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• Start with non-clock-like and clock-like trees.

• Add convergence periods to clock-like trees to form convergence networks.

• Examples of processes causing convergence are hybridisation and

horizontal gene transfer.

• Are convergence networks “distinguishable” from non-clock-like and

clock-like trees?

• Two networks are said to be distinguishable if their probability spaces are

not identical.
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C G C A T
C G C T T
C A G A T

A three-taxon, five site nucleotide sequence. The set of nucleotides is
{A,C,G,T}.

• Assumption is that the observed frequences are samples from the
probability distribution for some model. eg. pCCC ≈ fCCC

N
= 1

5 .

• We want to compare predicted probability distributions for models
with and without convergence.

• Convergence periods introduce additional parameters.

• We need to be careful that we are not overfitting the data.

• Give preference to tree if tree and convergence network cannot be
distinguished.
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• The two-taxon case is much simpler and less interesting than
the three-taxon case.

• We will briefly discuss results of two-taxon case without going
into the detail.

• We will not extend past the three-taxon case, however the
method can be extended to any number of taxa, n.

• For simplicity I have used only the binary symmetric model.

• Binary symmetric model is the simplest model and its
generators form an abelian (or commutative) group.

• Binary symmetric model can be “diagonalised” with the
Hadamard transformation.

• Probability distributions will be given in the Hadamard basis.
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Process

• Given a tree or network,

1. Choose a model of evolution. eg. binary symmetric model in a
network setting.

2. Transform the basis of the rate matrix of the model. eg.
Hadamard transformation.

3. Determine the probability distribution of the tree or network.
4. Determine the constraints on the probability distribution, i.e.

the probability space.

• From here we can compare the probability spaces of
competing trees and networks.

• We will now look at the two and three-taxon cases as
examples.
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• All three networks have the same probability distribution
constraints, q00 = 1, q01 = q10 = 0, 0 < q11 ≤ 1.

• Probability spaces are identical.

• Networks are not distinguishable.

• No reason to introduce convergence periods for two-taxon
trees under our models.
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An Example: Three-Taxon Clock-Like Tree
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Three-taxon clock-like tree with no convergence periods

• In the Hadamard basis, the probability distribution is

P =




q000
q001
q010
q011
q100
q101
q110
q111




=




1
0
0

e−2τ2

0

e−2(τ1+τ2)

e−2(τ1+τ2)

0




.



Comparing Probability Spaces

• We can derive probability distributions for other networks in a
similar fashion.



Comparing Probability Spaces

• We can derive probability distributions for other networks in a
similar fashion.

• To determine probability spaces, we want to find the
constraints on the q’s.



Comparing Probability Spaces

• We can derive probability distributions for other networks in a
similar fashion.

• To determine probability spaces, we want to find the
constraints on the q’s.

• Since we know the constraints on the τ ’s, solving for the τ ’s
as functions of q’s gives (most of) the constraints on the q’s.



Comparing Probability Spaces

• We can derive probability distributions for other networks in a
similar fashion.

• To determine probability spaces, we want to find the
constraints on the q’s.

• Since we know the constraints on the τ ’s, solving for the τ ’s
as functions of q’s gives (most of) the constraints on the q’s.

• Since the τ ’s are time parameters, τi ≥ 0 for all i .



Comparing Probability Spaces
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similar fashion.

• To determine probability spaces, we want to find the
constraints on the q’s.

• Since we know the constraints on the τ ’s, solving for the τ ’s
as functions of q’s gives (most of) the constraints on the q’s.

• Since the τ ’s are time parameters, τi ≥ 0 for all i .

• To solve the equations we must first make the substitutions
xi = e−τi . This forces all of the probability distribution
equations to be polynomial equations in the form

qi1i2...in = f (x1, x2, . . . xm) ,

where n is the number of taxa and m is the number of time
parameters.
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• We now rearrange the equations to evaluate to zero on the
model,

f ′ (x1, x2, . . . xm) = f (x1, x2, . . . xm)− qi1i2...in = 0.

• We then extract the polynomials, f (x1, x2, . . . xm)− qi1i2...in ,
from the polynomial equation and make them the generating
polynomials of an ideal.

