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From QBDs to fluid models

QBD components

(N,1), N-level, i- phase,

Generator () (special structure, Ay, A1, As)

Note: The level variable is countable.

The goal:

A model in which the level variable I1s continuous.

Matrix-Analytic methods in Stochastic Modelling 2004

3/35



Motivation

TwO main reasons:

Modelling of high-speed communication networks.

Data in a high-speed communication network buffer

behaves like fluid.
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A Markov stochastic fluid model

We consider the following level-independent Markov process
{(X(®),¢(t) :t € RT}:

The level is denoted by X (t) € R,

The phase is denoted by ¢(t) € S,

S| =m,

The phase process {¢(t) : t € R™} is a Markov chain with

Infinitesimal generator 7.
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Net input rates

The rate ¢; at which the level of the fluid increases, or

decreases, is governed by the state : € S of the underlying

continous-time Markov chain.

The parameters ¢; can be positive, negative or zero.
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Two models

General: ¢; € 'R.
Let

S=85USUS,

where

81 = {iICi>O},

L
||

{iZCi<O},
8() — {ZCZ:O}

Simplified: ¢; = £1, S = §; U Ss.
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General model — simplified model

(Simplified model is much easier to analyse.)

A mapping from a general to a model with non-zero rates
(Asmussen 1995).

A model with non-zero rates can be easily transformed into

a simplified model (Rogers 1994).

This transformation preserves probabilities but not times!
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Asmussen (1994)

SoldzglLJSQUSo, c; € R, 1 € S,

TOO TOl T02

7'0ld: TlO T11 T12

L TQO T21 T22

Snew:81U82, CZ'ER\{O}, 1 € S,

T Ty — ThoToe' Ton Tiz — ThoTog Too

151 — Tono_ole T5o — T20T061T02
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Rogers (1994)

c; € R\ {0}, 7€S8,

Tll T12
7’0ld —
T21 T22
c;, = =x1, 1€ 8,
wa — A,Z’oldy

where A = diag(— :i € S).

|ci
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Example 1

81 — {1}, C1 = 1
52 — {2}, Co — —1.

Notation: partitioning of generator 7

T:
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Example 2

~928 22 % 9 %
21 —27 % ) %
T = 1 1 | =26 22 %

Sl :{1,2},61 :(22:1
So={3,4,5},cs =c4 =c5 = —1.
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Return to the initial level zero

o

>
Q
i)
=
g—

Very useful property:

The model is upward-homogenous!
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Important matrix

For any level z, let 6(z) denote the time in (0, co) at which the

process first hits level z.

Forall: € &1, 5 € Sy, we define

U records the probabilities of return journey to the initial level.

Significance:

U appears in the formulae for many performance measures!
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Drift - a physical concept

Assuming +1/ — 1 rates, let

—2 2
(1) 7T = ,
1 —1
| 1
(2) T = 7
2 —2
| 1
(3) T =
1 —1
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Recurrence measure u

(Simplified model)
[ =U1€ — e
(71, 2) - the stationary distribution vector of the process ()
(satisfying the equation (v, 15)[7 : e = 1[0 : 1] ),
e - the column vector of ones.
1. Downward drift = positive recurrent = ;1 < 0,
2. Upward drift = transient = . > 0,

3. No drift = null-recurrent = ¢ = 0.
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Bean, O’Rellly and Taylor

Laplace-Stieltjes transforms for several time-related

performance measures (general model):

Times of return journey to the initial level.
Times of draining/filling to a given level.

Times of a journey to a given level while avoiding

the upper/lower taboo level.

Expected sojourn times in specified sets.
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Steady state densities

For all j € S, x > 0, steady state densities are defined as

mi(x) = lim f;(¢, z),

t—00

where

fit,x) = Plx < X(t) < z +dx, o(t) = j].
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Notation

Matrix notation is introduced to simplify the analysis:

w(x) = (m(x),...mn(x)), where |S|=m,

C' = diag(c;:1 €S8).
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Ramaswami (1999)

From partial differential equations Ramaswami derived the

differential equation

This equation is difficult to solve.

Ramaswami considered appropriate taboo processes and

—~———

derived an explicit formula for = (x).
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Ramaswami’s conditioning.

Assume that the process starts in (0, 7).
Note that the fluid can reach x + y only after it has crossed =.

Let [¢(7, z,x + y)|;; be the density of being at (z + vy, j) at

time 7 avoiding the set [0, x| x {1,...,m} in the interval (0, 7).

By conditioning on the last epoch of crossing the level z,

fj(t7x+y):/() Zfi(t_T,I)[Qb(T,SC,ZC—l—y)]ide.

1€S

For more details of the method see Ramaswami (1999).
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o~ —

Expression for 7(x) (Ramaswami 1999)

— N~— —

(mu(z), ma(z)) = —D1(Thy + UTy ) [T t¥ Tz oTimiTa)eg)

This expression is explicit. Recall that:

Tll T12 -
T = - (Vl,VQ)[TZg]:[Oil]

T21 T22

and U is the matrix recording the probabilities of return journey

to the Initial level.
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Da Silva Soares and Latouche (2002)

Conditioning on the first epoch of decrease.

[

>
Q
=)
=
[rm—
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Calculating ¥

There are several equivalent integral-form formulae for W.

Corollary:

¥ Is the minimal nonegative solution of the following Riccati

equation

T12 4 Tll\If 4 \IJTgl = \Ileg\Ij — O

(For a general form of this result see Bean, O’Rellly and Taylor)

There are several different algorithms for W.
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Solving the Riccati equation for ¥

Rewrite Riccati equation in an equivalent form:
(Th + WTo) U + W(Tog + T3 V) = —=Tho + VT V.

Algorithm (Newton’s method, Guo 2001):
\IJO — O,

V,,.1 Is the unique solution of the equation:

(Tll + WnTQl)\Ijn—l—l + \Ijn_|_1(T22 — Tqujn) —
—179 + WV, 19 V,.

(Solving an equation of the form AX + X B = D in each step)
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Connection to QBDs

Ramaswami (1999) maps a fluid model to a discrete-level
QBD.

Da Silva Soares and Latouche (2002) gives the physical

Intepretation of this construction.

Significance:
This construction allows for the calculation of the matrix W

using efficient algorithms for ¢ in the QBDs.
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QBD construction (Ramaswami 1999)

Let o 2 max|’]§z-], P

€S

Consider QBD with transition matrices

I 0
A(): A1:

1 Py
:]_|_5’]':
P
%Pn 0
9 A2—
Py 0
0 \
0 P+ PV
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Future directions

Models with boundaries.
Level-dependent models.
Decision making component.
Countable/continuous phase.

Applications.
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