Cell size, genome size, plant strategies and directional evolution...

Greg and Ray and Tim

Proteaceae are the best organisms in the world

a short stroll through leaf anatomy

Leaf (lamina) thickness

Detail of an epidermis

stomate

Epidermis in surface view

big epidermal cells big stomates low stomatal density

small epidermal cells small stomates high stomatal density

paradermal section showing vein density

a short stroll through leaf anatomy

Leaf (lamina) thickness

Do we expect directional evolution

* Systematic changes over the Cenozoic (last 65 million years)

Stomatal size affects photosynthetis

packing density and stomata

small stomata are more efficient

- per stomate conductance scales linearly with size
- number of stomates scales 1/quadratically with size
- small stomates lead to high conductance

functional links

Expected directional evolution

1 CO₂ model

- low CO₂ = a need for greater conductance
- small stomata are more efficient
- guard cell size should have **decreased**

genetic link

- genome size
- other genetic factors

Do we expect directional evolution

1 CO₂ model

- low CO₂ = a need for greater conductance
- small stomata are more efficient
- guard cell size should have **decreased**
- 2 genome size model
 - genome size drifts up (one-way path to obesity)
 - Guard cell should have increased

Vegetation Open vegetation Rainforest Both Stomatal length **-** < 24 μm **=** 24 - 27 μm = 27 - 31 μm = 31 - 36 μm **=** 36 - 41 μm = 41 - 47 μm **—** 47 - 54 μm 🗕 54 - 62 μm = 62 - 71 μm **=** >71 μm

- strong evolutionary association with open vegetation (versus rainforest)
- leaf thickness
- stomata on both leaf surfaces

Do we expect directional evolution

1 CO₂ model

- low CO₂ = a need for greater conductance
- small stomata are more efficient
- guard cell size should have decreased
- 2 genome size model
 - genome size drifts up (one-way path to obesity)
 - Guard cell should have increased
- 3 ecological model
 - follows changes in habitat
 - mostly increase as woodland replaced rainforest

So, what has happened to stomatal size through time?

- ancestral state analyses
- fossils

ancestral state reconstruction

scatter plot of reconstruction versus age for each node

but fossils say

and it happens within clades

directional evolution

- driver either
 - habitat shift with global climate change
 - systematic trend in genome size
- invalidates the ancestral state reconstructions