00000 000	00000	0 000000000

On some fixed-point problems connecting branching and queueing

Søren Asmussen

Aarhus University http://home.math.au.dk/asmus

MAM10

Hobart, February 13, 2017

M/G/1 and Branching •••••• LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 000000 RV of FPE

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Markov Chain Fixed-Point Equation

 X_n Markov chain, state space ERecursion $X_{n+1} = \varphi(X_n, U_n)$ U_n uniform(0, 1) representing additional randomization:

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 000000 RV of FPE

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Markov Chain Fixed-Point Equation

 X_n Markov chain, state space ERecursion $X_{n+1} = \varphi(X_n, U_n)$ U_n uniform(0, 1) representing additional randomization: $U \mapsto$ any high-dimensional r.v. in nice space

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 000000 RV of FPE

Markov Chain Fixed-Point Equation

 X_n Markov chain, state space ERecursion $X_{n+1} = \varphi(X_n, U_n)$ U_n uniform(0, 1) representing additional randomization: $U \mapsto$ any high-dimensional r.v. in nice space

Fixed-point equation for stationary distribution π :

 $X = \varphi(X, U)$

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 000000 RV of FPE

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Markov Chain Fixed-Point Equation

 X_n Markov chain, state space ERecursion $X_{n+1} = \varphi(X_n, U_n)$ U_n uniform(0, 1) representing additional randomization: $U \mapsto$ any high-dimensional r.v. in nice space

Fixed-point equation for stationary distribution π :

 $X = \varphi(X, U)$

Existence of *E*-valued solution *X* equivalent to existence of π

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 000000

RV of FPE

Markov Chain Fixed-Point Equation

 X_n Markov chain, state space ERecursion $X_{n+1} = \varphi(X_n, U_n)$ U_n uniform(0, 1) representing additional randomization: $U \mapsto$ any high-dimensional r.v. in nice space

Fixed-point equation for stationary distribution π :

 $X = \varphi(X, U)$

Existence of *E*-valued solution *X* equivalent to existence of π Properties of π/X ?

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 000000 RV of FPE

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Markov Chain Fixed-Point Equation

 X_n Markov chain, state space ERecursion $X_{n+1} = \varphi(X_n, U_n)$ U_n uniform(0, 1) representing additional randomization: $U \mapsto$ any high-dimensional r.v. in nice space

Fixed-point equation for stationary distribution π :

 $X = \varphi(X, U)$

Existence of *E*-valued solution *X* equivalent to existence of π Properties of π/X ?

GI/G/1 waiting time: $W \stackrel{\mathcal{D}}{=} (W + S - T)^+$

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 000000 RV of FPE

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Markov Chain Fixed-Point Equation

 X_n Markov chain, state space ERecursion $X_{n+1} = \varphi(X_n, U_n)$ U_n uniform(0, 1) representing additional randomization: $U \mapsto$ any high-dimensional r.v. in nice space

Fixed-point equation for stationary distribution π :

 $X = \varphi(X, U)$

Existence of *E*-valued solution *X* equivalent to existence of π Properties of π/X ?

GI/G/1 waiting time: $W \stackrel{\mathcal{D}}{=} (W + S - T)^+$ Stable distributions:

$$X \stackrel{\mathcal{D}}{=} \frac{1}{n^{1/\alpha}} (X_1 + \cdots + X_n)$$

- * ロ > * 個 > * 注 > * 注 > - 注 - のへで

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

FIFO (First in First Out) Children: arrivals during service

M/G/1 and Branching	LIFO-Preemptive-Repeat	GI/G/1 and MAP/G/1	RV of FPE
00000	000	000000	0000000000
Cub burger a gui	e de		
Sub-busy peri	oas		

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

M/G/1 and Branching	LIFO-Preemptive-Repeat	GI/G/1 and MAP/G/1	RV of FPE
00●00	000	000000	
Sub-busy periods	5		

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへの

M/G/1 and Branching	LIFO-Preemptive-Repeat	GI/G/1 and MAP/G/1	RV of FPE
00●00	000	000000	00000000000
Sub-busy periods	5		

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへの

M/G/1 and Branching	LIFO-Preemptive-Repeat	GI/G/1 and MAP/G/1	RV of FPE
00●00	000	000000	00000000000
Sub-busy periods	5		

