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The motivation

Bacterial genomes are circular and evolve via a combination of processes.

To model bacterial evolution, we focus on differences in genomic
structure, rather than content.
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The theory

Given two circular genomes that share N regions of interest . . .
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. . . we

• use a rearrangement model to find possible ‘evolutionary paths’
from one genome to the other;

• then apply a distance method to estimate the evolutionary
distance between them.
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Rearrangement models

We represent a genome with N regions by a permutation σ ∈ SN , where
σ(i) = j ⇐⇒ region i is in position j .

A rearrangement of the genome σ occurs when a permutation, a ∈ SN ,
acts on σ (on the left):

σ 7→ a σ .

To specify a rearrangement model, we need

• a set of allowed rearrangements M = {a1, a2, a3, . . . , aR} ⊆ SN \DN ;

• a set of rearrangement probabilities {w(ai ) : ai ∈M};
• a distribution of events in time, dist.
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The evolutionary distance measure

Our evolutionary distance measure is the maximum likelihood estimate
of time elapsed (MLE).

This is the most probable amount of time taken for the reference
genome to evolve into a target genome under the given model.

Precisely, for a genome represented by σ ∈ SN , it’s the time, T , at which
the likelihood function L(σ|T ) attains its maximum∗, where

L(σ|T ) := P(id→ [σ] in time T )

=
∞∑
k=0

P(id→ [σ] via k rearrangements )P(k rearrangements in time T ) .
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Calculating the MLE – rewriting the likelihood function
Define s :=

∑
a∈M

w(a)a in the group algebra C[SN ] and observe that

sk =
∑
σ∈SN

βk(σ)σ .

where for each permutation σ, the coefficient βk(σ) in the expansion is
the probability of obtaining σ from the identity in k rearrangements.

For any σ, we can rewrite the above so that βk(σ) is the coefficient of the
identity in the expansion of σ−1sk .

Now using the regular representation of SN extended to C[SN ], we have
for each σ ∈ SN

βk(σ) = 1
N!χreg(σ−1sk) ,

so that

P(e → [σ] via k rearrangements ) = 1
N!χreg(σ−1dsk) ,

where we have incorporated the symmetries of the genome using
d :=

∑
d∈DN

d ∈ C[SN ].
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Rearrangement model → Markov model

Now, setting the distribution of events in time to be Poisson(1), we have

L(σ|T ) = 1
N!

∞∑
k=0

χreg(σ−1dsk) e
−TT k

k!

= 1
N!χreg(σ−1de(s−id)T )

= 1
N!χreg(σ−1deQT ) ,

where Q = ρreg(s− id).

Observe that ρreg(s) is in fact the transition matrix for a discrete Markov
chain with state space SN .

Thus Q is the generator matrix for a continuous time Markov chain and
we see that the rearrangement model gives rise to a ‘group-based’ Markov
model.

7 / 21



Rearrangement model → Markov model

Now, setting the distribution of events in time to be Poisson(1), we have

L(σ|T ) = 1
N!

∞∑
k=0

χreg(σ−1dsk) e
−TT k

k!

= 1
N!χreg(σ−1de(s−id)T )

= 1
N!χreg(σ−1deQT ) ,

where Q = ρreg(s− id).

Observe that ρreg(s) is in fact the transition matrix for a discrete Markov
chain with state space SN .

Thus Q is the generator matrix for a continuous time Markov chain and
we see that the rearrangement model gives rise to a ‘group-based’ Markov
model.

7 / 21



Rearrangement model → Markov model

Now, setting the distribution of events in time to be Poisson(1), we have

L(σ|T ) = 1
N!

∞∑
k=0

χreg(σ−1dsk) e
−TT k

k!

= 1
N!χreg(σ−1de(s−id)T )

= 1
N!χreg(σ−1deQT ) ,

where Q = ρreg(s− id).

Observe that ρreg(s) is in fact the transition matrix for a discrete Markov
chain with state space SN .

Thus Q is the generator matrix for a continuous time Markov chain and
we see that the rearrangement model gives rise to a ‘group-based’ Markov
model.

