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Overview

1. Taxicab (L1) metrics and how they can be used to solve hard
problems.

2. The idea of a metric generalizes: introducing the diversity.

3. Harder problems on graphs (and hypergraphs) can be solved
using taxicab diversities.
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Metrics

A metric on a set satisfies

1. d(a, b) = d(b, a) ≥ 0 for all a, b.

2. d(a, b) = 0 exactly when a = b.

3. d(a, b) ≤ d(a, c) + d(b, c) for all a, b, c .

The combination of a set with a metric on that set is called a
metric space.
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Distances in a tree
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Distance from B to D is the length of the path connecting them:

d(B,D) = 0.2 + 0.5 + 0.1 + 0.3.
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Distances in a graph
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This is the maximum metric such that d(u, v) ≤ `(u, v) for all
edges u, v .
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Taxicab metric (a.k.a. L1 or Manhattan metric)

(a1,a2)

(b1,b2)

d(a, b) = |a1 − b1|+ |a2 − b2|

Generalizes to multiple dimensions.
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Distortion

Given a function f , how much do distances between points get
expanded or shrunk?

One measure is the distortion(
max
x ,y

d2(f (x), f (y))

d1(x , y)

)
·
(

max
x ,y

d1(x , y)

d2(f (x), f (y))

)
.
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The famous theorems

Johnson-Lindenstrauss Lemma. Any set of m points in high
dimensional Euclidean space can be embedded in small
O(ε−1 log m) dimensional space with distortion (1 + ε).

Bourgain’s theorem. Any metric on n points can be embedded in
log2 n dimensional L1 space with distortion at most log n.

Applications in large scale clustering, pattern matching, large data.
The use of small distortion mappings has been one of the big ideas
in algorithm design over the past 10-15 years.
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Flow and cut
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Flow and cut

Multi-commodity flow

Input: Demands Duv and edge
capacities Cuv .

Problem: Maximize λ such that
we can simultaneously flow λDuv

between all u, v .

Sparsest Cut

Input: Demands Duv and edge
capacities Cuv

Problem: Find a cut U|V which
minimizes∑

u∈U,v∈V Cuv∑
u∈U,v∈V Duv

The maximum flow is always less than or equal to size of the
sparsest cut.
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Sparsest cut via L1 embedding

It can be shown (LP duality) that multicommodity flow is
equivalent to

min
∑
uv

Cuvd(u, v)

such that
∑

uv Duvd(u, v) ≥ 1 and d is a metric.

It can also be shown that sparsest cut is equivalent to

min
∑
uv

Cuvd(u, v)

such that
∑

uv Duvd(u, v) ≥ 1 and d is an L1 metric∗
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Approximating Sparsest Cut

1. Solve the dual of multicommodity flow.

2. Find a low distortion embedding of the output of 1. into L1.

3. Extract a solution to sparsest cut.

From Bourgain’s result we obtain an O(log n) approximation.
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Generalizing metrics

What if we go from pairs to triples, 4-sets, finite subsets?
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Token phylogenetics
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Diversity of B,D,E is the length of the tree connecting them.

δ({B,D,E}) = 0.2 + 0.5 + 0.1 + 0.3 + 0.1 + 0.1
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Formalising the idea of diversities

Set X of points and a function δ on finite subsets of X .

1. For all A we have δ(A) ≥ 0.

2. For all A we have δ(A) = 0 exactly when |A| ≤ 1.

3. For all A,B,C with C 6= ∅ we have

δ(A ∪ B) ≤ δ(A ∪ C ) + δ(C ∪ B).

A pair (X , δ) satisfying all of these is called a diversity. (First
presented at Phylomania ’09)

Note that δ restricted to pairs is a metric.
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Examples: diameter diversity

Let (X , d) be a metric space. Define δ(A) = maxa,b∈A d(a, b).
Then (X , δ) is a diversity.
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Example: Taxicab (L1 or Manhattan) diversities

(a1,a2)

(b1,b2)

(c1,c2)

(d1,d2)

Diversity of a set of points is the height+width of the smallest box
containing them.