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへの

Fixed-point equation
$$B \stackrel{d}{=} S + \sum_{i=1}^{N} B_i$$

M/G/1 and Branching	LIFO-Preemptive-Repeat	GI/G/1 and MAP/G/1	RV of FPE
00●00	000	000000	00000000000
Sub-busy perio	ds		

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Fixed-point equation
$$B \stackrel{d}{=} S + \sum_{i=1}^{N} B_i$$

Can be reinterpreted in terms of LIFO (Last in First Out) Preemptive Resume

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 000000 RV of FPE

LIFO Preemptive-Resume Family Tree

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへ⊙

M/G/1 and Branching $_{000 \bullet 0}$

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 000000 RV of FPE

LIFO Preemptive-Resume Family Tree

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

M/G/1 and Branching $_{000 \bullet 0}$

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 000000 RV of FPE

LIFO Preemptive-Resume Family Tree

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ⊙

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 000000 RV of FPE

LIFO Preemptive-Resume Family Tree

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 000000 RV of FPE

Application to stability

Queue stable

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 000000 RV of FPE

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Application to stability

Queue stable

 \iff

Busy period terminates

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 000000 RV of FPE

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Application to stability

Queue stable

 \iff

Busy period terminates

 \iff

Branching tree finite

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 000000 RV of FPE

Application to stability

Queue stable

 \iff

Busy period terminates

 \iff

Branching tree finite

 \iff

Offspring mean $m \leq 1$

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 000000 RV of FPE

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Application to stability

Queue stable

 \iff

Busy period terminates

 \Leftrightarrow

Branching tree finite

 \iff

Offspring mean $m \leq 1$

But $m = \mathbb{E} \big[\# \text{ arrivals during service} \big] = \lambda \mathbb{E} S = \rho$

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 000000 RV of FPE

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Application to stability

Queue stable

 \iff

Busy period terminates

 \iff

Branching tree finite

 \Leftrightarrow

Offspring mean $m \leq 1$

But $m = \mathbb{E} \big[\# \text{ arrivals during service} \big] = \lambda \mathbb{E} S = \rho$

Look next at stability problem for LIFO preemptive repeat queues Somewhat different branching connection *Queueing Systems* 2017, with Peter Glynn

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 000000 RV of FPE

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Application to stability

Queue stable

 \iff

Busy period terminates

 \Leftrightarrow

Branching tree finite

 \Leftrightarrow

Offspring mean $m \leq 1$

But $m = \mathbb{E} \big[\# \text{ arrivals during service} \big] = \lambda \mathbb{E} S = \rho$

Look next at stability problem for LIFO preemptive repeat queues Somewhat different branching connection *Queueing Systems* 2017, with Peter Glynn

Two variants:

LIFO-Preemptive-Repeat-Different LIFO-Preemptive-Repeat-Identical

M/G/1 and Branching	LIFO-Preemptive-Repeat	GI/G/1 and MAP/G/1	RV of FPE
	●00	000000	00000000

LIFO-Preemptive-Repeat

Initial service requirement S_0^* ; busy period $B(S_0^*)$ S_k service requirement of kth interrupting customer S_k^* service requirement after kth interruption;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 000000

イロト 不得 トイヨト イヨト

3

RV of FPE

LIFO-Preemptive-Repeat

Initial service requirement S_0^* ; busy period $B(S_0^*)$ S_k service requirement of kth interrupting customer S_k^* service requirement after kth interruption;

Preemptive-Resume

Initial service requirement S_0^* ; busy period $B(S_0^*)$ S_k service requirement of kth interrupting customer S_k^* service requirement after kth interruption;

Preemptive-Repeat-Different: S_0^*, S_1^*, \dots i.i.d. In Repeat-Different, must wait for interarrival time $> S_k^*$ LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 000000 RV of FPE

LIFO-Preemptive-Repeat

Initial service requirement S_0^* ; busy period $B(S_0^*)$ S_k service requirement of kth interrupting customer S_k^* service requirement after kth interruption;

Preemptive-Repeat-Identical: $S_0^* = S_1^* = \cdots$

In Repeat-Identical, must wait for interarrival time $> S_{0}^*$

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 000000 RV of FPE

Stability of Preemptive-Repeat-Identical

Interarrival distr'n $F(t) = \mathbb{P}(T \le t)$ Service time of ancestor S

M/G/1 and Branching	LIFO-Preemptive-Repeat	GI/G/1 and MAP/G/1	RV of FPE
00000 -	000	00000	0000000000
<u> </u>			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Stability of Preemptive-Repeat-Identical

Interarrival distr'n $F(t) = \mathbb{P}(T \le t)$ Service time of ancestor SMust wait for interarrival time > S, otherwise restart.

