

Mixture models of nucleotide sequence evolution, and the evolution of yeast genomes

Lars Jermiin | OCE Science Leader 8 November 2013

CSIRO ECOSYSTEM SCIENCES www.csiro.au

"Common sense is actually rather uncommon..." — Christy McGeough (2006)

Common scenario

-- Common phylogenetic assumptions

- Evolutionary history tree-like
- Sites have evolved under IID conditions
- Evolutionary process can be modelled by a time-reversible Markov model, R

Reality check

- Compositional heterogeneity (CH) across the sequences is common
- CH across sequences implies that a more complex model of evolution is necessary

Modelling evolutionary processes

Nucleotides

$$\mathbf{R} = \begin{bmatrix} - & s_1 & s_2 & s_3 \\ s_1 & - & s_4 & s_5 \\ s_2 & s_4 & - & s_6 \\ s_3 & s_5 & s_6 & - \end{bmatrix} \begin{bmatrix} \pi_A & 0 & 0 & 0 \\ 0 & \pi_G & 0 & 0 \\ 0 & 0 & \pi_G & 0 \\ 0 & 0 & 0 & \pi_T \end{bmatrix}$$

 $\mathbf{R} = \mathbf{S}\Pi$

Amino acids

A similar formulation of **R** applies

Complex evolutionary models

- 15-20 papers since 1995 on complex models of evolution
- Several of these models assign a unique rate matrix to each edge

CSIR

Source: Jayaswal, Robinson & Jermiin, Syst. Biol. 56, 155-162 [2007]; Jayaswal, Jermiin, Poladian & Robinson, Syst. Biol. 60, 74-86 [2011].

Heterogeneity across lineages (HAL) • 1

Mol. Biol. Evol. 28(11):3045–3059. 2011 Reducing Model Complexity of the General Markov Model of Evolution

Vivek Jayaswal,^{1,2} Faisal Ababneh,³ Lars S Jermiin,^{*,4,5,6} and John Robinson^{1,2}

Problem — Parameters may be non-identifiable (Syst. Biol. 60, 872-875)

Source: Jayaswal, Ababneh, Jermiin & Robinson, Mol. Biol. Evol. 28, 3045-3059 [2011].

Mixture models of molecular evolution | Lars Jermiin | Page 6

Heterogeneity across lineages (HAL) • 2

Syst. Biol. (accepted pending major revision)

Mixture Models of Nucleotide Sequence Evolution that account for Rate-heterogeneity Across Sites and Across Lineages

VIVEK JAYASWAL^{1,2}, THOMAS KF WONG³, JOHN ROBINSON^{2,4}, LEON POLADIAN^{2,4}, LARS S. JERMIIN³

Note — The Top-down algorithm may then be used to reduce complexity

CSIR

Source: Jayaswal, Wong, Robinson, Poladian & Jermiin, Syst. Biol. [2014].

Heterogeneity across sites (HAS) • 1

Common models

$$I \quad (pI) \qquad \qquad \Gamma_k \quad (\alpha) \qquad \qquad I + \Gamma_k \quad (pI, \ \alpha)$$
Probability a site belongs
to the *i*-th rate category
$$a_1 = a_2 = a_i = \cdots = a_k = \frac{1}{k}$$
User defined

Our model

Invariable sites	Variable sites
I (pI)	$a_1 + a_2 + a_i + \dots + a_k = 1$

$$a_1 + a_2 + a_i + \dots + a_k = 1$$

Inferred from data

Heterogeneity across sites (HAS) • 2

Sites belonging to **different rate categories** have...

Model	Common $\mathbf{f_0}$	Common S	Common П	Scalar edge lengths
HAS ₁	No	No	No	No
HAS ₂	No	Yes	No	No
HAS ₃	No	Yes	Yes	No
HAS ₄	Yes	Yes	Yes	No
HAS ₅	Yes	Yes	Yes	Yes

Note - 11 other HAS models not yet considered

Testing the HAL-HAS model • 1

Ancestral sequence

10,000 sites $\beta = 0.50$ $\alpha_1 = 0.35$ $\alpha_2 = 0.15$ Categories $f_{A} = 0.23$ $f_{A} = 0.31$ $f_{A} = 0.48$ Composition $f_{c} = 0.16$ $f_{C} = 0.17$ $f_{C} = 0.22$ $f_G = 0.28$ $f_G = 0.16$ $f_G = 0.14$ $f_{T} = 0.20$ $f_{T} = 0.39$ $f_{T} = 0.27$

