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Distance

Why think about distance?

I Science wants to quantify difference, to compare, to measure.

I We want to organise information and knowledge about life, relating
organisms by phylogeny.

Distance provides the input to several important phylogeny methods.
(UPGMA, Neighbour-joining)
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Distance in bacteria
we use large-scale rearrangements

I Why large-scale?
Because standard eukaryotic methods (looking at a particular gene and
SNPs on the gene) might be confounded by horizontal gene transfer in
bacteria: differences might not be due to vertical heredity.

I Large scale rearrangements are studied by identifying preserved
regions (“locally colinear blocks”) in a family of taxa.

I Inversions take a segment — a sequence of regions — and reverse
their order.

Visualizing Inversion History
To quickly scan for patterns in the genome rearrangement

history of Yersinia, we developed a 3D video system to visualize the
series of rearrangement events. The posterior sampling of

inversion history contains 30,000 samples. We selected the one
history with maximum a posteriori probability and rendered the
series of rearrangement events on each branch of the phylogeny
using custom Java software. The chromosome is rendered as a
torus with positions of the replication origin and terminus marked.
The replichores present in an ancestral node of the tree are
colored distinctively, left replichore in blue, right replichore in
green. The intensity of the colors changes on a gradient from
origin to terminus, such that segments near the origin in the
ancestor are dark blue or green, while segments near the terminus
are light.
Supplementary Videos S1, S2, S3, S4, S5, S6, S7, and S8 show

the inversion history along each external branch of the maximum
a posteriori tree estimate. Several striking patterns of rearrangement
can be seen in the videos, especially those representing longer
branches such as the branch leading to Y. pestis 91001 (Video S3).
First, the terminus remains positioned mostly opposite the origin
throughout the rearrangement history. Second, light-colored
segments which were near the terminus in the ancestral genome
arrangement tend to remain near the terminus. Third, when large
inversions happen within a single replichore, they appear to be
quickly followed by a second inversion that reverts the first. We
now describe statistics to quantify the significance of these
observations, along with other aspects of genome arrangement
evolution that are not as easily recognizable through visualization.

Figure 1. A genome alignment of eight Yersinia isolates. Whole genome alignment of eight Yersinia genomes using Mauve [77] reveals 78
locally collinear blocks conserved among all eight taxa. Each chromosome has been laid out horizontally and homologous blocks in each genome are
shown as identically colored regions linked across genomes. Regions that are inverted relative to Y. pestis KIM are shifted below a genome’s center
axis. The origin of replication in each genome is approximately at coordinate 1 and the terminus dif sites are approximately midway through each
genome, as marked by grey vertical bars. The termini were identified by sequence comparison with Y. pestis KIM, where they were characterized by
extensive sequence analysis [25]. Figure generated by Mauve, free/open-source software available from http://gel.ahabs.wisc.edu/mauve.
doi:10.1371/journal.pgen.1000128.g001
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Figure 2. Lengths of Locally Collinear Blocks shared by the
eight Yersinia genomes. Block lengths are taken from the Y. pestis
KIM reference genome.
doi:10.1371/journal.pgen.1000128.g002

Dynamics of Genome Rearrangement in Bacteria

PLoS Genetics | www.plosgenetics.org 4 July 2008 | Volume 4 | Issue 7 | e1000128

Figure from Darling et al, 2008.
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Large-scale rearrangements → genomes as permutations

I If we identify preserved regions we can treat each as a unit and regard
all taxa as rearrangements of regions.

I Numbering regions 1, . . . , n makes each genome a permutation.
I Incorporating orientation of regions gives a signed permutation.

I This assumes
I all regions are the same size, and
I they are evenly distributed around the genome.
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Standard model
no, not physics

I Standard models in the literature assume
I that all inversions are possible, and
I that all are equally probable.

I This means that circular arrangements can be dealt with as linear
arrangements

I because inversions across any given point can be performed on the
complementary segment.

I There are fast algorithms for solving the inversion distance problem in
this case, using the “breakpoint graph” (Bafna and Pevzner 1993).
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However
Not all inversions are equally likely.

I Length: shorter ones are more
likely.

I Location: ones that fix terminus
more likely.

inversions occurring before restoration of balance should rise with
the frequency of oppositely oriented repetitive DNA.