M/G/1 and Brand	ching	LIFO-Preemptive-Repeat	GI/G/1 and MAP/G/1	RV of FPE
00000		000	000000	0000000000
a				

Stability of Preemptive-Repeat-Identical

Interarrival distr'n $F(t) = \mathbb{P}(T \le t)$ Service time of ancestor SMust wait for interarrival time > S, otherwise restart. D(s) time in system when S = s, D = D(S)Fixed-Point Equation $D(s) = T \land s + \mathbf{1}(T \le s)[D + D(s)]$

M/G/1 and Branching LIFO-Preemptive-Repeat		GI/G/1 and MAP/G/1	RV of FPE
00000	000	000000	0000000000

Stability of Preemptive-Repeat-Identical

Interarrival distr'n $F(t) = \mathbb{P}(T \le t)$ Service time of ancestor SMust wait for interarrival time > S, otherwise restart. D(s) time in system when S = s, D = D(S)Fixed-Point Equation $D(s) = T \land s + 1(T \le s)[D + D(s)]$ Children: all new arrivals preemptying during service $\mathbb{P}(\text{restart}|S = s) = \mathbb{P}(T \le s) = \mathbb{F}(S)$ N: # of children; geometric(F(s)) given S = sOffspring mean $m = \mathbb{E}N = \mathbb{E}\frac{F(S)}{1 - F(S)} = \mathbb{E}\frac{1}{\overline{F}(S)} - 1$

M/G/1 and Branching		LIFO-Preemptive-Repeat	GI/G/1 and MAP/G/1	RV of FPE
00000		000	000000	0000000000
a				

Stability of Preemptive-Repeat-Identical

Interarrival distr'n $F(t) = \mathbb{P}(T \le t)$ Service time of ancestor SMust wait for interarrival time > S, otherwise restart. D(s) time in system when S = s, D = D(S)Fixed-Point Equation $D(s) = T \land s + 1(T \le s)[D + D(s)]$ Children: all new arrivals preemptying during service $\mathbb{P}(\text{restart}|S = s) = \mathbb{P}(T \le s) = F(S)$ N: # of children; geometric(F(s)) given S = sOffspring mean $m = \mathbb{E}N = \mathbb{E}\frac{F(S)}{1 - F(S)} = \mathbb{E}\frac{1}{\overline{F}(S)} - 1$

Theorem

LIFO Preemptive-Repeat-Identical FPE is stable iff $\mathbb{E}\frac{1}{\overline{F}(S)} \leq 2$. With Poisson arrivals, $F(s) = 1 - e^{-\lambda s}$: iff $\mathbb{E}e^{\lambda S} \leq 2$.
M/G/1 and Branching	LIFO-Preemptive-Repeat ○○●	GI/G/1 and MAP/G/1 000000	RV of FPE
M/G/1 Stabilit	у		

・ロト ・四ト ・ヨト ・ヨト ・日・

M/G/1 and Branching	LIFO-Preemptive-Repeat	GI/G/1 and MAP/G/1	RV of FPE
00000	00●	000000	00000000000
M/G/1 Stability			

FIFO or LIFO Pr-Resume: $\rho = \lambda \mathbb{E}S < 1$

M/G/1 and Branching	LIFO-Preemptive-Repeat	GI/G/1 and MAP/G/1	RV of FPE
00000	○○●	000000	
M/G/1 Stability	1		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

FIFO or LIFO Pr-Resume: $ho = \lambda \mathbb{E}S < 1$ FIFO Pr-Repeat-Identical: $\mathbb{E}e^{\lambda S} \leq 2$

M/G/1 and Branching	LIFO-Preemptive-Repeat	GI/G/1 and MAP/G/1	RV of FPE
00000	00●	000000	00000000000
M/G/1 Stability			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

FIFO or LIFO Pr-Resume: $\rho = \lambda \mathbb{E}S < 1$ FIFO Pr-Repeat-Identical: $\mathbb{E}e^{\lambda S} \leq 2$ FIFO Pr-Repeat-Different: $\mathbb{E}e^{-\lambda S} \geq 1/2$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

