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Rare is better – large scale mutations

I Large scale genome rearrangements such as insertion or
deletion of genes, gene duplications, inversions of genes make
good phlyogenetic markers, precisely because they are rare.

I Our focus - Determining a measure of difference between
various species bssed on such large scale genome
rearrangements.

I Our tool - algebra/group theory.



An example – Double cut and join

I Genome representation – graph.
I Rearrangement events

I Inversion of a section
I Translocation of a section
I Fission/Fusion of strands
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Double-cut-and-join: genome representation

I A “gene” or region has two extremities: a head and a tail.
I Store “adjacencies” i.e. which gene extremities are adjacent

on the genome.
I Example

1t 1h, 3t 3h, 2t 2h

5h, 4t

5t , 4h

{1t , {1h, 3t}, {3h, 2t}, 2h, {5h, 4t}, {5t , 4h}}
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Double cut and join – the cut

1t 1h, 2t 2h, 3t 3h, 4t 4h

1t 1h 2t 2h, 3t 3h 4t 4h



Double cut and join operation — inversion

1t 1h 2t 2h, 3t 3h 4t 4h

1t 1h, 3h 3t , 2h 2t , 4t 4h



Double cut and join operation — excision

1t 1h 2t 2h, 3t 3h 4t 4h

1t 1h, 4t 4h 2t , 3h 2h, 3t



Circularization/Linearization

1t 1h, 2t 2h, 3t 3h, 4t 4h

4h, 1t

1h, 2t

2h, 3t

3h, 4t



Fusion/Fission

1t 1h, 2t 2h, 3t 3h, 4t 4h

1t 1h, 2t 2h 3t 3h, 4t 4h



Distance under the DCJ model – Adjacency graph

1h

1h2t

2t3t

4t3t

2h4t

2h3h

3h

1t4h

4h5t

5h5t

5h1t



DCJ operator — Our re-formulation

I We assign a numeric label to each gene extremity. Let i be a
gene. Then

it → 2i − 1

ih → 2i
I Thus if there are n genes, we get 2n labels. Let us call this set

X .

I A genome on n genes is a permutation π on the set X such
that

π(i) = j ⇐⇒ π(j) = i
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I For example for the genome {1t , (1h, 2h), 2t}, the labels are

1t → 1, 1h → 2

2t → 3, 2h → 4

and it is encoded as (
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DCJ operator — Our re-formulation

For i , j ∈ X

Dij(π) =

{
(i j)π(i j) if π = . . . (k i)(l j) and k 6= i or j 6= l
(i j)π if i and j are fixed in π or π = . . . (i j)

I Clearly, Dij = Dji .
I Also, D2

ij is identity.
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Key result # 1 – Structure of the group of Dijs

I Let Γn be the set of genomic permutations on n regions. Dij is
a bijection on Γn.

I Let D be the subgroup of SΓn generated by the Dij operators.

Let the cardinality of Γn be γ. If γ/2 is even then D is alternating
group of degree γ. Otherwise it is a symmetric group of degree γ.

I Conjecture: γ/2 is even ∀n > 2.
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Key result # 2 – Characterization of cycles and
paths of AG(A, B)

Theorem
Let A and B be genomes and let α be a k-cycle in the product
πAπB. If α contains a point that is fixed in πA or πB, then the
extremities in α form a path of length k in AG(A,B).
If α does not contain any point of that is fixed in πA or πB then let
β be the cycle in πAπB that contains πB(i) for any i ∈ α. Then
αβ is a cycle in AG(A,B).



Characterization of cycles and paths of AG(A, B) –
example

πA = (1, 10)(2)(3, 5)(4, 7)(6)(8, 9)
πB = (1, 8)(2, 3)(4, 6)(5, 7)(9, 10)

1h
2

2t3t
(3,5)

2h4t
(4,7)

3h
(6)

4h5t
(8,9)

5h1t
(1,10)

1h2t
(2,3)

4t3t
(5,7)

2h3h
(6,4)

1t4h
(1,8)

5h5t
(10,9)

πA πB = (1, 9)(8, 10)(2, 5, 4, 6, 7, 3)
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Key result # 3 – DCJ Distance

dDCJ(πA, πB) =
l(πA πB)

2 +
E
2

where l(πAπB) is the length πA πB and E is the number of cycles
in πA πB that move two fixed points of πA or of πB.



Key result # 4 – Number of sorting scenarios

Let πA and πB be genomic permutations on n regions such that
πBπA encodes a cycle in the adjacency graph AG(A,B). Then the
number of optimal sorting scenarios between πA and πB is nn−2.



An example

Let πa = (1, 8)(2, 3)(4, 5)(6, 7), πb = (1, 2)(3, 4)(5, 6)(7, 8)

d28(πa) = (1, 2)(8, 3)(4, 5)(6, 7)

d48d28(πa) = (1, 2)(4, 3)(8, 5)(6, 7)

d68d48d28(πa) = (1, 2)(3, 4)(5, 6)(7, 8)

d68d48d28(πa) = (6, 8)(4, 8)(2, 8)πa(2, 8)(4, 8)(6, 8)

(6, 8)(4, 8)(2, 8) = (6, 8)(2, 8)(2, 4) = (6, 8)(2, 4)(4, 8)
(4, 6)(2, 6)(6, 8) = (4, 6)(2, 8)(2, 6) = (4, 6)(6, 8)(2, 8)
(2, 4)(6, 8)(4, 8) = (2, 4)(4, 6)(6, 8) = (2, 4)(4, 8)(4, 6)
(2, 8)(2, 4)(4, 6) = (2, 8)(2, 6)(2, 4) = (2, 8)(4, 6)(2, 6)
(2, 6)(2, 4)(6, 8) = (2, 6)(6, 8)(2, 4)
(4, 8)(2, 8)(4, 6) = (4, 8)(4, 6)(2, 8)
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Future work

I Of particular interest: evolution of mitochondrial DNA which
is circular.

I Model important rearrangement events in circular
chromosomes.

I Translocation event i.e. movement of a section of the genome
to a different location on the genome can be modeled as a
combination of two double cut and join events.

I Determine DCJ distance when the different events carry
weights/probabilities.

Thank you!