Inversion Length
Assuming that no selection or recombination bias acts on

inversion length, the distribution of inversion lengths could be
modeled as the distance between two uniformly chosen points on a
circle with circumference 1. However, 46.3% of sampled
inversions act within a single replichore and we might expect
such inversions to be short relative to inter-replichore inversions.
Although they do not affect balance, inversions within a replichore
act to reverse the polarity of x sites [29], KOPS/AIMS [30,31],
and they also change leading/lagging strand A/T and G/C biases
[48], relative gene density [27], and gene expression levels. As
shown in Figure 7, the observed length distribution for within-
replichore inversions does indeed indicate that they are shorter
than inter-replichore inversions. However, we expect inter-
replichore inversions to be longer than within-replichore by

definition, because inter-replichore inversions must have one
endpoint in each replichore.
To determine whether within-replichore inversions are signif-

icantly shorter than inter-replichore inversions, we develop a null
model of inversion length that accounts for replichores. Replichore
sizes change as the position of the terminus dif site changes over
the course of evolution, thus the expected length of within-
replichore and inter-replichore inversions changes. We assume
that inversion endpoints are uniformly distributed and that no
inversion acts on more than half the chromosome, otherwise a
shorter complementary inversion operates on the other side of the
circular chromosome. We can then define the expected length of a
within-replichore inversion as:

a~
1{b if bƒ0:5

b otherwise

!
ð3Þ

within bð Þ~ 5{18az24a2{8a3

12 b2z 1{bð Þ2
" # ð4Þ

where 0,b,1 is the position of the terminus dif site relative to the
origin of replication. We define a similar measure of expected
length for inter-replichore inversions:

inter bð Þ~{2az18a{24a2z8a3

24b 1{bð Þ
ð5Þ

We provide a detailed derivation of these equations in the
Methods section, and the values given by each equation for
0,b,1 are shown at left in Figure 8.
Knowing the expected length for each inversion, we compute

the ratio of observed length to expected length for each inversion
in the posterior sampling. The distribution of ratios for within- and
inter-replichore inversions is given at right in Figure 8. Both classes
of inversion are shorter than would be expected under the null
model. Comparison among within- and inter-replichore inversions
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Figure 7. The posterior distribution of inversion lengths in
Yersinia. Inversions have been classified as inter-replichore (those
which span the origin) and within-replichore. The observed within-
replichore inversions have a strong tendency to be short, whereas the
inter-replichore inversions have a more uniform length distribution.
doi:10.1371/journal.pgen.1000128.g007
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Figure 8. Inversions are shorter than expected. Left: The expected length of within-replichore and inter-replichore inversions assuming that
inversion endpoints are uniformly distributed. The expected length changes as a function of the positioning of the terminus dif site relative to the
origin of replication. In general, within-replichore inversions are expected to be shorter than inter-replichore inversions. Right: The ratio of observed
inversion length to expected length for all sampled within- and inter-replichore inversions. Both inter- and within-replichore inversions are shorter
than expected, but within-replichore inversions are much more so than inter-replichore inversions.
doi:10.1371/journal.pgen.1000128.g008
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(KS D=0.016). If we believe that strong selection for balanced
genomes exists and inversions not affecting balance are neutral,
then parsimonious reconstructions appear slightly more favorable.

Symmetric Inversions
Previous studies have suggested that DNA replication introduc-

es a recombination bias that favors inversions with endpoints that
are equally distant from the origin of replication [22,20], so-called

symmetric inversions. Given our inferred inversion histories, we
can formally test for an excess of symmetric inversions. To do so,
we introduce the following notation. Let V be the ordered set of
inversions mapped onto tree branches in a sampled reconstruction
of the inversion history, and let vi represent the i

th inversion. Then
we define a symmetry statistic for inter-replichore inversions as:

Si~ OL við Þ{OR við Þð Þ2 ð1Þ

where OL(vi) is the distance between the origin and the left-end of
the ith inter-replichore inversion, while OL(vi) is the distance
between the origin and the inversion’s right-end. Thus, the
equation expresses the distance between inversion endpoints and
the origin in each replichore, and computes the squared-difference
of distances. Equation 1 assigns a perfectly symmetric inversion a
value of zero, while asymmetric inversions take on large values.
Incidentally, the symmetry statistic is agnostic to the choice of
which replichore is the left or right.
We would like to know whether the observed inversions are

more symmetric than expected by chance. To do so, we use
permutation to generate a distribution of symmetry statistics that
represent the null hypothesis of lack of symmetry. We compute the
symmetry statistic on arbitrary pairs of left and right inversion
endpoints from inter-replichore inversions, according to the
following equation:

Sx,y~ OL vxð Þ{OR vy
! "! "2 ð2Þ

More formally, we compute a null distribution by sampling x
and y uniformly without replacement from the set of possible inter-

Figure 4. Historic replichore balance in Yersinia. Historic position of terminus dif site relative to origin (A) and historic degree of imbalance (B)
observed in all sampled ancestral genome arrangements of the eight Yersinia listed in Table 1. The histogram in (A) shows the replichore balance of
all sampled ancestral and extant genome arrangements of the Yersinia. In (A) an arrangement with equal replichore size will have a terminus at
position 0.5, indicating perfect replichore balance. The diagram shows that .88% of sampled genome arrangements have replichores within 30% of
perfect balance. (B): Histograms showing the degree of imbalance for arrangements sampled on branches leading to modern genomes. Each
histogram is labeled with the corresponding strain’s name. Genomes with perfectly balanced replichores have 0% imbalance while a genome with
the origin and terminus at the same locus would have 100% imbalance. Many, but not all, parsimonious inversion histories have imbalanced genome
arrangements at common ancestors of Y. pseudotuberculosis and Y. pestis Pestoides F that contribute toward the observed imbalance in the posterior
distribution for those taxa.
doi:10.1371/journal.pgen.1000128.g004

Table 2. Degree of imbalance as a function of total number
of inversions.