FIFO or LIFO Pr-Resume: $\rho = \lambda \mathbb{E}S < 1$ FIFO Pr-Repeat-Identical: $\mathbb{E}e^{\lambda S} \leq 2$ FIFO Pr-Repeat-Different: $\mathbb{E}e^{-\lambda S} \geq 1/2$ Proof: GW, N = 0 or 2, $\mathbb{P}(N = 2) = \mathbb{P}(T \leq S)$

M/G/1 and Branching	LIFO-Preemptive-Repeat	GI/G/1 and MAP/G/1	RV of FPE
00000	○○●	000000	00000000000
M/G/1 Stability	1		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

FIFO or LIFO Pr-Resume: $\rho = \lambda \mathbb{E}S < 1$ FIFO Pr-Repeat-Identical: $\mathbb{E}e^{\lambda S} \leq 2$ FIFO Pr-Repeat-Different: $\mathbb{E}e^{-\lambda S} \geq 1/2$

 $\mathbb{E}\mathrm{e}^{\lambda S} \leq 2 \;\; \Rightarrow \;\; \mathbb{E}\mathrm{e}^{-\lambda S} \geq 1/2 \; (ext{Jensen to } 1/x)$

M/G/1	Branching

GI/G/1 and MAP/G/1 ●00000

RV of FPE

GI/G/1 Stability

$$F(t) = \mathbb{P}(T \leq t), \ G(s) = \mathbb{P}(S \leq s)$$

M/G/1	Branching

GI/G/1 and MAP/G/1 •00000

RV of FPE

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

GI/G/1 Stability

$$F(t) = \mathbb{P}(T \le t), \ G(s) = \mathbb{P}(S \le s)$$

FIFO or LIFO Pr-Resume: $\rho = \frac{\mathbb{E}S}{\mathbb{E}T} \le 1$

M/G/1	Branching

GI/G/1 and MAP/G/1 •00000 RV of FPE

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

GI/G/1 Stability

$$F(t) = \mathbb{P}(T \le t), \ G(s) = \mathbb{P}(S \le s)$$

FIFO or LIFO Pr-Resume: $\rho = \frac{\mathbb{E}S}{\mathbb{E}T} \leq 1$

LIFO Pr-Repeat: at repeat, next arrival has distr'n \neq F. F IFR \Rightarrow smaller stability region than for M/G/1 F DFR \Rightarrow larger stability region than for M/G/1

M/G/1	Branching

GI/G/1 and MAP/G/1 •00000 RV of FPE

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

GI/G/1 Stability

$$F(t) = \mathbb{P}(T \le t), \ G(s) = \mathbb{P}(S \le s)$$

FIFO or LIFO Pr-Resume: $\rho = \frac{\mathbb{E}S}{\mathbb{E}T} \leq 1$

LIFO Pr-Repeat: at repeat, next arrival has distr'n $\neq F$. F IFR \Rightarrow smaller stability region than for M/G/1 F DFR \Rightarrow larger stability region than for M/G/1 LIFO Pr-Repeat-Different: $\mathbb{E}U_G(T) \ge 2$ where $U_G = \sum_{0}^{\infty} G^{*n}$

M/G/1	Branching

GI/G/1 and MAP/G/1 •00000 RV of FPE

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

GI/G/1 Stability

$$F(t) = \mathbb{P}(T \leq t), \ G(s) = \mathbb{P}(S \leq s)$$

FIFO or LIFO Pr-Resume: $\rho = \frac{\mathbb{E}S}{\mathbb{E}T} \leq 1$

LIFO Pr-Repeat: at repeat, next arrival has distr'n $\neq F$. F IFR \Rightarrow smaller stability region than for M/G/1 F DFR \Rightarrow larger stability region than for M/G/1 LIFO Pr-Repeat-Different: $\mathbb{E}U_G(T) \ge 2$ where $U_G = \sum_{0}^{\infty} G^{*n}$ **Proof:** # customers at arrival epochs forms random walk

M/G/1	Branching

GI/G/1 and MAP/G/1 •00000 RV of FPE

GI/G/1 Stability

$$F(t) = \mathbb{P}(T \le t), \ G(s) = \mathbb{P}(S \le s)$$

FIFO or LIFO Pr-Resume: $\rho = \frac{\mathbb{E}S}{\mathbb{E}T} \leq 1$

LIFO Pr-Repeat: at repeat, next arrival has distr'n $\neq F$. F IFR \Rightarrow smaller stability region than for M/G/1 F DFR \Rightarrow larger stability region than for M/G/1 LIFO Pr-Repeat-Different: $\mathbb{E}U_G(T) \ge 2$ where $U_G = \sum_{0}^{\infty} G^{*n}$

