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From the Beginning...
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Message from ISCB

The Roots of Bioinformatics in ISMB

Todd A. Gibson*

Computer Science Department, California State University, Chico, California, United States of America

“When | first began this, there was a very

common response, especially among
senior biologists, that: “computational
biology is just a faster way to do
theoretical biology, and we all know that
theoretical biology doesn't work. And so
computational biology is just a way to do
something that doesn't work even
faster.””

“The biologists now accept the need for
computation, but | think they tend to think of
the people who do this, the computer
scientists, the engineers, mathematicians, as
people who are very useful for producing tools
that the biologists can use.

And the computer scientists, engineers, etc.,
sometimes are quite naive about the
complexity of biologic problems. “



Building an interdisciplinary bridge from biophysical
chemistry to evolutionary biology for the functional
analysis of comparative genomic data

 TAED: A comparative genomic study of chordates

* Moving from informatics to theory rooted in

biochemistry and evolutionary biology in
bioinformatics

— What is the right level of mechanism for biological
inference?

— Evolutionary/Functional models for the retention of gene
duplicates

— A population genetic model for inter-specific amino acid
substitution patterns



Explaining the Functional Genomic Basis of Biodiversity
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The Adaptive Evolution Database Pipeline
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New Models For Comparative Genomics

Population

Genetics/Evolution

How does

amino acid How do pathways and
substitution gene content evolve?
occur?

Protein Structure/Biophysics Sy EEE S D L e

Biology

How do pathways dictate
constraints on physical
constants?



Some additional examples of projects in the lab

(1)

Given a mutation in a protein, what is its
probability of fixation

— When a protein must fold into a stable structure to
properly orient key residues

* How to account for alternative conformations that a protein
might adopt upon mutation?

— Bind specific other proteins
— Not bind specific other proteins

— What other selective constraints govern a protein that
we are mis-specifying?

— Models and methods for simulation and for inference
over a phylogeny



Some additional examples of projects in the lab

(1)

How do metabolic pathways evolve with
selective constraints for:

— Flux
— Against wasteful mMRNA and protein synthesis

— Against the production of deleterious
intermediates

— With duplication and the emergence of
promiscuous activities (according to the
patchwork and retrograde models)

What is the role of mutation-selection
balance? And are there/why are there rate
limiting steps?

More practically, can we differentiate between
inter-molecular (functional ) compensatory
covariation and functional shifts?
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Some Thoughts From a Recent Review
With Liang Liu and Tanja Stadler

e Model identification

— |s there a natural bias when
comparing phenomenological
models vs. constrained
mechanistic models in terms of
likelihood vs. # parameters? °

e Model validation:

— Statistical identifiability vs.
Mechanistic identifiability

— Describing a process vs. fitting

the data



And now for a focus on gene
duplication...

Understanding how duplicate genes
contribute to changing genome
function



Types of Gene Duplication

Whole genome duplication

— duplicates identical

Other large scale duplication (eg whole chromosome)
— duplicates identical

Tandem duplication (through replication or recombination)

— coding sequences likely identical, may be missing expression elements
in some cases

Transposition

— coding sequences may be identical, expression elements likely
different

Retrotransposition

— coding sequence identical, but without introns, expression elements
likely different



What matters in duplicate gene retention

Gene expression (timing, localization, level)

Coding sequence function (e.g. intermolecular
interactions)

Changes in these governed by mutations of
different types in different locations within a gene
(upstream, coding sequence, splice site, ...)

Population genetic processes acting upon the
mutation



Mechanisms of Duplicate Gene Retention

Evolutionary Processes Considered

— Nonfunctionalization

— Neofunctionalization

— Subfunctionalization

— Dosage balance (stoichiometry-driven)
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Theoretical Hazard and Survival Functions
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A General Death Model

Hazard: A(t) = ge Pt" + d

d Zoo (_b)ntcn+1
. —dt— _
Survival: S(t) = Nye 7 “"=° en@b+n

Forall, g>0

Non: g=0, d>0 (d>10)
Neo:b>0,0<c<1,d>0, g>0
Sub:b>0,c>1,d>0, g>0
Dos:b<0,0<c<1,d=-g, (A(t)y,,<0.1)



A simulation scheme for gene
duplication

Simulation run with and without subfunctionalization allowed (regulatory network
vs. protein complex) with probabilities of gene loss and link loss in a population
genetic framework.



