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Common scenario 
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Multiple sequence alignment (MSA) 

Phylogenetic 
method 

Common phylogenetic assumptions 
•  Evolutionary history tree-like 

•  Sites have evolved under IID conditions 

•  Evolutionary process can be modelled 
by a time-reversible Markov model, R 

R 
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R 

R R 
R 
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Reality check 

•  Compositional heterogeneity (CH) across the sequences 
is common 

•  CH across sequences implies that a more complex model 
of evolution is necessary 
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Modelling evolutionary processes 
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Nucleotides 

R = SΠ

Amino acids 
A similar formulation of R applies 



Complex evolutionary models 

•  15-20 papers since 1995 on complex models of evolution 
•  Several of these models assign a unique rate matrix to 

each edge 
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Problem — Potentially too many parameters (over-parameterisation) 

GTR BH SBH RBH DNA JC 

Parameters 

Source: Jayaswal, Robinson & Jermiin, Syst. Biol. 56, 155-162 [2007]; Jayaswal, Jermiin, Poladian & Robinson, Syst. Biol. 60, 74-86 [2011] .	



Parameters 



Heterogeneity across lineages (HAL) � 1 
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Problem — Parameters may be non-identifiable (Syst. Biol. 60, 872-875) 
Source: Jayaswal, Ababneh, Jermiin & Robinson, Mol. Biol. Evol. 28, 3045-3059 [2011].	
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Abstract
The selection of an optimalmodel for data analysis is an important component ofmodel-based molecular phylogenetic stud-
ies. Owing to the large number of Markov models that can be used for data analysis, model selection is a combinatorial
problem that cannot be solved by performing an exhaustive search of all possiblemodels. Currently, model selection is based
on a small subset of the availableMarkov models, namely those that assume the evolutionary process to be globally station-
ary, reversible, and homogeneous. This forces the optimal model to be time reversible even though the actual data may not
satisfy these assumptions. This problem can be alleviated by includingmore complex models during the model selection.We
present a novel heuristic that evaluates a small fraction of these complex models and identifies the optimal model.
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Introduction
Model selection is an essential component of model-based
phylogenetic studies (Jermiin et al. 2008). Several model
selection methods have been developed and studied in de-
tail (Posada 2001; Posada and Crandall 2001; Posada and
Buckley 2004). The most popular implementations of these
methods (e.g., Posada and Crandall 1998; Nylander 2004a,
2004b; Abascal et al. 2005; Keane et al. 2006; Posada 2008)
consider Markov models that constrain the evolutionary
process to be globally stationary, reversible, and homo-
geneous (SRH) (for definitions, see Jayaswal et al. 2005,
2007; Jermiin et al. 2008; Jayaswal et al. 2011). However, as
discussed in Jermiin et al. (2009), a large body of data sug-
gests that molecular evolution under globally SRH condi-
tions may be an exception rather than the norm, implying
that there is a need for model selection methods that al-
low for nucleotide sequence evolution undermore complex
conditions than those stated above.

Molecular phylogenetic studies assume that the taxa
have evolved from a common ancestor via successive
divisions into two subsets, until each subset contains just
one taxon. The order of these divisions corresponds to the
tree topology and is normally illustrated by a collection of
nodes and edges. Here, each node represents either one of
the K known taxa or the most recent common ancestor
of a distinct subset of these K taxa. The edges connect pairs
of nodes and represent the evolutionary processes. The
last common ancestor of the K taxa is called the root. A
rooted binary tree has 2K − 1 nodes and 2K − 2 edges.

For a given site in a nucleotide sequence alignment, the
evolutionary process over an edge is usually assumed to be
Markovian. This implies that the conditional probability of
obtaining nucleotide y ∈ {A, C, G, T} at time s + t , given
that the nucleotide was x ∈ {A, C, G, T} at time s , does
not depend on nucleotides at the site prior to time s . Most
model-based phylogenetic methods also assume that the
evolutionary process over an edge is homogeneous, imply-
ing that the rates of change between nucleotides are fixed
over the edge. Therefore, given nucleotide x , the condi-
tional probability of a change to nucleotide y over time t
is given by P(t) = eRt , where P is a matrix of conditional
probabilities and R is a matrix of instantaneous rates. This
rate matrix–based Markov model must satisfy three con-
ditions: the off-diagonal elements of R must be nonnega-
tive, each row of R must sum to 0, and πTR = 0T , where
πT = [πA πC πG πT ] is the equilibrium distribution of R.
In practice, only the elements of Rt are identifiable. For the
components, R and t , to have separate interpretations, fur-
ther constraints must be imposed on R. For example, Yang
and Roberts (1995) set−πT rdiag = 1, where rdiag is a vector
containing the diagonal elements in R. Alternatively, an
off-diagonal element in R can be set to 1. This allows the
individual elements of R to be scaled relative to a baseline
rate of 1. The constraint on R reduces the number of free
parameters in R by 1.