• Now that we have an ideal generated by polynomial equations
we can solve these polynomial equations.
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Definition
For any set of polynomials, f1, f2, . . . , fs ∈ F [x1, x2, . . . , xm], we can
define the set I = 〈f1, f2, . . . , fs〉, as follows:

I = 〈f1, f2, . . . , fs〉 =

{
s∑

1

hi fi : h1, h2, . . . , hs ∈ F [x1, x2, . . . , xm]

}
.

A key result is that I = 〈f1, f2, . . . , fs〉 meets the definition of an
ideal for any polynomials f1, f2, . . . , fs ∈ F [x1, x2, . . . , xm]. For the
three-taxon clock-like tree, our set of generating polynomials is
{x22 − q011, x

2
1x

2
2 − q101, x

2
1x

2
2 − q110}, which forms the ideal

I =
〈
x22 − q011, x

2
1x

2
2 − q101, x

2
1x

2
2 − q110

〉
.
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• Gröbner basis makes division algorithm work nicely.



Comparing Probability Spaces

• Definition (Gröbner Basis)
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• Definition (Gröbner Basis)

Fix a monomial order. A finite subset G = {g1, . . . , gt} of an ideal
I is said to be a Gröbner basis (or standard basis) if
< LT (g1), . . . , LT (gt) >=< LT (I ) >.

• Gröbner basis makes division algorithm work nicely.

• By transforming our ideal into the Gröbner basis with lex
order the system still has the same solutions and can be
solved for the τ ’s using back-substitution.

• By applying the constraints on the τ ’s, we can find all of the
constraints on the q’s.
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• Going back to our example, the system of equations (after
turning them into polynomials) was
{x22 − q011 = 0, x21x

2
2 − q101 = 0, x21x

2
2 − q110 = 0}.

• Our ideal is then I =< x22 − q011, x
2
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2
2 − q101, x

2
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2
2 − q110 >.

• In the Gröbner basis,
IG =< q101 − q110, x

2
2 − q011, x

2
1q011 − q110 >.

• Constraints on q’s are {q101 < q011, q101 = q110}.

• But, but, but! We can just look at them and this is obvious!

• In this example, the solution is obvious, but for more
complicated examples it becomes necessary to employ these
techniques.

• We will now compare some three-taxon examples.
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• Recall the two-taxon result that a convergence period is not
distinguishable.

• Conclude that networks 6 to 9 will not be distinguishable from
some of the other networks and will be ignored.

Network(s) q101 = q110 (Y/N) q011 ≥ q101 (Y/N) q011(1 − q110)
2 ≥ (q011 − q101)

2 (Y/N)
1 N N N

2, 4, 5, 6, 8, 9 Y Y N
3, 7 N Y Y

Summary of network constraints which must be met.

• In addition, the non-clock-like tree (network 1) must meet the
constraints
{q011 ≥ q101q110, q101 ≥ q011q110, q110 ≥ q011q101}.



Ω1 ∩ Ω3Ω1 Ω3

Probability spaces of the networks. The probability space for network 2 is the two black dots where the probability
spaces for networks 1 and 3 intersect.

Colour Probability Space Constraints
Blue Ω1 {q011 ≥ q101q110, q101 ≥ q011q110, q110 ≥ q011q101}

Red Ω3 {q011 ≥ q101, q110 ≥ q101, q011(1 − q110)
2 ≥ (q011 − q101)

2}
Green Ω1 ∩ Ω3 {q011 ≥ q101, q110 ≥ q101, q101 ≥ q011q110}
Black Ω1 ∩ Ω2 ∩ Ω3 {q101 = q110, q011 ≥ q110}

Summary of network constraints which must be met in the region of the probability space.

• In summary, there are four distinct regions in the probability space of the networks. The probability space
either belongs to the non-clock-like tree exclusively, the clock-like network with convergence exclusively,
either of the non-clock-like tree or the clock-like network with convergence, or all three networks.
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• We have shown that under the binary symmetric model and
the network model, in the Hadamard basis the three-taxon
clock-like network with convergence is distinguishable from
both the non-clock-like tree and the clock-like tree.

• For the network to be distinguishable convergence must not
occur between the two lineages with the most recent common
ancestor.

• Consequently, the three-taxon clock-like network with
convergence is a viable model of evolution.

• Next step is to compare the fit of the three networks to a
given dataset.

• Further work could involve extending the results to more taxa
or to more complicated Abelian models beyond the binary
symmetric model.


