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Rare is better — large scale mutations

» Large scale genome rearrangements such as insertion or
deletion of genes, gene duplications, inversions of genes make
good phlyogenetic markers, precisely because they are rare.

» Our focus - Determining a measure of difference between
various species bssed on such large scale genome
rearrangements.

» Our tool - algebra/group theory.
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An example — Double cut and join

» Genome representation — graph.
» Rearrangement events

» Inversion of a section

» Translocation of a section

» Fission/Fusion of strands
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Double-cut-and-join: genome representation

> A “gene” or region has two extremities: a head and a tail.

» Store “adjacencies” i.e. which gene extremities are adjacent
on the genome.

> Example
5h74l’

1, 1p, 3t 3h, 2t 2p

5t74h

{16, {1n, 3¢}, {3n,2¢}, 21, {5n, 4}, {5, 40} }



Double cut and join — the cut

1; 1h, 2; 2p, 3¢ 3n, 4¢ 4y
]-t 1h 2t 2h73t 3h 4t

4y




Double cut and join operation — inversion

1t 1h 2t 2h73t 3h 4t 4y

1¢ 1p,3h 3¢, 25 2¢,4¢ 4y




Double cut and join operation — excision

]-t 1h 2t 2h73t 3h 4t 4h

1t 1h)4t 4'h

2h7 3t



Circularization/Linearization

1t 1h72t 2h73t 3h74t

4/17 1t

15,2
3h74t et

2h7 3f.‘



Fusion /Fission

1: 1p,2¢ 2p, 3¢ 3n, 4t 4y,

]-t 1h72t 2h 3t 3h74t 4'h




Distance under the DCJ model — Adjacency graph

2:3¢ 2p4+ 3h 4,5¢ 5p1¢

ceses



DCJ operator — Our re-formulation

> We assign a numeric label to each gene extremity. Let i be a
gene. Then
iy —2i—1
in — 2i
» Thus if there are n genes, we get 2n labels. Let us call this set
X.



DCJ operator — Our re-formulation

> We assign a numeric label to each gene extremity. Let i be a
gene. Then
ir—2i—1

in — 2i
» Thus if there are n genes, we get 2n labels. Let us call this set
X.

> A genome on n genes is a permutation 7 on the set X such
that
()= < w(j)=1i



DCJ operator — Our re-formulation

» For example for the genome {1, (14,24),2+}, the labels are
1, - 1,1, — 2
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DCJ operator — Our re-formulation

» For example for the genome {1, (14,24),2+}, the labels are
1, - 1,1, — 2

2t—>3,2h—>4

and it is encoded as

w W

N A
N———

E= )



DCJ operator — Our re-formulation

Fori,je X

Do) = | Gmd) i = (k Q)1 j) and k£ ior j 1
A (i j)m if i and j are fixed in 7 or m=...(ij)
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DCJ operator — Our re-formulation

Fori,je X

Do) = | GAT(0) i = (k Q)1 j) and k# i or j#1
A (i j)m if i and j are fixed in 7 or m=...(ij)

> Clearly, D,J = Dj,'.
» Also, Dg- is identity.
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Key result # 1 — Structure of the group of D;s

» Let [, be the set of genomic permutations on n regions. Dj; is
a bijection on I',,.

> Let D be the subgroup of Sr, generated by the Dj;; operators.

Let the cardinality of ', be . If 7//2 is even then D is alternating
group of degree . Otherwise it is a symmetric group of degree ~.

» Conjecture: /2 is even Vn > 2.



Key result # 2 — Characterization of cycles and
paths of AG(A, B)

Theorem

Let A and B be genomes and let o be a k-cycle in the product
wamg. If a contains a point that is fixed in wa or mg, then the
extremities in « form a path of length k in AG(A, B).

If o does not contain any point of that is fixed in ma or wg then let
B be the cycle in Tamg that contains wg(i) for any i € a.. Then
af is a cycle in AG(A, B).




Characterization of cycles and paths of AG(A, B) —
example

ma = (1,10)(2)(3,5)(4,7)(6)(8, 9)
78 = (1,8)(2,3)(4,6)(5,7)(9, 10)

14 2:3¢ 24t 3n 4p5¢ 5pl¢
2 (35)  (47) (6) (89)  (1.10)

Vst
B E

mame = (1,9)(8,10)(2,5,4,6,7,3)
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Characterization of cycles and paths of AG(A, B) —
example
™8 = (17 8)(27 3)(47 6)(57 7)(97 10)

14 2:3¢ 24t 3n 4p5¢ 5pl¢
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Characterization of cycles and paths of AG(A, B) —
example
™8 = (17 8)(27 3)(47 6)(57 7)(97 10)

14 2:3¢ 24t 3n 4p5¢ 5pl¢
2 (35)  (47) (6) (89)  (1.10)

. U Y v v
A} ’ A ’ 1Y ’
\Y ’ A , A ,
A} AN AN
A4 A4 A4 I

mame = (1,9)(8,10)(2,5,4,6,7,3)




Key result # 3 — DCJ Distance

/(7TA 7I'B) E

2 t3

where [(ma7g) is the length ma g and E is the number of cycles
in T4 g that move two fixed points of w4 or of 7g.

dpcy(ma, mB) =




Key result # 4 — Number of sorting scenarios

Let m4 and mg be genomic permutations on n regions such that
mema encodes a cycle in the adjacency graph AG(A, B). Then the
number of optimal sorting scenarios between w4 and 7g is n" 2.
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An example

Let m, = (1,8)(2,3)(4,5)(6,7), mp = (1,2)(3,4)(5,6)(7,8)
dag(ma) = (1,2)(8,3)(4,5)(6,7)

dagcas(ma) = (1,2)(4,3)(8,5)(6,7)

desdascos(ms) = (1,2)(3,4)(5,6)(7.8)

degdagdag(ma) = (6,8)(4,8)(2,8)ma(2,8)(4,8)(6,8)



An example

(1,2)(3,4)(5,6)(7,8)

(17 8)(27 3)(47 5)(67 7), Tp

Let 7,

(1,2)(8,3)(4,5)(6,7)

dog(7,)

(1,2)(4,3)(8,5)(6,7)

dagdog ()

(1,2)(3,4)(5,6)(7,8)

deg dagdog ()

N N~~~

~— e N
—~ =~~~

— N N N N
—~ =~~~

— N e e N

ron Loon o Ton Lon o

N N N N — —
AN AN AN S SN

e N N ' ~—
AN AN AN SN SN N

— N N N N



To summarize

Genomes ------------- » Graphs, Comparison graphs

v

Permutations, group theory Distance between genomes



To summarize

Genomes ------------- » Graphs, Comparison graphs

! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
'

v

Permutations, group theory Distance between genomes



To summarize

Genomes ------------- » Graphs, Comparison graphs

! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
'

v

Permutations, group theory - ----- » Distance between genomes



Future work

» Of particular interest: evolution of mitochondrial DNA which
is circular.

» Model important rearrangement events in circular
chromosomes.

» Translocation event i.e. movement of a section of the genome
to a different location on the genome can be modeled as a
combination of two double cut and join events.

» Determine DCJ distance when the different events carry
weights/probabilities.

Thank you!