Simulated Data for Model Comparison
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Ongoing work...

Hybrid process parameterization (dosage+neo;
dosage+sub)

Models for larger scale duplication, duplication
rate variation

Evaluation of assumptions about population
genetics

Use of the birth-death model and migration to
gene tree/species tree reconciliation in a
Bayesian framework

Plus simulation of data under more complex
genetic and population genetic regimes



Plasticity of Animal Genome
Architecture Unmasked by Rapid
Evolution of a Pelagic Tunicate
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What happens in real genomes?

This is a figure from a 2010 paper involving a model that is not ours. There has been
critiqgue of our models and modeling, but everyone comes to the same conclusion
that comes with our models, that there is support in all genomes analyzed for a
declining hazard function consistent with neofunctionalization according to the
framework presented.
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Further controls are needed to validate the biological conclusion of widespread
neofunctionalization.



How do homologous protein-coding
genes diverge?...



About the interplay between thermodynamics
and population size....

Contrary to some thought in the protein structure community,
one does not necessarily expect the thermodynamics of
protein structure to be the only signal in amino acid
substitution data

Population genetic theory predicts that the strength of
selection (thermodynamic constraint) on a protein sequence
will be guided by the effective population size. The larger the
effective population size, the more power to select and the
less random observed changes are expected to be....

Does effective population size modulate the relative
probabilities of amino acid substitution?

And can we build a model with Ne and s for amino acids that
is useful in characterizing lineage-specific change?



Some organismal effective population sizes...

Effective population size x Nucleotide mutation rate (M, w)
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Generating Genome-Specific PAM Matrices
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Building a Model for Probabilities of Amino
Acid Transitions

 Kimura Fixation Probabilities for Amino Acids, relating strength of selection and
effective population size to probability of fixation:

F=(1-e 25)/(1-e “4Nes)

* When different amino acid transitions are considered separately, the differential
probabilities of transition between amino acids dictated by the genetic code must
be considered as part of the mutational opportunity, as shown on the next slide.

* Some assumptions:
 Each amino acid position segregates independently
* Fixed, constant population size separating species
* Changes observed are fixed rather than segregating

* Transitions in a Grantham Matrix category are under similar selective
pressures

e Constant, equal equilibrium frequencies of amino acids
 Extending the model:

1 — e~ 25

Hi —7Ns

1—e i
RP;_ T =25,
Zj Hj 1 — ¢ 2Ns;



Selection

2 Grantham Bin, 7 Ne Bin Model trends
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* Models with more Ne bins, fewer Grantham bins show support
* Selection coefficient decreases with Ne
* Selection coefficient decreases with Grantham value



Patterns of Selection

Decreasing selection with increasing Grantham

e Are radical and conservative changes equally solvent exposed?
Support for multiple bins of Ne

* Is Ne mis-specified?
Decreasing selection with increasing population size at constant
Grantham

* Mis-specification of t?

 Nevo et al. (1997) suggests that the interplay between linkage and

population size can explain much more diversity and substitution in

small effective population size organisms than is expected by the type
of modeling done here

* Inlarger populations, there will be more segregating variation that
averages together with the fixed changes and is more likely to be
slightly deleterious

 Something else? (e.g. Goldstein (2013)?)



Further And Future Considerations

Linkage (Hill-Robertson Effects)

— Selective sweeps
— Background selection

Ne as a free parameter

Accounting for the expectation of segregating
variation based upon Ne

Accounting for protein fold and position
solvent accessible surface area

A structure-based biophysical model (we have
one, not presented today)



Establishing the identifiability and behavior of
extended models
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