Fluid Models

Matrix-Analytic methods in Stochastic Modelling 2004

Małgorzata O'Reilly

Outline

- Model.
- Research so far.
- Future directions.
- References.

From QBDs to fluid models

QBD components

• (N, i), N- level, i- phase,

• Generator Q (special structure, A_0 , A_1 , A_2)

Note: The level variable is *countable*.

The goal:

A model in which the level variable is continuous.

Two main reasons:

Modelling of high-speed communication networks.

 Data in a high-speed communication network buffer behaves like fluid.

A Markov stochastic fluid model

We consider the following *level-independent* Markov process $\{(X(t), \varphi(t)) : t \in \mathbb{R}^+\}$:

- The level is denoted by $X(t) \in \mathcal{R}^+$,
- The phase is denoted by $\varphi(t) \in \mathcal{S}$, $|\mathcal{S}| = m$,
- The phase process $\{\varphi(t) : t \in \mathcal{R}^+\}$ is a Markov chain with infinitesimal generator \mathcal{T} .

Net input rates

$$c_i = \frac{dX(t)}{dt}|_{t=0}$$

The rate c_i at which the level of the fluid increases, or decreases, is governed by the state $i \in S$ of the underlying continous-time Markov chain.

The parameters c_i can be positive, negative or zero.

Two models

General: $c_i \in \mathcal{R}$.

Let

 $\mathcal{S} = \mathcal{S}_1 \cup \mathcal{S}_2 \cup \mathcal{S}_0,$

where

$$egin{array}{rcl} \mathcal{S}_1 &=& \{i:c_i>0\}, \ \mathcal{S}_2 &=& \{i:c_i<0\}, \ \mathcal{S}_0 &=& \{i:c_i=0\}. \end{array}$$

Simplified: $c_i = \pm 1$, $S = S_1 \cup S_2$.

General model —> simplified model

(Simplified model is much easier to analyse.)

A mapping from a general to a model with non-zero rates (Asmussen 1995).

 A model with non-zero rates can be easily transformed into a simplified model (Rogers 1994).

This transformation preserves probabilities but not times!

Asmussen (1994)

•
$$\mathcal{S}_{old} = \mathcal{S}_1 \cup \mathcal{S}_2 \cup \mathcal{S}_0$$
, $c_i \in \mathcal{R}$, $i \in \mathcal{S}$,

$$\mathcal{T}_{old} = \begin{bmatrix} T_{00} & T_{01} & T_{02} \\ T_{10} & T_{11} & T_{12} \\ T_{20} & T_{21} & T_{22} \end{bmatrix}$$

• $\mathcal{S}_{new} = \mathcal{S}_1 \cup \mathcal{S}_2$, $c_i \in \mathcal{R} \setminus \{0\}$, $i \in \mathcal{S}$,

$$\mathcal{T}_{new} = \begin{bmatrix} T_{11} - T_{10}T_{00}^{-1}T_{01} & T_{12} - T_{10}T_{00}^{-1}T_{02} \\ T_{21} - T_{20}T_{00}^{-1}T_{01} & T_{22} - T_{20}T_{00}^{-1}T_{02} \end{bmatrix}$$

Rogers (1994)

• $c_i \in \mathcal{R} \setminus \{0\}, i \in \mathcal{S},$

$$\mathcal{T}_{old} = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix}$$

$$c_i=\pm 1,\ i\in\mathcal{S},$$
 $\mathcal{T}_{new}=A\mathcal{T}_{old},$
where $A=diag(rac{1}{|c_i|}:i\in\mathcal{S}).$

Example 1

$$\mathcal{T} = \begin{bmatrix} -2 & 2\\ \\ 1 & -1 \end{bmatrix}$$

 $S_1 = \{1\}, c_1 = 1$ $S_2 = \{2\}, c_2 = -1.$

Notation: partitioning of generator \mathcal{T}

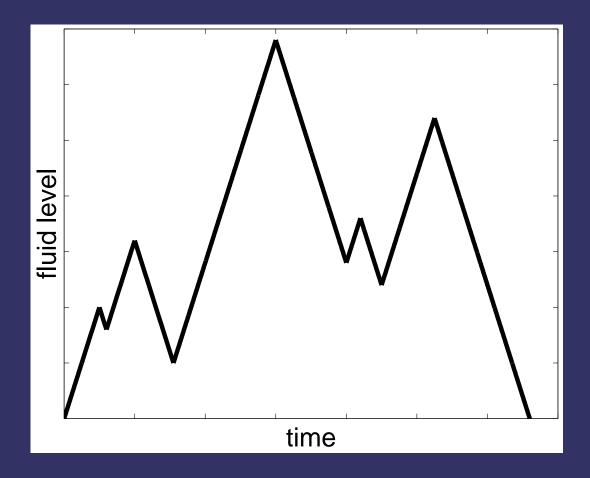
$$\mathcal{T} = \begin{bmatrix} T_{11} & T_{12} \\ \hline T_{21} & T_{22} \end{bmatrix}$$

Example 2

	28	22	2	2	2
	21	-27	2	2	2
$\mathcal{T} =$	1	1	-26	22	2
	1	1	21	-24	1
	1	1	21	1	-24

 $S_1 = \{1, 2\}, c_1 = c_2 = 1$ $S_2 = \{3, 4, 5\}, c_3 = c_4 = c_5 = -1.$

Return to the initial level zero



Very useful property:

The model is upward-homogenous!