Example: *G* Erlang(2) with density $se^{-s} \Rightarrow U_G(t) = 3/4 + t/2 + e^{-2t}/4$ Stability: $2\mathbb{E}T + \mathbb{E}e^{-2T} \ge 5$

M/G/1	Branching

GI/G/1 and MAP/G/1 •00000 RV of FPE

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

GI/G/1 Stability

$$F(t) = \mathbb{P}(T \le t), \ G(s) = \mathbb{P}(S \le s)$$

FIFO or LIFO Pr-Resume: $\rho = \frac{\mathbb{E}S}{\mathbb{E}T} \leq 1$

LIFO Pr-Repeat: at repeat, next arrival has distr'n $\neq F$. F IFR \Rightarrow smaller stability region than for M/G/1 F DFR \Rightarrow larger stability region than for M/G/1 LIFO Pr-Repeat-Different: $\mathbb{E}U_G(T) \ge 2$ where $U_G = \sum_{0}^{\infty} G^{*n}$

LIFO Pr-Repeat-Identical: ???

M/G/1	Branching

GI/G/1 and MAP/G/1 •00000 RV of FPE

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

GI/G/1 Stability

$$F(t) = \mathbb{P}(T \le t), \ G(s) = \mathbb{P}(S \le s)$$

FIFO or LIFO Pr-Resume: $\rho = \frac{\mathbb{E}S}{\mathbb{E}T} \leq 1$

LIFO Pr-Repeat: at repeat, next arrival has distr'n $\neq F$. F IFR \Rightarrow smaller stability region than for M/G/1 F DFR \Rightarrow larger stability region than for M/G/1 LIFO Pr-Repeat-Different: $\mathbb{E}U_G(T) \ge 2$ where $U_G = \sum_{0}^{\infty} G^{*n}$

LIFO Pr-Repeat-Identical: ??? Will present approach covering phase-type *T* In fact treat more general MAP arrivals Multitype Galton-Watson but ...

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 ○●○○○○ RV of FPE

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Markovian arrival process:

Markovian arrival process:

Background finite Markov process J(t)Poisson (λ_i) when J(t) = iPossible extra jumps when $i \mapsto j$

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 ○●○○○○ RV of FPE

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Markovian arrival process:

Markovian arrival process:

Background finite Markov process J(t)Poisson (λ_i) when J(t) = iPossible extra jumps when $i \mapsto j$

Includes PH renewal processes Dense

◆□ > ◆□ > ◆三 > ◆三 > 三 - のへぐ

(日)

Compute $\overline{p}_{ij} = \mathbb{P}_i(J_B = j)$ Stability $\iff \sum_{j=1}^d \overline{p}_{ij} = 1$

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Compute $\overline{p}_{ij} = \mathbb{P}_i(J_B = j)$ Stability $\iff \sum_{j=1}^d \overline{p}_{ij} = 1$ Auxiliary quantity: $p_{ij}(s) = \mathbb{P}_i(J_B = j | S = s) = \mathbb{P}_i^s(J_B = j)$

Compute $\overline{p}_{ij} = \mathbb{P}_i(J_B = j) = \int_0^\infty p_{ij}(s) G(\mathrm{d}s)$ Stability $\iff \sum_{j=1}^d \overline{p}_{ij} = 1$ Auxiliary quantity: $p_{ij}(s) = \mathbb{P}_i(J_B = j \mid S = s) = \mathbb{P}_i^s(J_B = j)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1

RV of FPE

Fixed-point equation for **P**

 $\mathbf{\Lambda} = \mathbf{C} + \mathbf{D}, \ \mathbf{Q} = -\mathbf{C}^{-1}\mathbf{D}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1

RV of FPE

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Fixed-point equation for **P**

$$\begin{split} \mathbf{\Lambda} &= \mathbf{C} + \mathbf{D}, \ \mathbf{Q} &= -\mathbf{C}^{-1}\mathbf{D} \\ \Psi(\mathbf{P}) \ &= \ \int_0^\infty \bigl(\mathbf{I} - (\mathbf{I} - \mathrm{e}^{\mathbf{C}s})\mathbf{Q}\mathbf{P}\bigr)^{-1}\mathrm{e}^{\mathbf{C}s}\ G(\mathrm{d}s) \end{split}$$

