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DNA Basics

DNA is a molecule found in all life.

Typically appears as a double helix structure.

Made up of nucleotides
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Neucleotides

We consider 4 distinct nucleotides:
1 A - Adenine.
2 T - Thymine.
3 C - Cytosine.
4 G - Guanine.

The genetic code is written in the language defined by these
nucleobases.

A piece of code may be regarded as a string of nucleobases

e.g. ATCCATATG
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Base Pairing

Nucleobases on one strand chemically bond with those on the other

Each bonds with precisely one other:
1 A and T bond.
2 C and G bond.

Base pairing leads to a natural complementary relationship between
strings of code.

E.g. ATCCATATG has TAGGTATAC as its complement
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Mutation

Two strands of double helix separate

Each strand’s complimentary sequence is generated and bonds to it.

There exists a possibility for errors to occur.

Most errors are corrected, some lead to a change in the code.

We refer to uncorrected errors as mutations.

Selection

Mutations may give rise to new alleles.

Often, this will make an organism more or less fit.

Many microsatellites are not subject to selection, which allows for
demographic information to be faithfully preserved.
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Microsatellites

Repeats of a short motif, e.g. AT repeated 6 times:

A T A T A T A T A T A T

Usually, think of microsatellites as repeat units:

AT AT AT AT AT AT
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Slipped-strand mispairing

Contraction

During replication, a loop may form in the template strand leading to a
decrease in the number of repeats in the new strand.
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Slipped-strand mispairing

Expansion

Alternatively, a loop may form in the new strand, leading to an increase in
repeat number relative to the template.
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Models for repeat number

e.g. a symmetric random walk:

ii − 1 i + 121 . . .

λi

λi−1 λi

λi+1

λ1

λ2

The main factors accounted for are:

Length dependence of mutation rate.
Bias towards contraction or expansion.
Size of the mutation events.
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Point mutation

Microsatellites also susceptible to point mutations.

AT AT AT AC AT AT

How to deal with this?

One way is to model point mutation as splitting a single microsatellite
into two smaller ones.

AT AT AT

AT AT
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Some problems

These models lose useful information, and may invalidate IID
assumption.
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Our model

We introduce a level-dependent QBD to model the evolution of an
individual microsatellite.

State space — S = {(i , j) ∈ N2 : imin ≤ i ≤ imax, j ≤ j imax}
i tracks the repeat number, j tracks the number of mismatches at the
level of the nucleotide.

imin, imax and j imax are all absorbing states, although taking imax =∞
is natural.

Generator Q = [q(i ,j).(k,l)] with

q(i ,j)(k,l) =


rs(i , j)β(i) for k = i + 1, l = j

rs(i , j)(1− β(i))H(j − l , iL, j , L) for k = i − 1, j − L ≤ l ≤ j

rm(i , j) for k = i , l = j + 1

rp(i , j) for k = i , l = j − 1.

(1)

Tristan L. Stark (Temple) Modeling Microsatellites February 14, 2019 12 / 22



Our model

We introduce a level-dependent QBD to model the evolution of an
individual microsatellite.

State space — S = {(i , j) ∈ N2 : imin ≤ i ≤ imax, j ≤ j imax}

i tracks the repeat number, j tracks the number of mismatches at the
level of the nucleotide.

imin, imax and j imax are all absorbing states, although taking imax =∞
is natural.

Generator Q = [q(i ,j).(k,l)] with

q(i ,j)(k,l) =


rs(i , j)β(i) for k = i + 1, l = j

rs(i , j)(1− β(i))H(j − l , iL, j , L) for k = i − 1, j − L ≤ l ≤ j

rm(i , j) for k = i , l = j + 1

rp(i , j) for k = i , l = j − 1.

(1)

Tristan L. Stark (Temple) Modeling Microsatellites February 14, 2019 12 / 22



Our model

We introduce a level-dependent QBD to model the evolution of an
individual microsatellite.

State space — S = {(i , j) ∈ N2 : imin ≤ i ≤ imax, j ≤ j imax}
i tracks the repeat number, j tracks the number of mismatches at the
level of the nucleotide.

imin, imax and j imax are all absorbing states, although taking imax =∞
is natural.

Generator Q = [q(i ,j).(k,l)] with

q(i ,j)(k,l) =


rs(i , j)β(i) for k = i + 1, l = j

rs(i , j)(1− β(i))H(j − l , iL, j , L) for k = i − 1, j − L ≤ l ≤ j

rm(i , j) for k = i , l = j + 1

rp(i , j) for k = i , l = j − 1.

(1)

Tristan L. Stark (Temple) Modeling Microsatellites February 14, 2019 12 / 22



Our model

We introduce a level-dependent QBD to model the evolution of an
individual microsatellite.

State space — S = {(i , j) ∈ N2 : imin ≤ i ≤ imax, j ≤ j imax}
i tracks the repeat number, j tracks the number of mismatches at the
level of the nucleotide.

imin, imax and j imax are all absorbing states, although taking imax =∞
is natural.

Generator Q = [q(i ,j).(k,l)] with

q(i ,j)(k,l) =


rs(i , j)β(i) for k = i + 1, l = j

rs(i , j)(1− β(i))H(j − l , iL, j , L) for k = i − 1, j − L ≤ l ≤ j

rm(i , j) for k = i , l = j + 1

rp(i , j) for k = i , l = j − 1.

(1)

Tristan L. Stark (Temple) Modeling Microsatellites February 14, 2019 12 / 22



Our model

We introduce a level-dependent QBD to model the evolution of an
individual microsatellite.

State space — S = {(i , j) ∈ N2 : imin ≤ i ≤ imax, j ≤ j imax}
i tracks the repeat number, j tracks the number of mismatches at the
level of the nucleotide.

imin, imax and j imax are all absorbing states, although taking imax =∞
is natural.