δ({a, b, c}) = |a1 − b1|+ |a2 − c2|
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Example: Steiner tree

Let (X , d) be a metric space. For each finite A ⊆ X let δ(A) be
the length of the minimum Steiner tree connecting A. Then (X , δ)
is a diversity.

On graphs, the Steiner tree diversity is to diversities what the
shortest path metric is to metrics.
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Diversity theory

We’ve now got many different examples of diversities, from TSP to
Steiner trees to geometric probability. Introduction, tight spans
and hyperconvexity Bryant & Tupper (2012) Advances Math.
Results on L1 diversities Bryant & Klaere (2011) J. Math. Bio.
Polyhedral Formulation of Diversity Tight Span: Herrmann &
Moulton (2012) Discrete Math.
Connections to Order Theory: Ben Whale (2013).
Fixed Point Theory: Piatek & Espinola (2013).
Analogue of Uniform Spaces: Poelstra (2013).
Geometry of hypergraphs Bryant & Tupper (2014)
More fixed point theory: Kirk & Shahzad (2014)
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Geometry of graphs revisited

Let G = (V ,E ) be a graph with edge weights. The shortest path
metric is the maximal metric such that

`(u, v) ≥ d(u, v)

for all edges {u, v}. What is the diversity analogue?

The maximal diversity such that δ({u, v}) ≤ `(u, v) for all edges
{u, v} is the Steiner tree diversity:

δ(A) = length of min. Steiner tree connecting A.

What is the Geometry of Graphs for diversities?
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Distortion and diversities

Johnson-Lindenstrauss Lemma Revisited. Any set of m points in
high dimensional Euclidean diversity can be embedded in small
O(ε−1 log m) dimensional space with distortion (1 + ε).

Bourgain’s Theorem Revisited. Any diversity on n points can be
embedded in log2 n dimensional L1 space with distortion at most
n(log n)2. Conjecture: this should be O(log n).
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Multicommodity Steiner flows

A flow from s1 to s2 can be written as the sum of paths from s1 to
s2. Flow is conserved at nodes.

A Steiner flow for S can be written as the sum of trees connecting
nodes in S . This models flow of information with broadcasting.
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Steiner flows
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Flow and cut 2

Multi-commodity (concurrent)
Steiner Flow

Input: Demands DS and edge
capacities Cuv .

Problem: Maximize λ such that
we can simultaneously share
signal between S at rate λDS .

Sparsest Cut take 2

Input: Demands DS for S ⊆ V
and edge capacities Cuv

Problem: Find a cut U|V which
minimizes∑

u∈U,v∈V Cuv∑
S∩U 6=∅
S∩V 6=∅

DS

David Bryant (Otago) and Paul Tupper (Simon Fraser)



Flow and cut 2

Multi-commodity (concurrent)
Steiner Flow

Input: Demands DS and edge
capacities Cuv .

Problem: Maximize λ such that
we can simultaneously share
signal between S at rate λDS .

Sparsest Cut take 2

Input: Demands DS for S ⊆ V
and edge capacities Cuv

Problem: Find a cut U|V which
minimizes∑

u∈U,v∈V Cuv∑
S∩U 6=∅
S∩V 6=∅

DS

David Bryant (Otago) and Paul Tupper (Simon Fraser)



Sparsest cut via L1 embedding

It can be shown (LP duality) that multicommodity (concurrent)
Steiner Flow is equivalent to

min
∑
uv

Cuvδ({u, v})
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∑

S DSδ(S) ≥ 1 and δ is a diversity.
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Embedding

Theorem Bryant and Tupper:

The Steiner tree diversity for any graph can be embedded in L1

with distortion O(log n).

Hence we obtain a generalization of Linial et al’s result.

(see also Klein et al 1997)
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All of this can be done for hypergraphs too (although the
distortion required is still unknown).
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