GI/G/1 and MAP/G/1

RV of FPE

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Fixed-point equation for **P**

$$\begin{split} \mathbf{\Lambda} &= \mathbf{C} + \mathbf{D}, \ \mathbf{Q} &= -\mathbf{C}^{-1}\mathbf{D} \\ \Psi(\mathbf{P}) &= \int_0^\infty \bigl(\mathbf{I} - (\mathbf{I} - \mathrm{e}^{\mathbf{C}s})\mathbf{Q}\mathbf{P}\bigr)^{-1} \mathrm{e}^{\mathbf{C}s} \ \mathcal{G}(\mathrm{d}s) \end{split}$$

Related MA work (preemptive-repeat-different)

Bini, D.A., Latouche, G. and Meini, B. (2003)

Solving nonlinear matrix equations arising in tree-Like stochastic processes.

Linear Algebra and its Applications. 366, 39-64

He, Q.-M and Alfa, A.S. (1998)

The MMAP[K]/PH[K]/1 queues with a last-come-first-served preemptive service discipline

Queueing Systems 29, 269-291.

M/G/1 and Branching	LIFO-Preemptive-Repeat	GI/G/1 and MAP/G/1	RV of FPE
00000	000	0000●0	00000000000
1 1 d	- 1		

Figure: H₂ arrivals, $\theta = 1/8$, $\eta = 14.6$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1

RV of FPE

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Stability region for $E_q/M/1$ and $H_2/M/1$

Comparison: for M/M/1, stability $\iff \mathbb{E}e^{\lambda S} \leq 2 \iff \rho \leq 1/2$

 $\begin{array}{cccc} & \text{M/G/1 and Branching} & \text{LIFO-Preemptive-Repeat} & & \text{GI/G/1 and MAP/G/1} & & \text{RV of FPE} \\ \hline \text{OOOO} & & \text{OOOOOOO} & & & & \\ \hline \text{Stability region for } E_a/M/1 \text{ and } H_2/M/1 \end{array}$

Comparison: for M/M/1, stability $\iff \mathbb{E}e^{\lambda S} \le 2 \iff \rho \le 1/2$ $E_q/M/1$ is DFR so region should be smaller than both M/M/1 and region $\mathbb{E}\frac{1}{\overline{F}(S)} \le 2$ coming from $D(s) = T \land s + \mathbf{1}(T \le s)[D + D(s)]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $\begin{array}{cccc} M/G/1 & \text{and Branching} & LIFO-Preemptive-Repeat & GI/G/1 & \text{and MAP/G/1} & RV of FPE \\ 0000 & 0000 & 00000 & 0000000 \\ \hline \\ Stability region for E_{a}/M/1 & \text{and } H_{2}/M/1 \\ \hline \\ \end{array}$

Comparison: for M/M/1, stability $\iff \mathbb{E}e^{\lambda S} \le 2 \iff \rho \le 1/2$ $E_q/M/1$ is DFR so region should be smaller than both M/M/1 and region $\mathbb{E}\frac{1}{\overline{F}(S)} \le 2$ coming from $D(s) = T \land s + \mathbf{1}(T \le s)[D + D(s)]$ (first ρ value) q = 2 q = 3 q = 4

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

0.44 0.36 0.35 0.32 0.29 0.29

 $\begin{array}{ccc} M/G/1 \text{ and Branching} & LIFO-Preemptive-Repeat} & GI/G/1 \text{ and MAP/G/1} & RV of FPI \\ 0000 & 000 & 0000 \\ \hline \end{array}$

Comparison: for M/M/1, stability $\iff \mathbb{E}e^{\lambda S} \le 2 \iff \rho \le 1/2$ $E_q/M/1$ is DFR so region should be smaller than both M/M/1 and region $\mathbb{E}\frac{1}{\overline{F}(S)} \le 2$ coming from $D(s) = T \land s + \mathbf{1}(T \le s)[D + D(s)]$ (first ρ value) q = 2 q = 3 q = 4

