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Taxon sampling bias is inevitable:
Compare simulated and observed phylogenies

Step 1: MCMC searches for likely sets of parameter values

Step 2: Simulate phylogenies using those parameter sets
Constrain the extant number of lineages and total

divergence time

Step 3: ML (observed) << ML(simulated) ?
small type | error, large type Il error

Step 4: Construct Cl of simulated and observed histories:
Colonization frequency over time
Number of extant lineages per colonization
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More colorizations during Cenozoic Era in
Madagascar squamates

P(L;,<L,.)=0.49

Colonization frequencies over time

0.04

Relative number of colonization events per 1 myr
0.02

0.00

= 95% CI of simulated phylogenies
[ ] 95% CI of observed phylogenies

— Mean of the true histories
in simulated phylogenies

50 100 150 200

Time back in history (Mya)

Relative frequency

Frequency distribution of number of
extant species per colonization

= 95% CI of simulated phylogenies
L] 95% CI of observed phylogenies

— Mean of the true histories
in simulated phylogenies

0 20 40 60 80 100
Number of extant species



P(L.

S|m obs

Constant colonization but inconstant
speciation in New Zealand passerines

)=0.04

Colonization frequencies over time

Relative number of colonization events per 1 myr

0.10

0.08

0.06

0.04

0.02

0.00

= 95% CI of simulated phylogenies
[1 95% CI of observed phylogenies

— Mean of the true histories
in simulated phylogenies

0 10 20 30 40 50 60 70

Time back in history (Mya)

Relative frequency

Frequency distribution of number of
extant species per colonization

Qe
- = 95% CI of simulated phylogenies
© L] 95% CI of observed phylogenies
g
— Mean of the true histories
© in simulated phylogenies
Q]
. Excess of single
° colonizing lineage
N
o
o |
o

0 10 20 30 40
Number of extant species



Type | error estimated by simulations

Apply the method to 100 simulated phylogenies, each with 100
slice sampling to search for likely parameter sets



Type | error estimated by simulations

Apply the method to 100 simulated phylogenies, each with 100
slice sampling to search for likely parameter sets

Likelihoods: 0
Comparisons of reconstructed histories: 0.1



Type | error estimated by simulations

Apply the method to 100 simulated phylogenies, each with 100
slice sampling to search for likely parameter sets

Likelihoods: 0
Comparisons of reconstructed histories: 0.1

Colonization frequency over time Numer of extant species per colonization

0.04 0.06

0.02

-
| =

00 01 02 03 04 05

I | 1 : | | I | | I | I 1 I

0 10 20 30 40 50 60 70 0 5 10 15 20 25 30



Type | error estimated by simulations

Apply the method to 100 simulated phylogenies, each with 100
slice sampling to search for likely parameter sets
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Further explore taxon sampling bias

The method does not reconstruct unbiased assemblage
histories. Thus, it should not be used to test effects of
a specific historical or geological events.

A hidden Markov model may reconstruct a less biased
assemblage history. Require numerical integrations and
time-consuming.

Compare performance between hidden Markov methods
and our analytical approach in reconstructing assemblage
histories
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