Model Misspecification due to Site Specific Rate Heterogeneity: how is tree inference affected?

Stephen Crotty

School of Mathematical Sciences, University of Adelaide

October, 2013

The model contains 3 site types:

Invariable sites

The model contains 3 site types:

- Invariable sites
- Variable sites

The model contains 3 site types:

- Invariable sites
- Variable sites
- Switching sites

Tasmanian Pygmy Possum

Tasmanian Native Hen

Tasmanian Devil

What's up Doc?

What's up Doc?

Devil Facial Tumour Syndrome

Experimental Procedure

O Data was simulated using the program LineageSpecificSeqgen¹

¹Source: L. Shavit Grievink, D. Penny, M. D. Hendy, and B. R. Holland. BMC Evolutionary Biology, 8:317, 2008.

²http://evolution.genetics.washington.edu/phylip/

Experimental Procedure

1 Data was simulated using the program LineageSpecificSeqgen¹

The Phylip² software package was used to perform tree inference using the maximum parsimony (MP), neighbour joining (NJ) and maximum likelihood (ML) methods.

¹Source: L. Shavit Grievink, D. Penny, M. D. Hendy, and B. R. Holland. BMC Evolutionary Biology, 8:317, 2008.

²http://evolution.genetics.washington.edu/phylip/

Experimental Procedure

1 Data was simulated using the program LineageSpecificSeqgen¹

- The Phylip² software package was used to perform tree inference using the maximum parsimony (MP), neighbour joining (NJ) and maximum likelihood (ML) methods.
- A theoretical analysis of each method was carried out in an effort to understand their performance.

¹Source: L. Shavit Grievink, D. Penny, M. D. Hendy, and B. R. Holland. BMC Evolutionary Biology, 8:317, 2008.

²http://evolution.genetics.washington.edu/phylip/

Stephen Crotty (School of Math. Sci.) Model Misspecification due to SSRH

Simulation Parameters

Simulation Parameters

$$p_{inv} = 80\%$$

 $p_{var} = 20\%$
 $p_{switch} = 0, 1, 2, \dots, 100\%$

Simulation Parameters

$$p_{inv} = 80\%$$

 $p_{var} = 20\%$
 $p_{switch} = 0, 1, 2, \dots, 100\%$
100000 base pairs
Jukes Cantor substitution model
100 replications

Maximum Parsimony

Maximum Parsimony

• Site pattern analysis predicts the asymptotic failure point of MP to be 26.56%.

Neighbour Joining

Neighbour Joining - why the recovery?

The neighbour joining algorithm

r = number of taxa.

 $D_{ij} = JC$ distance between taxa *i* and *j*.

$$Q_{ij} = (r-2)D_{ij} - \sum_{k=1}^{r} D_{ik} - \sum_{k=1}^{r} D_{jk}$$

Q is the matrix used by the NJ algorithm: the pair of taxa with the smallest Q_{ij} are joined together and the process is repeated.

The Q matrix for a 4-taxa tree

$$Q_{AB} = (4-2)D_{AB} - \sum_{k \in \{B,C,D\}} D_{Ak} - \sum_{k \in \{A,C,D\}} D_{Bk}$$
$$= -(D_{AC} + D_{AD} + D_{BC} + D_{BD})$$

Similarly,

$$Q_{AD} = -(D_{AB} + D_{AC} + D_{BD} + D_{CD})$$

and,

$$Q_{AC} = -(D_{AB} + D_{AD} + D_{BC} + D_{CD})$$

Digression - what tree might we infer?

Digression - what tree might we infer?

The correct tree (AB|CD) will be inferred given the condition:

$$\begin{array}{rcl} Q_{AB} & < & Q_{AD} \\ \Longrightarrow & 0 & < & Q_{AD} - Q_{AB} \\ \Longrightarrow & 0 & < & D_{AD} + D_{BC} - D_{AB} - D_{CD} \end{array}$$

We now define

$$C = D_{AD} + D_{BC} - D_{AB} - D_{CD}$$

so that the correct tree will be inferred when C > 0.

Deriving the expected value of C

T =the tree topology

 P_{ij} = the proportion of differing sites between taxa i and j

$$E[P_{ij}] = f(p_{switch}, T)$$
$$E[D_{ij}] = -\frac{3}{4}ln(1 - \frac{4}{3}E[P_{ij}])$$

 $E[C] = E[D_{AD}] + E[D_{BC}] - E[D_{AB}] - E[D_{CD}]$

Expected value of C

Neighbour Joining

< A > < 3

3

Maximum Likelihood

Why is this important?

• Traditional methods of phylogenetic inference may be compromised by SSRH.

Why is this important?

- Traditional methods of phylogenetic inference may be compromised by SSRH.
- Diagnostic tools need to be developed to help identify the presence and extent of SSRH in sequence data.

Why is this important?

- Traditional methods of phylogenetic inference may be compromised by SSRH.
- Diagnostic tools need to be developed to help identify the presence and extent of SSRH in sequence data.
- Data driven model checking will be the focus of my PhD going forward.

I would like to thank my supervisory team for their input and guidance:

- Prof. Nigel Bean University of Adelaide
- Dr Lars Jermiin CSIRO
- Dr Barbara Holland University of Tasmania
- Dr Jono Tuke University of Adelaide

That's all folks!

Questions?

Stephen Crotty (School of Math. Sci.)

э

▶ ∢ ∃

$Q_{AB}-Q_{AC} = D_{AB} + D_{CD} - D_{AC} - D_{BD}$

Correct	Incorrect
Tree	Tree
0	0
1	1
1	1
1	1
1	1
1	2
2	1
2	2
2	2
2	2
2	2
2	2
2	2
2	2
3	3
	Correct Tree 0 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 3

Site	Correct	Incorrect
Pattern	Tree	Tree
XXXX	0	0
ххху	1	1
ххух	1	1
хухх	1	1
yxxx	1	1
ххуу	1	2
хуух	2	1
хуху	2	2
xxyz	2	2
xyzx	2	2
xyxz	2	2
yxxz	2	2
yxzx	2	2
yzxx	2	2
W/Y/7	3	3

Consider site pattern xxyy:

Site	Correct	Incorrect
Pattern	Tree	Tree
XXXX	0	0
ххху	1	1
ххух	1	1
хухх	1	1
yxxx	1	1
ххуу	1	2
хуух	2	1
хуху	2	2
xxyz	2	2
xyzx	2	2
xyxz	2	2
yxxz	2	2
yxzx	2	2
yzxx	2	2
wxyz	3	3

Consider site pattern xxyy:

э

Site	Correct	Incorrect
Pattern	Tree	Tree
XXXX	0	0
ххху	1	1
ххух	1	1
xyxx	1	1
yxxx	1	1
ххуу	1	2
хуух	2	1
хуху	2	2
xxyz	2	2
xyzx	2	2
xyxz	2	2
yxxz	2	2
yxzx	2	2
yzxx	2	2
wxyz	3	3

$$P(xxyy) = f(T)$$

$$P(xyyx) = g(p_{switch}, T)$$

Site	Correct	Incorrect
Pattern	Tree	Tree
XXXX	0	0
ххху	1	1
ххух	1	1
хухх	1	1
yxxx	1	1
ххуу	1	2
хуух	2	1
хуху	2	2
xxyz	2	2
xyzx	2	2
xyxz	2	2
yxxz	2	2
yxzx	2	2
yzxx	2	2
wxyz	3	3

$$P(xxyy) = f(T)$$

$$P(xyyx) = g(p_{switch}, T)$$

The failure point of MP is given

by finding p_{switch} such that:

$$P(xxyy) = P(xyyx)$$