Important matrix

For any level z, let $\theta(z)$ denote the time in $(0, \infty)$ at which the process first hits level z.

For all $i \in S_1$, $j \in S_2$, we define

$$[\Psi]_{ij} = P[\varphi(\theta(0)) = j | X(0) = 0, \varphi(0) = i].$$

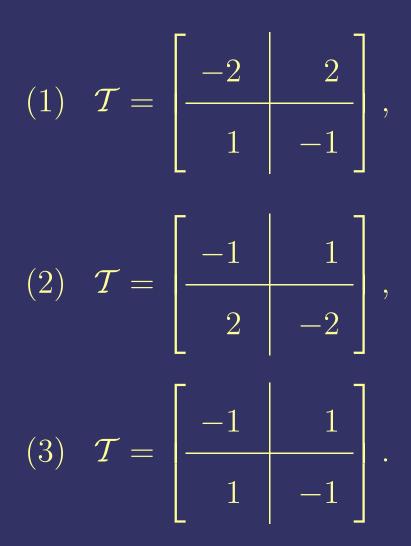
 Ψ records the probabilities of return journey to the initial level.

Significance:

 Ψ appears in the formulae for many performance measures!

Drift - a physical concept

Assuming +1/-1 rates, let



Recurrence measure μ

(Simplified model)

$$\mu = \widetilde{\nu_1}\widetilde{e} - \widetilde{\nu_2}\widetilde{e}$$

 $(\widetilde{\nu_1}, \widetilde{\nu_2})$ - the stationary distribution vector of the process $\varphi(t)$ (satisfying the equation $(\widetilde{\nu_1}, \widetilde{\nu_2})[\mathcal{T} : \widetilde{e}] = [0 : 1]$), \widetilde{e} - the column vector of ones.

- 1. Downward drift \equiv positive recurrent $\equiv \mu < 0$,
- 2. Upward drift \equiv transient $\equiv \mu > 0$,
- 3. No drift \equiv null-recurrent $\equiv \mu = 0$.

Bean, O'Reilly and Taylor

Laplace-Stieltjes transforms for several time-related performance measures (general model):

- Times of return journey to the initial level.
- Times of draining/filling to a given level.
- Times of a journey to a given level while avoiding the upper/lower taboo level.
- Expected sojourn times in specified sets.

Steady state densities

For all $j \in S$, x > 0, steady state densities are defined as

$$\pi_j(x) = \lim_{t \to \infty} f_j(t, x),$$

where

$$f_j(t,x) = P[x < X(t) < x + dx, \varphi(t) = j].$$

Notation

Matrix notation is introduced to simplify the analysis:

$$\pi(x) = (\pi_1(x), \dots, \pi_m(x)), \text{ where } |\mathcal{S}| = m,$$

 $C = diag(c_i : i \in \mathcal{S}).$

Ramaswami (1999)

 From partial differential equations Ramaswami derived the differential equation

$$\widetilde{\pi(x)}\mathcal{T} = \frac{d}{dx}\widetilde{\pi(x)}C$$

This equation is difficult to solve.

Ramaswami considered appropriate taboo processes and derived an explicit formula for $\widetilde{\pi(x)}$.

Ramaswami's conditioning.

- Assume that the process starts in (0, i).
- Note that the fluid can reach x + y only after it has crossed x.
- Let $[\phi(\tau, x, x + y)]_{ij}$ be the density of being at (x + y, j) at time τ avoiding the set $[0, x] \times \{1, \dots, m\}$ in the interval $(0, \tau)$.
- By conditioning on the last epoch of crossing the level x,

$$f_j(t, x+y) = \int_0^t \sum_{i \in \mathcal{S}} f_i(t-\tau, x) [\phi(\tau, x, x+y)]_{ij} d\tau.$$

For more details of the method see Ramaswami (1999).