If the evolutionary processes at different sites are
independent and identically distributed (i.i.d.), then the
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Source: Jayaswal, Wong, Robinson, Poladian & Jermiin, Syst. Biol. [2014].	
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Abstract.— Molecular phylogenetic studies often assume that the evolutionary process behind the
divergence of homologous genes was globally stationary, reversible, and homogeneous (SRH) and that a
model of evolution comprising one or several site-specific, time-reversible rate matrices (e.g., the GTR rate
matrix) is su�cient to accurately model the evolution of the data over the whole tree. However, an
increasing body of data suggests that evolution under globally SRH conditions is the exception, rather than
the norm. To address this issue, several non-stationary and non-homogeneous models of evolution have
been proposed, but they either ignore rate-heterogeneity across sites (RAS) or assume that it can be
modelled accurately using the � distribution. As an alternative to these models of evolution, we introduce
a family of non-stationary and non-homogeneous mixture models that approximate RAS without the
assumption of an underlying predefined statistical distribution. We also introduce an algorithm for
searching model space and identifying a model that is less likely to over- or under-parametrize the data.
We show that the �-distribution-based model of RAS is a special case of our mixture models. The merits
of our mixture models are illustrated with an analysis of 42,337 second codon sites extracted from a
concatenation of 106 alignments of orthologous genes encoded by the nuclear genomes of Saccharomyces

cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. castellii, S. kluyveri, S. bayanus, and Candida

albicans. Our results show that second codon sites in the ancestral genome of these species contained 50%
invariable sites, 35% variable sites belonging to one rate category (V1), and 15% variable sites belonging to
a second rate category (V2). The nucleotide composition of the two sets of variable sites di↵ered markedly,
with the largest di↵erence being in the relative frequency of A (0.23 vs. 0.48) and the smallest di↵erence
being in the relative frequency of C (0.22 vs. 0.16). The evolutionary processes operating at the variable
sites were found to be non-SRH and best modelled by a combination of 4 edge-specific rate matrices. The
rates of evolution at the two sets of variable sites also di↵ered markedly, with sites belonging to V1 evolving
slower than those belonging to V2 along the lineages separating the 7 species of Saccharomyces. Finally,
sites belonging to V1 appeared to have ceased evolving along the lineages separating S. cerevisiae, S.

paradoxus, S. mikatae, S. kudriavzevii, and S. bayanus, implying that they might have become so
selectively constrained that they could be considered invariable sites in these species.
(Keywords: Phylogeny; evolution; yeast; mixture model; non-homogeneous model; rate-heterogeneity
across sites; rate-heterogeneity across lineages; heterotachy)

Syst. Biol. (accepted pending major revision) 

Note — The Top-down algorithm may then be used to reduce complexity 
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Common models 

I pI( ) Γk α( ) I + Γk pI,  α( )

Our model 

Invariable	
  sites	
   Variable	
  sites	
  

I pI( )

a1 = a2 = ai =ak =
1
k

a1 + a2 + ai ++ ak =1

Probability a site belongs 
to the i-th rate category  

User defined 

Inferred from data 
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Model Common f0 Common S Common Π Scalar edge lengths 

HAS1 No No No No 

HAS2 No Yes No No 

HAS3 No Yes Yes No 

HAS4 Yes Yes Yes No 

HAS5 Yes Yes Yes Yes 

Note – 11 other HAS models not yet considered 

Sites belonging to different rate categories have… 
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β = 0.50 α1 = 0.35 α2 = 0.15

Ancestral sequence 

Categories 

Composition 

10,000 sites 

fA = 0.31
fC = 0.17
fG = 0.14
fT = 0.39

fA = 0.23
fC = 0.22
fG = 0.28
fT = 0.27

fA = 0.48
fC = 0.16
fG = 0.16
fT = 0.20



Testing the HAL-HAS model � 2 

Mixture models of molecular evolution  |  Lars Jermiin  |  Page 11	



L5
L12

L15

L11

L1

L20

L18

L10
L16

L4

L7

L23

L3

L6

L17

L19

L21

L13

L2

L14

L22

L8

L9

L24

L25

e47

e11
e3
e2
e1

e4

e12

e10

e9

e8
e5

e6

e7
e15
e14
e13

e16

e17

e18

e31

e45

e48

e20
e19

e25

e23
e22
e21

e24
e26

e29

e32

e27

e28e30

e46

e43
e34
e33

e41
e36
e35

e39

e38
e37

e40

e42

e44

ĺ

ĺ

ĺ

ĺ

R1

R2

R3

R4

(a)

