POA$$

$$V \longrightarrow POA$$

What predicts transitions to parental Care in Squamates?

For care to have evolved from an ancestral state of no care, both ecological and life history traits must favour the transition – these include:

- 1) Ecological Factors
 - Resource availability
 - Climate (viviparity)
- 2) Life History Factors
 - Egg size / Investment in offspring
 - Longevity / Age at maturity
- 3) Association: Care is more likely to evolve when parents regularly encounter their offspring
 - Territoriality
 - Viviparity

Summary

- 1. Parental care in squamates is more sophisticated than often assumed
- 2. Care is taxonomically widespread and represents multiple evolutionary transitions
- 3. These patterns are equivalent to those seen in fish, amphibians and invertebrates all of which are assumed to have more sophisticated care behaviour compared to reptiles
- 4. Both life history traits and ecology are likely to be important specifically, viviparity appears to be an important (but not essential) precursor to parent offspring association

7% of viviparous species in the squamate phylogeny exhibit posthatching care but only 1% of oviparous

Broader Evolutionary Implications of Parental Care

Family	Species	Parity	General Location
Agamidae	Phrynocephalus theobaldi	V	Tibetan plateau
Cordylidae	Cordylus cataphractus	V	South Africa
	Cordylus macropholis	V	South Africa
Gekkonidae	Hoplodactylus duvauceli	V	New Zealand
Iguanidae	Leiocephalus schreibersi	Ο	Chile
	Liolaemus huacahuasicus	V	Argentina
	Tropidurus flaviceps	Ο	Ecuador
	Sceloporus jarrovi	V	Mexico
	Sceloporus mucronatus	V	Mexico
Scincidae	Gnypetoscincus queenslandiae	V	Australia
	Many <i>Egernia sp.</i>	V	Australia
Xantusiidae	Xantusia vigilis	V	Southwestern USA
	Xantusia riversiana	V	San Nicolas Is., USA
Xenosauridae	Xenosaurus newmanorum	V	Mexico

Questions and Suggestions?