# inv 79 80 81 82 83 84 85 86 87

B. mean 0.128 0.133 0.135 0.137 0.139 0.144 0.143 0.149 0.156

B. sd 0.115 0.122 0.125 0.128 0.131 0.139 0.133 0.142 0.135

KS p ,2e-16 ,2e-16 2e-5 0.02 0.008 0.18 0.22 0.27 -

KS D 0.016 0.010 0.007 0.008 0.017 0.020 0.037 0.105 -

N 11492 11395 4775 1661 498 130 38 10 1

Bpp 0.383 0.379 0.159 0.055 0.017 0.004 0.001 ,0.001 ,0.001

The posterior estimate of the mean degree of imbalance (B. mean) and
associated standard deviations (B. sd) are given for inversion histories of length
ranging from 79 to 87 (# inv). For each successive pair of inversion counts, the
distribution of balance values for genomic arrangements was compared using a
Kolmogorov-Smirnov (KS) test, with p-values and D-values reported as KS p and
KS D. N gives the number of samples and Bpp gives the total amount of
Bayesian posterior probability for each inversion history length. From the data
we conclude that parsimonious histories (79 events) have better-balanced
genome arrangements, but the difference is small (KS D) even though it is
statistically significant.
doi:10.1371/journal.pgen.1000128.t002
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[Figures from Darling et al, 2008.]
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Group-theoretic approach

I Incorporating these constraints makes cutting-linearizing invalid.

=⇒ We must model permutations on the circle.

I There are two features of permutations on a circle:

I inversions can occur across any cut, e.g (n, 1).

I there is circular symmetry — the action of the dihedral group.

I We can consider the group generated by the inversions, acting on the
set of all possible genomes.

I The distance problem becomes a question of a length function in the
group.

I Or the distance between vertices on the Cayley graph of the group.

I We also need to consider equivalence under the action of the dihedral
group — not a normal subgroup so simply a (co)set of vertices on the
Cayley graph.
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There are a range of models
all colours and sizes to suit every household

I Orientation:

1. If we ignore it, we work in the symmetric group
2. If we include it, we work in the hyperoctahedral group.

I Terminus fixing: we work in a stabilizer subgroup.
I [see talk by Stuart Serdoz after lunch]

I Restrict inversions by length:

1. Change generating set: choose subset of inversions that are allowed.
(example to follow)

2. Give longer inversions higher weight.
[ongoing work with Praeger and Niemeyer, UWA]

I The approach allows generalizations such as “Double-Cut-and-Join”
(Bergeron-Mixtacke-Stoye, 2006).

I [See talk by Sangeeta Bhatia after lunch]
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Example
Two region inversion model

I The 2-region inversions that generate the group are the simple
transpositions of adjacent regions.

I . . . noting that they now include sn = (n 1),
because we are on the circle.

I We need to use the affine symmetric group.

1n
2

n
−
1

. .
. . . .

Theorem
If σ is a minimal length affine permutation representing a circular
permutation, then σ takes the shortest distance between each i and σ(i)
mod n.

Group-theoretic models of the inversion process in bacterial genomes,
Egri-Nagy, Gebhardt, Tanaka & Francis, J Mathematical Biology, Online June 2013.
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The resulting algorithm

1. For each frame of reference, 1n
2

n
−
1

. .
. . . .

nn − 1
1

..
. . . .

· · ·

n1 n −
12

. .
. . . .

draw an affine permutation with minimal distances for each i .

2. The minimal length of these 2n choices is the inversion distance.

Example: σ = [3, 5, 4, 1, 2]:
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Further questions
Phylogeny
We can regard the phylogeny problem as the problem of finding a minimal
spanning tree of a set of vertices in the Cayley graph where the taxa we
wish to relate are vertices on the graph and we want to minimise the total
path length.

Is “distance” answering the right question?

1. Maybe we want the “expected distance”. The minimal distance can
only underestimate the true distance; when the rate of inversion is
high it may badly underestimate it. [Stuart Serdoz again, after lunch]

2. In a random walk on the Cayley graph of a given length some
arrangements are more probable than others. You can wake up now:
Attila will discuss.

Thank you for listening, thanks to the organisers for organising, and
thanks to the ARC for funding.
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