Expression for $\pi(x)$ (Ramaswami 1999)

$$(\widetilde{\pi_1(x)}, \widetilde{\pi_2(x)}) = -\widetilde{\nu_1}(T_{11} + \Psi T_{21})[e^{(T_{11} + \Psi T_{21})x}, e^{(T_{11} + \Psi T_{21})x}\Psi].$$

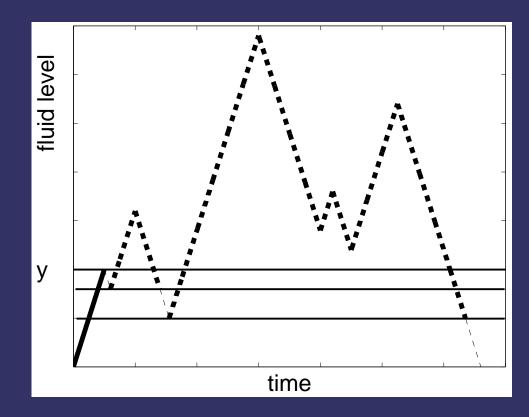
This expression is explicit. Recall that:

$$\mathcal{T} = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix}, \quad (\widetilde{\nu_1}, \widetilde{\nu_2})[\mathcal{T} : \widetilde{e}] = [0:1]$$

and Ψ is the matrix recording the probabilities of return journey to the initial level.

Da Silva Soares and Latouche (2002)

Conditioning on the first epoch of decrease.



$$\Psi = \int_{y=0}^{\infty} e^{T_{11}y} T_{12} e^{(T_{22}+T_{21}\Psi)y} dy$$

Calculating Ψ

There are several equivalent integral-form formulae for Ψ .

Corollary:

 Ψ is the minimal nonegative solution of the following Riccati equation

$$T_{12} + T_{11}\Psi + \Psi T_{21} + \Psi T_{12}\Psi = 0.$$

(For a general form of this result see Bean, O'Reilly and Taylor)

There are several different algorithms for Ψ .

Solving the Riccati equation for Ψ

Rewrite Riccati equation in an equivalent form:

 $(T_{11} + \Psi T_{21})\Psi + \Psi (T_{22} + T_{21}\Psi) = -T_{12} + \Psi T_{21}\Psi.$

Algorithm (Newton's method, Guo 2001):

• $\Psi_0 = 0$,

• Ψ_{n+1} is the unique solution of the equation:

 $(T_{11} + \Psi_n T_{21})\Psi_{n+1} + \Psi_{n+1}(T_{22} + T_{21}\Psi_n) = -T_{12} + \Psi_n T_{21}\Psi_n.$

(Solving an equation of the form AX + XB = D in each step)

Connection to QBDs

- Ramaswami (1999) maps a fluid model to a discrete-level QBD.
- Da Silva Soares and Latouche (2002) gives the physical intepretation of this construction.
- Significance:
- This construction allows for the calculation of the matrix $\boldsymbol{\Psi}$
- using efficient algorithms for G in the QBDs.

QBD construction (Ramaswami 1999)

Let
$$\vartheta \ge \max_{i \in S} |\mathcal{T}_{ii}|, P = I + \frac{1}{\vartheta}\mathcal{T} = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix}$$

Consider QBD with transition matrices

$$A_{0} = \begin{bmatrix} \frac{1}{2}I & 0\\ 0 & 0 \end{bmatrix}, \quad A_{1} = \begin{bmatrix} \frac{1}{2}P_{11} & 0\\ P_{21} & 0 \end{bmatrix}, \quad A_{2} = \begin{bmatrix} 0 & \frac{1}{2}P_{12}\\ 0 & P_{22} \end{bmatrix}.$$

Then $G = \begin{bmatrix} 0 & \Psi\\ 0 & P_{22} + P_{21}\Psi \end{bmatrix}.$

Future directions

- Models with boundaries.
- Level-dependent models.
- Decision making component.
- Countable/continuous phase.
- Applications.

. . .

S. Asmussen.

Stationary distributions for fluid models with or without Brownian noise.

Stochastic Models, **11**, 1–20, 1995.

References

N.G. Bean, M.M. O'Reilly and P.G. Taylor

Hitting Probabilities and Hitting Times for Stochastic Fluid Flows.

Submitted for publication.

URL:www.maths.adelaide.edu.au/people/nbean/papers/ref3.ps

References

N.G. Bean, M.M. O'Reilly and P.G. Taylor

Algorithms for Return Probabilities for Stochastic Fluid Flows.

Submitted for publication.

URL:www.maths.adelaide.edu.au/people/nbean/papers/ref4.ps

A. Da Silva Soares and G. Latouche.

Further results on the similarity between fluid queues and QBDs.

In G. Latouche and P. Taylor, editors, *Matrix-Analytic Methods Theory and Applications (Proceedings of the Fourth International Conference on Matrix-Analytic Methods in Stochastic Models)*, Adelaide, 14-16 July 2002, 89–106. C-H Guo.

- Nonsymmetric algebraic Riccati equations and Wiener-Hopf factorization for M-matrices.
- SIAM Journal on Matrix Analysis and Applications, **23**(1): 225–242, 2001.

V. Ramaswami.

Matrix analytic methods for stochastic fluid flows.

Proceedings of the 16th International Teletraffic Congress, Edinburgh, 7-11 June 1999, 1019–1030. L.C. Rogers.

Fluid models in queueing theory and Wiener-Hopf factorization of Markov chains.

The Annals of Applied Probability, **4**(2): 390–413, 1994.