0.44 0.36 0.35 0.32 0.29 0.29

 $E_q/M/1$ is IFR so region should be larger

θ	η_1	η_2	η_{3}	η_{4}	η_5
1/8	0.43 0.58	0.31 0.66	0.21 0.72	0.12 0.78	0.04 0.84
3/8	0.49 0.53	0.43 0.58	0.36 0.62	0.25 0.66	0.11 0.71
5/8	0.50 0.52	0.48 0.54	0.46 0.56	0.43 0.58	0.37 0.60
7/8	0.50 0.50	0.50 0.51	0.50 0.52	0.49 0.53	0.49 0.53

LIFO-Preemptive-Repeat

 ${\rm GI/G/1}$ and ${\rm MAP/G/1}$ 000000

RV of FPE

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Back to FPE for FIFO/LIFO Busy Period R

 $R \stackrel{d}{=} Q + \sum_{i=1}^{N} R_i$

Other examples:

weighted branching

Google PageRank Algorithm $R = Q + \sum_{i=1}^{i} A_i R_i$

LIFO-Preemptive-Repeat

 ${\rm GI/G/1}$ and ${\rm MAP/G/1}$ 000000

RV of FPE

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Back to FPE for FIFO/LIFO Busy Period R

 $R \stackrel{d}{=} Q + \sum_{i=1}^{N} R_i$

Other examples:

weighted branching

Google PageRank Algorithm $R = Q + \sum_{i=1}^{N} A_i R_i$

Jelenkovic & Olvera-Cravioto 2010, Volkovich & Litvak 2010

LIFO-Preemptive-Repeat

 ${\rm GI/G/1}$ and ${\rm MAP/G/1}$ 000000

Back to FPE for FIFO/LIFO Busy Period R

 $R \stackrel{d}{=} Q + \sum_{i=1}^{N} R_i$

Other examples: weighted branching Google PageRank Algorithm $R = Q + \sum_{i=1}^{N} A_i R_i$ Jelenkovic & Olvera-Cravioto 2010, Volkovich & Litvak 2010 Heavy-tails: Q, N regularly varying (RV); $\frac{L_Q(x)}{x^{\alpha(Q)}}, \frac{L_N(x)}{x^{\alpha(N)}}$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

LIFO-Preemptive-Repeat

 ${\rm GI/G/1}$ and ${\rm MAP/G/1}$ 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Back to FPE for FIFO/LIFO Busy Period R

 $R \stackrel{d}{=} Q + \sum_{i=1}^{N} R_i$

Other examples: weighted branching Google PageRank Algorithm $R = Q + \sum_{i=1}^{N} A_i R_i$ Jelenkovic & Olvera-Cravioto 2010, Volkovich & Litvak 2010 Heavy-tails: Q, N regularly varying (RV); $\frac{L_Q(x)}{x^{\alpha(Q)}}, \frac{L_N(x)}{x^{\alpha(N)}}$ Recent work with Sergey Foss, Jagers Festschrift 2018:

LIFO-Preemptive-Repeat

 ${\rm GI/G/1}$ and ${\rm MAP/G/1}$ 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Back to FPE for FIFO/LIFO Busy Period R

 $R \stackrel{d}{=} Q + \sum_{i=1}^{N} R_i$

Other examples: weighted branching Google PageRank Algorithm $R = Q + \sum_{i=1}^{N} A_i R_i$ Jelenkovic & Olvera-Cravioto 2010, Volkovich & Litvak 2010 Heavy-tails: Q, N regularly varying (RV); $\frac{L_Q(x)}{x^{\alpha(Q)}}, \frac{L_N(x)}{x^{\alpha(N)}}$ Recent work with Sergey Foss, Jagers Festschrift 2018: Fill gaps in JOC, VL (tails of same order; dependence; $A_i = 1$)

LIFO-Preemptive-Repeat

 ${\rm GI/G/1}$ and ${\rm MAP/G/1}$ 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Back to FPE for FIFO/LIFO Busy Period R

 $R\stackrel{d}{=} Q + \sum_{i=1}^{N} R_i$

Other examples: weighted branching Google PageRank Algorithm $R = Q + \sum_{i=1}^{N} A_i R_i$ Jelenkovic & Olvera-Cravioto 2010, Volkovich & Litvak 2010 Heavy-tails: Q, N regularly varying (RV); $\frac{L_Q(x)}{x^{\alpha(Q)}}, \frac{L_N(x)}{x^{\alpha(N)}}$ Recent work with Sergey Foss, Jagers Festschrift 2018: Fill gaps in JOC, VL (tails of same order; dependence; $A_i = 1$) Simplify proof

