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Branching processes

Branching processes are stochastic processes describing the dynamics of a
population of individuals which reproduce and die independently, according to
some specific probability distributions.

Branching processes have numerous applications in population biology and
phylogenetics
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Galton-Watson branching processes

Time is discrete and represents successive generations

Each individual has a unit lifetime, at the end of which it might give birth to
one or more offsprings simultaneously

The offspring distribution is described by a random variable θ taking
non-negative integer values with corresponding probabilities

pj = P[θ = j], j ≥ 0.

All individuals behave independently of each other
The function P(z) :=

∑
j pjz j is called probability generating function (p.g.f)

of the offspring distribution
If the expected value of the offspring distribution m = P ′(1) =

∑
j jpj < 1

then we have extinction with probability 1
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Galton-Watson branching processes

A realisation of a GW process through 3 generations starting with a single
individual at generation 0:

Generation n 0 1 3 2 
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Quasi stationary distribution

In some models it is of interest to consider populations that are certain to become
extinct (m < 1), yet appear to be stationary over any reasonable time scale.
In that case, one can consider the so called quasi stationary distribution of the
process, i.e., the asymptotic distribution of the population size, conditional on its
survival.

Theorem (Yaglom)
For each j = 1, 2, . . . ,

lim
n→∞

P[Zn = j |Zn 6= 0] = gj

exists, and
∑

j gj = 1.

Moreover, the p.g.f. G(z) =
∑

j gjz j satisfies the equation

G(P(z)) = m G(z) + 1−m.
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The problem we address in this talk

Given P(z) =
∑

j≥0 pjz j such that

pj ≥ 0, P(1) =
∑
j≥0

pj = 1, P(1)(1) =
∑
j≥1

jpj = m ∈ (0, 1),

we want to find G(z) =
∑

j≥0 gjz j that solves
G(P(z)) = mG(z) + 1−m z ∈ [0, 1]
G(0) = 0
G(1) = 1
gj ≥ 0

.

The existence of G(z) is guaranteed by Yaglom’s theorem.
Uniqueness is ensured if G(z) is analytic at z = 1.
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Analyticity of G(z)

Theorem (Königs 1884)
If P(z) is analytic on B(0, rP) with rP > 1 then G(z) is analytic on B(0, rG ) where
rG is either the solution of z = P(z) on (1,∞) or ∞.
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Computing G(z) in the analytic case

G(P(z)) = mG(z) + 1−m (1)

Without imposing boundary conditions, (1) admits infinite solutions of the form

G(z) = 1 + s · g(z), s ∈ C,

where g(z) verifies g(P(z)) = m · g(z). In particular, we have to find an
eigenvector of g → g ◦ P associated with the eigenvalue m.

Idea: Rephrase the composition with P(z) as an integral operator:

g(P(z)) =
∫
∂B(0,r)

g(t)
t − P(z) dt = m · g(z).
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Computing G(z) in the analytic case

∫
∂B(0,r)

g(t)
t − P(z) dt = m · g(z)

Approximating the integral with the trapezoidal rule and evaluating the expression
in the scaled roots of the unit yields

n∑
h=1

g(rξh) · rξh
n · (rξh − P(rξj))−1 −m · g(rξj) ≈ 0 j = 1, . . . , n, (2)

where ξh = e 2πh
n .

Expression (2) says that the vector vg := [g(rξ1), . . . , g(rξn)]T verifies

Avg ≈ 0, A = (ajh)j,h=1,...,n, ajh =
{ rξh

n(rξh−P(rξj )) h 6= j
rξh

n(rξh−P(rξh)) −m h = j
.
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Computing G(z) in the analytic case

Avg ≈ 0

Strategy:
Approximate vg = [g(rξ1), . . . , g(rξn)]T with an eigenvector of A associated
with its smallest eigenvalue.

Apply the inverse fast Fourier transform to vg getting the coefficients of a
degree n− 1 polynomial that interpolates g̃(z) := g(r · z) on the roots of the
unit.

Use G(0) = 0 to compute s ∈ C such that G̃(z) := G(r · z) = 1 + sg̃(z).

Retrieve the (approximate) coefficients of G(z) by rescaling those of G̃(z).

Speaker: Stefano Massei 10 / 21



Evaluation-Interpolation strategy

Algorithm 1 Compute G(P(z), n, r)
1: m← P ′(1)
2: ξ ←

(
r · e

2πij
n

)
j=1,...,n

3: A←
(

ξh
n(ξh−P(ξj ))

)
j,h=1,...,n

4: A← A−m · In
5: vg ← eigs(A)
6: w← ifft(vg )
7: w← − 1

w1
w, w1 ← 0 now

∑n
j=1 wjz j−1 interpolates G̃(z) = G(r · z)

8: return
( wj

r j−1

)
j=1,...,n
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Benchmark example

A linear fractional Galton-Watson process is a process in which the offspring
distribution is a modified geometric distribution:

P(z) =
∞∑

j=0
pjz j , pj = (1− p0)(1− p)pj−1, j ≥ 1

for some parameters p0, p ∈ (0, 1). In this case, the QSD is geometric with
parameter p/p0. Here we took p = 0.3 and p0 = 0.6.
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A numerical example

0 100 200 300
10−14

10−9

10−4

101

j

gj

r−j
G n Time (s) Res

∑
gj

256 0.05 8.67 · 10−2 0.72
512 0.11 1.40 · 10−2 0.96

1,024 0.44 4.96 · 10−4 1
2,048 1.62 8.85 · 10−7 1
4,096 9.92 3.80 · 10−12 1
8,192 78.21 2.04 · 10−15 1