7 / 21



Rearrangement model → Markov model

Now, setting the distribution of events in time to be Poisson(1), we have

L(σ|T ) = 1
N!

∞∑
k=0

χreg(σ−1dsk) e
−TT k

k!

= 1
N!χreg(σ−1de(s−id)T )

= 1
N!χreg(σ−1deQT ) ,

where Q = ρreg(s− id).

Observe that ρreg(s) is in fact the transition matrix for a discrete Markov
chain with state space SN .

Thus Q is the generator matrix for a continuous time Markov chain and
we see that the rearrangement model gives rise to a ‘group-based’ Markov
model.

7 / 21



Computing the likelihood

To compute, we decompose into irreducible representations of SN and,
assuming time reversibility of the stochastic model (this is equivalent to
M =M−1 with w(a−1) = w(a) for all a ∈M), we diagonalise,
obtaining

L(σ|T ) = 1
N!

∑
paN

Dp

rp∑
i=1

tr(ρp(σ−1d)Ep,i )e
λp,iT .
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Some likelihood plots - “Model 1”
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Some more likelihood curves - “Model 2”
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What can we actually compute?
In the above form, calculating the MLE has complexity approx

√
N!.

However.... even without knowing the value of the MLE, knowing
whether or not it exists, ie, whether or not two genomes are related
under a particular model, can still be useful.

Observe that each likelihood function is just a finite (weighted) sum of
exponentials,

L(T |σ) = b0e
λ0T + b1e

λ1T + b2e
λ2T + b3e

λ3T + . . .+ bme
λmT ,

where each bi 6= 0 and the eigenvalues λi are decreasing, ie

0 = λ0 > λ1 > λ2 > . . . > λm ≥ −2 ;

Taking the derivative, we see that as T →∞,

L′(T |σ) ≈ b1λ1e
λ1T .
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Does an evolutionary signal exist?

Theorem

If b1 > 0, then the likelihood function has a maximum, i.e., an MLE exists.

This is a simple consequence of our observations above. The exponential
function is always positive, and λ1 < 0, so we see that if b1 > 0, then the
slope of the likelihood curve, as T →∞, is negative.

What about b1 < 0 ?

If it is the case that the likelihood function has either no maximum or one
maximum, then b1 < 0 means that we have no MLE.

One can easily create sums of exponentials that have multiple optima.

However, using actual models (for genomes with up to 12 regions), we
have only ever been able to create likelihood functions with zero or one
maximum.
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‘Model 2’; S9: MLE vs b1 for genomes with an MLE
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How much easier is this question?

We know exactly where to look for the “second biggest eigenvalue”, λ1.

It’s in the ‘third’ irreducible representation, that is, it’s an eigenvalue of
the matrix

ρ[N−2,2](s) .

(nb. Observationally, this is always true, but the algebraic proof is still
pending.)

In any case, for N regions, this matrix has dimension N2−3N
2 .... which

makes computations simple.
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simulating: mean b1 vs T

S20, model T1, 100 repetitions, 600 time steps
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simulating

S20, all inversions model, 40 repetitions, 300 time steps
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simulating

S30, inv7 model, 40 repetitions, 300 time steps
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simulating

S40, inv7 model, 10 repetitions, 400 time steps
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What next?
As far as this predictor goes, we have a couple of gaps to fill in (eg prove
that b1 < 0 =⇒ no MLE under our model/symmetry assumptions).

More generally, a priority is to increase the number of regions for which we
can calculate MLEs. In particular/in parallel...

• Most eigenvalues that we calculate do not contribute to the final
likelihood function (as their coefficient bi is zero). We now
understand why this is and are working on a way to apply this (which
will massively reduce our computational load!).

• We may still have to start to use some real numerical approximations
(as opposed to the ones the computer does in order to actually
calculate anything).

• Investigate further applying the technique to compare models – eg
what is the ‘most likely model’ for some given data?

• Apply/adapt this technique to slightly different genome models. eg
include an origin and terminus of replication, include gene orientation
... etc
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