Testing the HAL-HAS model • 2

Performance of HAL-BU

- Correct model 4 unique rate matrices over 48 edges
- Optimal model identified after comparing 2400 ± 218 models (out of a total of 6.3 × 10⁴⁴ models)
- Optimal model always had 4 unique rate matrices
- Optimal model correct in 75% of cases
- Number of incorrectly assigned rate matrices never more than 3 for a given data set
- Average rate matrix assignment success rate 99.25%

Performance of HAS

- Correct model HAS_3 with k = 2
- Optimal model correct in 98% of cases
- Incorrect optimal model in both cases HAS₄ with k = 2 (implying a slight tendency to under-parameterise the data)

Accuracy of the HAL-HAS model

Value	β	α ₁	<i>a</i> ₂
Actual	0.4967	0.3547	0.1485
Inferred	0.4967 ± 0.0001	0.3562 ± 0.0088	0.1471 ± 0.0088

Туре	Value	А	С	G	Т
$\mathbf{\pi}^{inv}$	Actual	0.3055	0.1666	0.1352	0.3927
	Inferred	0.3056 ± 0.0001	0.1665 ± 0.0000	0.1353 ± 0.0000	0.3926 ± 0.0001
f ₀ ¹	Actual	0.2318	0.2152	0.2780	0.2751
	Inferred	0.2289 ± 0.0195	0.2140 ± 0.0140	0.2827 ± 0.0202	0.2744 ± 0.0105
f_0^2	Actual	0.4837	0.1592	0.1589	0.1983
	Inferred	0.4806 ± 0.0287	0.1554 ± 0.0186	0.1646 ± 0.0284	0.1993 ± 0.0136

Note – Similar results were obtained for $R_1, ..., R_4$

The new RAL-RAS mixture model is **efficient**, **accurate**, and **precise**

Mixture models of molecular evolution | Lars Jermiin | Page 15

Question Could the genomes have evolved under non-SRH conditions?

- Data 42,337 second codon sites (no gaps or ambiguous characters)
- Method We carried out the matched-pairs test of symmetry, marginal symmetry, and internal symmetry (using SymTest)

Source. Rokas et al.. Nature 425, 798-804 [2003].

Question Which genomes have evolve under non-SRH conditions?

- **Data** *p*-values obtained from the matched-pairs tests of symmetry
- **Method** Evaluate Holm-Bonferroni-corrected *p*-values in a heat map

	Scer	Spar	Smik	Skud	Sbay	Scas	Sklu	Calb
Scer	—	0.5088	0.8875	0.2170	0.9187	0.0467	0.0003	0.0000
Spar	0.5088	—	0.3067	0.0476	0.5453	0.0251	0.0001	0.0000
Smik	0.8875	0.3067	—	0.4248	0.9304	0.0340	0.0000	0.0000
Skud	0.2170	0.0476	0.4248	—	0.4878	0.0063	0.0007	0.0000
Sbay	0.9187	0.5453	0.9304	0.4878	—	0.0259	0.0006	0.0000
Scas	0.0467	0.0251	0.0340	0.0063	0.0259	—	0.0000	0.0000
Sklu	0.0003	0.0001	0.0000	0.0007	0.0006	0.0000	—	0.0000
Calb	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	_

Question How complex is the evolutionary process given a 'correct' tree? Output from our RAL-RAS mixture model Data

Question What are the characteristics of the inferred ancestral sequence?

Data Output from our RAL-RAS mixture model

Invariable (50%)	v ₁ (35%)	v ₂ (15%)	
$\begin{array}{rrrr} f_{\rm A} & 0.31 \\ f_{\rm C} & 0.17 \\ f_{\rm G} & 0.14 \\ f_{\rm T} & 0.39 \end{array}$	$\begin{array}{ccc} f_{\rm A} & 0.23 \\ f_{\rm C} & 0.22 \\ f_{\rm G} & 0.28 \\ f_{\rm T} & 0.28 \end{array}$	$\begin{array}{ccc} f_{\rm A} & 0.48 \\ f_{\rm C} & 0.16 \\ f_{\rm G} & 0.16 \\ f_{\rm T} & 0.20 \end{array}$	

Question How much have the variable sites $(v_1 \& v_2)$ evolved?

Data Output from our RAL-RAS mixture model

Take-home message

The yeast genome data are inconsistent with evolution under commonly assumed phylogenetic assumptions

Thank you

Lars Jermiin OCE Science Leader Bioinformatics & Phylogenomics Team t +61 2 6246 4043

- e Lars.Jermiin@csiro.au
- w www.csiro.au/people/Lars.Jermiin.html

Collaborators

Faisal Ababneh (Al-Hussein Bin Talal University) Vivek Jayaswal (Queensland University of Technology) Leon Poladian (University of Sydney) John Robinson (University of Sydney) Thomas Wong (CSIRO Ecosystem Sciences)

CSIRO ECOSYSTEM SCIENCES www.csiro.au