0.1

L5
L12

L15

L11

L1

L20

L18

L10
L16

L4

L7

L23

L3

L6

L17

L19

L21

L13

L2

L14

L22

L8

L9

L24

L25

(b)

0.1

L13

L12

L14

L6

L8

L16

L19

L2

L24

L18

L5

L9
L23

L25

L17

L7

L3

L20

L11

L15

L10

L1

L22

L4

L21

(c)



Performance of HAL-BU 

•  Correct model — 4 unique rate matrices over 48 edges 
•  Optimal model — identified after comparing 2400 ± 218 

models (out of a total of 6.3 × 1044 models) 
•  Optimal model — always had 4 unique rate matrices  
•  Optimal model — correct in 75% of cases 
•  Number of incorrectly assigned rate matrices — never more 

than 3 for a given data set 
•  Average rate matrix assignment success rate — 99.25% 
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Performance of HAS 
 
•  Correct model — HAS3 with k = 2 

•  Optimal model — correct in 98% of cases 
•  Incorrect optimal model — in both cases HAS4 with k = 2 

(implying a slight tendency to under-parameterise the data) 
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Accuracy of the HAL-HAS model 
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Value β α1 α2 

Actual 0.4967 0.3547 0.1485 

Inferred 0.4967 ± 0.0001 0.3562 ± 0.0088 0.1471 ± 0.0088 

Type Value A C G T 

πinv Actual 0.3055 0.1666 0.1352 0.3927 

Inferred 0.3056 ± 0.0001 0.1665 ± 0.0000 0.1353 ± 0.0000 0.3926 ± 0.0001 

f0
1 Actual 0.2318 0.2152 0.2780 0.2751 

Inferred 0.2289 ± 0.0195 0.2140 ± 0.0140 0.2827 ± 0.0202 0.2744 ± 0.0105 

f0
2 Actual 0.4837 0.1592 0.1589 0.1983 

Inferred 0.4806 ± 0.0287 0.1554 ± 0.0186 0.1646 ± 0.0284 0.1993 ± 0.0136 

Note – Similar results were obtained for R1, …, R4 



Take-home message 
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The new RAL-RAS mixture model is efficient, accurate, and 
precise 



Question  Could the genomes have evolved under non-SRH conditions? 
Data  42,337 second codon sites (no gaps or ambiguous characters) 
Method  We carried out the matched-pairs test of symmetry, marginal 

symmetry, and internal symmetry (using SymTest) 
 

Example – evolution of 8 yeast genomes � 1 
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Source. Rokas et al.. Nature 425, 798-804 [2003].	
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Question  Which genomes have evolve under non-SRH conditions? 
Data  p-values obtained from the matched-pairs tests of symmetry 
Method  Evaluate Holm-Bonferroni-corrected p-values in a heat map 
 

Example – evolution of 8 yeast genomes � 2 
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Scer Spar Smik Skud Sbay Scas Sklu Calb

Scer — 0.5088 0.8875 0.2170 0.9187 0.0467 0.0003 0.0000

Spar 0.5088 — 0.3067 0.0476 0.5453 0.0251 0.0001 0.0000

Smik 0.8875 0.3067 — 0.4248 0.9304 0.0340 0.0000 0.0000

Skud 0.2170 0.0476 0.4248 — 0.4878 0.0063 0.0007 0.0000

Sbay 0.9187 0.5453 0.9304 0.4878 — 0.0259 0.0006 0.0000

Scas 0.0467 0.0251 0.0340 0.0063 0.0259 — 0.0000 0.0000

Sklu 0.0003 0.0001 0.0000 0.0007 0.0006 0.0000 — 0.0000

Calb 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 —



Question  How complex is the evolutionary process given a ‘correct’ tree? 
Data  Output from our RAL-RAS mixture model 
 

Example – evolution of 8 yeast genomes � 3 
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Question  What are the characteristics of the inferred ancestral sequence? 
Data  Output from our RAL-RAS mixture model 

Example – evolution of 8 yeast genomes � 4 
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Invariable (50%) ν1 (35%) ν2 (15%) 

fA  0.31 
fC  0.17 
fG  0.14 
fT  0.39 

fA  0.23 
fC  0.22 
fG  0.28 
fT  0.28 

fA  0.48 
fC  0.16 
fG  0.16 
fT  0.20 



Question  How much have the variable sites (ν1 & ν2) evolved? 
Data  Output from our RAL-RAS mixture model 

Example – evolution of 8 yeast genomes � 5 
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Take-home message 
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The yeast genome data are inconsistent with evolution under 
commonly assumed phylogenetic assumptions 
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