Generator Q = [q(i ,j).(k,l)] with

q(i ,j)(k,l) =


rs(i , j)β(i) for k = i + 1, l = j

rs(i , j)(1− β(i))H(j − l , iL, j , L) for k = i − 1, j − L ≤ l ≤ j

rm(i , j) for k = i , l = j + 1

rp(i , j) for k = i , l = j − 1.

(1)

Tristan L. Stark (Temple) Modeling Microsatellites February 14, 2019 12 / 22



Our model

We assume the following forms for the functions in equation (1),

rs(i , j) = (u0 + u1(i − 1))c j , (2)

β(i) =
1

1 + e−(b0+(i−1)b1)
, (3)

rm(i , j) = d(iL− j) (4)

rp(i , j) =
1

3
dj (5)
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A short aside on whole genome derived sequence data...

Ultimately, we want to fit our model to some data from real microsatellite
sequences. In order to obtain data with information about the number of
interruptions in the repeat sequence, we use whole-genome data.

To filter
microsatellites from whole genome sequences, we use a program called
Tandem Repeats Finder (TRF). TRF is essentially a two component
algorithm for finding microsatellite sequences.

Detection component does some statistics to find (a sample of)
candidate microsatellites in the genome.

Analysis component determines (among other things) the repeat
motif and measures how well the observed sequence matches a
theoretical sequence of the same length consisting of perfect copies of
the repeat sequence.
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Observable sequences

It is easy to derive a criteria in terms of repeat number and number of
interruptions that a sequence can have to make it through the analysis
component of TRF, based on chosen parameters.

We set the ‘absorbing boundary‘ of the model to match the boundary
of observability under TRF, so that imin and j imax are determined by
the aforementioned criteria.

We chose imax to be the maximum observed sequence length in each
subset of our dataset (which we partitioned by motif-length).
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Fitting the model to whole-genome derived sequence data

Usually in the microsatellite literature, models are fit by assuming that
observed data is at equilibrium and fitting the stationary distribution to
the empirical distribution. Clearly not appropriate here...

In fact, not having to assume that observed data is at equilibrium is a nice
feature of this model (the assumption of equilibrium has some
philosophical issues in the context of evolution).

The equilibrium assumption provides a natural way to extend a model for
the evolution of an individual microsatellite to a model for a population of
microsatellites.

We extend the model to the population-level by assuming a Poisson birth
process for microsatellites, born with some initial distribution α.
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Fitting the model to whole-genome derived sequence data

We derive the distribution (in terms of the individual-level model) of a
microsatellite observed at a time t.

Ignoring any imperfection in the process of observation, the event
that a microsatellite is observed at time t∗ is equivalent to the event
that it was born before time t∗, and is absorbed after time t∗.

It follows that the density associated with the event that a
microsatellite is of age t given that it is observed at time t∗ is

fT0(t∗ − t | T0 < t∗ < Ta) =
S(t)∫ T

t=0 S(t)dt

=
α0e

Q∗t1

α0(eQ∗t − I)(Q∗)−11
. (6)

where S is the survival function and Q∗ is the subgenerator
associated with the model.
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Fitting the model to whole-genome derived sequence data

Now we can write the probability that a microsatellite observed at time t
is in state s as

P(X (t∗ − T0) = s | T0 < t∗ < Ta)

=

∫ t∗

t=0
P(X (t) = s | T0 = t∗ − t < t∗ < Ta)fT0(t∗ − t | T0 < t∗ < Ta)dt

=

∫ t∗

t=0

(
[α0e

Q∗t ]s
α0e

Q∗t1

)(
α0e

Q∗t1

α0(eQ∗t∗ − I)(Q∗)−11

)
dt

=
[α0(eQ

∗t∗ − I)(Q∗)−1]s
α0(eQ∗t∗ − I)(Q∗)−11

. (7)

which we write in vector form as

π∗(t∗) =
α0(eQ

∗t∗ − I)(Q∗)−1

α0(eQ∗t∗ − I)(Q∗)−11
, (8)
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Fitting the model to whole-genome derived sequence data

Thus, we can fit π∗(1) to the data, which naturally defines a molecular
clock via the mutation-rate parameters of the model.

Notice that as t∗ →∞ π∗(t) tends to the ratio of means distribution,

lim
t∗→∞

π∗(t∗) =
α0(Q∗)−1

α0(Q∗)−11
. (9)

This provides a way to test the validity of the assumption of independence
— if the fitted π∗(1) ≈ limt∗→∞ π

∗(t∗), then we can conclude that the
empirical distribution is at or near equilibrium.
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Fitting the model to whole-genome derived sequence data

We have a method to fit our model to empirical microsatellite distributions
which can

identify the extent of the slowdown in slipped-strand mispairing due
to interruptions in the repeat sequence

test the support for the commonly used dynamic bias function

test the veracity of the assumption of equilibrium in empirical
microsatellite distributions

However, there is one major problem with this model — we require data
from bona-fide microsatellite sequences which includes information about
interruptions.

In theory, TRF (or similar software) applied to whole-genome data should
provide this. In practice, our data appears to be polluted with
non-microsatellite sequences.
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More on microsatellites

Fundamentally, the problem is that repetitive structure is not enough for a
sequence to be considered a microsatellite. It must also exhibit
‘characteristic microsatellite behaviour‘ — i.e. it should undergo high rates
of slipped-strand mispairing.

This is particularly problematic when considering sequences which are
slowed down due to the introduction of interruptions to the repeat
sequence.

We not only need to separate repetitive non-microsatellite sequences from
proper microsatellites, but we also need to identify ‘ex-microsatellites‘ —
repetitive sequences which were evolving rapidly due to slipped-strand
mispairing before becoming highly interrupted.
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