P(z) is a degree 8 polynomial, such that m = 0.776 and rG = 1.101.
Res := maxj=1,...,n |G(P(ξj))−mG(ξj)− 1 + m|.
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Example m “close” to 1

0 100 200 300
10−5

10−3

10−1

101

103

j

gj

r−j
G

n Time (s) Res
∑

gj

256 0.06 9.94 · 10−2 0.73
512 0.11 7.53 · 10−2 0.74

1,024 0.39 4.33 · 10−2 0.97
2,048 1.55 2.14 · 10−2 0.67
4,096 9.94 2.49 · 10−2 0.65
8,192 79.88 1.33 · 10−2 0.86

P(z) is a degree 8 polynomial, such that m = 0.942 and rG = 1.026.
Res := maxj=1,...,n |G(P(ξj))−mG(ξj)− 1 + m|.
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Structure of the matrix A

The matrix A defined by

A = (ajh)j,h=1,...,n, ajh =
{ rξh

n(rξh−P(rξj )) h 6= j
rξh

n(rξh−P(rξh)) −m h = j

is highly structured, indeed it can be written as

A = C (n)
P,r · diag

(
rξ1
n , . . .

rξn
n

)
−mIn

where C (n)
P,r = (chj) := 1

rξh−P(rξj ) is a Cauchy matrix.

In particular, Cauchy matrices often exhibit a low numerical rank.
Hence, we would like to approximate A as

A ≈ UV ∗ −mIn

with U,V ∈ Cn×k tall and skinny matrices (k � n).
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Exploiting low-rank

We can then modify the evaluation-interpolation procedure as follows:
Avoid forming explicitly A.
Compute a low-rank approximation of C (n)

P,r ≈ UṼ ∗ by means of Adaptive
Cross Approximation (ACA).

Retrieve C (n)
P,r · diag

(
rξ1
n , . . .

rξn
n

)
≈ UV ∗ just by rescaling Ṽ .

Solve the eigenvector problem with a O(n) cost.

The resulting algorithm has O(n log(n)) cost in time and O(n) cost in storage.
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Example with m “close” to 1

0 100200300
10−5

10−3

10−1

101

103

j

gj

r−j
G n Time (s) Res

∑
gj rk(C (n)

P,r )

16,384 2.28 4.10 · 10−4 1 264
32,768 6.88 5.80 · 10−7 1 366
65,536 21.67 1.15 · 10−10 1 465

1.31 · 105 49.89 4.33 · 10−10 1 471
2.62 · 105 113.19 5.94 · 10−10 1 475

P(z) is a degree 8 polynomial, such that m = 0.942 and rG = 1.026.
Res := maxj=1,...,n |G(P(ξj))−mG(ξj)− 1 + m|.
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Multitype Galton-Watson branching process

Suppose now there are d > 1 types of individuals, each type having its own
reproduction law.

Example with d = 2:

Generation n 0 1 3 2 
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Bivariate version of the problem

Given Pj(x , y) =
∑

h,k≥0 p(j)
hk xhyk such that

p(j)
hk ≥ 0, Pj(1, 1) = 1, j = 1, 2

and the spectral radius m of the matrix
[
∂P1(1,1)
∂x

∂P1(1,1)
∂y

∂P2(1,1)
∂x

∂P2(1,1)
∂y

]
is less than 1, we

want to find G(z) =
∑

h,k≥0 ghkxhyk that solves
G(P1(x , y),P2(x , y)) = mG(x , y) + 1−m x , y ∈ [0, 1]
G(0, 0) = 0, G(1, 1) = 1
gh,k ≥ 0

.

Idea: Once again, exploit:

G(P1(x , y),P2(x , y)) = 1
(2πi)2

∫
∂B(0,r1)×∂B(0,r2)

Gj(x̃ , ỹ)
(x̃ − P1(x , y))(ỹ − P2(x , y)) dx̃ dỹ
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A 2D example

We take P1(x , y) and P2(x , y) bivariate polynomials of degree (2, 2).

n Time (s) Res
∑

ĝh,k

16 0.12 0.27 1.17
32 0.18 6.59 · 10−2 0.9
64 0.86 2.26 · 10−3 1

128 5.66 1.45 · 10−5 1
256 33.45 9.53 · 10−10 1
512 218.49 5.95 · 10−12 1

0
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0204060

10−31

10−15

101

p(j)
0,0 p(j)

0,1 p(j)
0,2 p(j)

1,0 p(j)
1,1 p(j)

1,2 p(j)
2,0 p(j)

2,1 p(j)
2,2

P1 0.798 0.029 0.009 0.015 0.010 0.022 0.052 0.020 0.045
P2 0.694 0.041 0.057 0.035 0.027 0.043 0.024 0.051 0.028

m = 0.5884, r1 = 1.2462, r2 = 1.4101.
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Conclusion

Discretizing the functional equation allows the design of fast and accurate
solvers for the quasi stationary distribution.

Some open questions:
Prove the stability of the discretization scheme
In the bivariate case the matrix that arises from the discretization is the
unfolding of a 4-th order tensor. Can we gain in representing it via tensor
formats?

Full story:
S. Hautphenne, S. M., A low-rank technique for computing the quasi
stationary distribution of subcritical Galton-Watson processes, Arxiv, 2019.
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