LIFO-Preemptive-Repeat

 ${\rm GI/G/1}$ and ${\rm MAP/G/1}$ 000000

Back to FPE for FIFO/LIFO Busy Period R

 $R\stackrel{d}{=} Q + \sum_{i=1}^{N} R_i$

Other examples: weighted branching Google PageRank Algorithm $R = Q + \sum A_i R_i$ Jelenkovic & Olvera-Cravioto 2010, Volkovich & Litvak 2010 Heavy-tails: Q, N regularly varying (RV); $\frac{L_Q(x)}{\sqrt{\alpha(Q)}}, \frac{L_N(x)}{\sqrt{\alpha(N)}}$ Recent work with Sergey Foss, Jagers Festschrift 2018: Fill gaps in JOC, VL (tails of same order; dependence; $A_i = 1$) Simplify proof Extend to a multivariate fixed-point equation

・ロト・西・・田・・田・・日・

LIFO-Preemptive-Repeat

 ${\rm GI/G/1}$ and ${\rm MAP/G/1}$ 000000

Back to FPE for FIFO/LIFO Busy Period R

 $R \stackrel{d}{=} Q + \sum_{i=1}^{N} R_i$

Other examples: weighted branching Google PageRank Algorithm $R = Q + \sum A_i R_i$ Jelenkovic & Olvera-Cravioto 2010, Volkovich & Litvak 2010 Heavy-tails: Q, N regularly varying (RV); $\frac{L_Q(x)}{\sqrt{\alpha(Q)}}, \frac{L_N(x)}{\sqrt{\alpha(N)}}$ Recent work with Sergey Foss, Jagers Festschrift 2018: Fill gaps in JOC, VL (tails of same order; dependence; $A_i = 1$) Simplify proof Extend to a multivariate fixed-point equation $A_i \equiv 1$ throughout

うしん 同一人用 人用 人口 マ
LIFO-Preemptive-Repeat

 ${\rm GI/G/1}$ and ${\rm MAP/G/1}$ 000000

Back to FPE for FIFO/LIFO Busy Period R

 $R \stackrel{d}{=} Q + \sum_{i=1}^{N} R_i$

Other examples: weighted branching Google PageRank Algorithm $R = Q + \sum A_i R_i$ Jelenkovic & Olvera-Cravioto 2010, Volkovich & Litvak 2010 Heavy-tails: Q, N regularly varying (RV); $\frac{L_Q(x)}{x^{\alpha(Q)}}, \frac{L_N(x)}{x^{\alpha(N)}}$ Recent work with Sergey Foss, Jagers Festschrift 2018: Fill gaps in JOC, VL (tails of same order; dependence; $A_i = 1$) Simplify proof Extend to a multivariate fixed-point equation $A_i \equiv 1$ throughout

de Meyer & Teugels 1980, Zwart 2000: $N \mid Q = q$ Poisson (λq) Light tails: Palmowski & Rolski ▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Existence and uniqueness of solution

$$\begin{array}{ll} R &=& Q + \sum_{i=1}^{N} R_{i} \\ Q, N, R \geq 0, \quad \overline{q} = \mathbb{E}Q < \infty, \quad \overline{n} = \mathbb{E}N < 1, \\ Q, N \text{ possibly dependent} \end{array}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Existence and uniqueness of solution

$$\begin{array}{ll} R &=& Q + \sum_{i=1}^{N} R_{i} \\ Q, N, R \geq 0, \quad \overline{q} = \mathbb{E}Q < \infty, \quad \overline{n} = \mathbb{E}N < 1, \\ Q, N \text{ possibly dependent} \end{array}$$

Existence and uniqueness:

M/G/1 and Branching LIFO-Preemptive-Repeat GI/G/1 a 00000 000 000 00000

 ${\rm GI}/{\rm G}/{\rm 1}$ and ${\rm MAP}/{\rm G}/{\rm 1}$ 000000

RV of FPE

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Existence and uniqueness of solution

$$\begin{array}{ll} R &=& Q + \sum_{i=1}^{N} R_{i} \\ Q, N, R \geq 0, \quad \overline{q} = \mathbb{E}Q < \infty, \quad \overline{n} = \mathbb{E}N < 1, \\ Q, N \text{ possibly dependent} \end{array}$$

Existence and uniqueness:

Galton Watson process with # of offspring distributed as NIndividuals carry i.i.d. weights distributed as Q

LIFO-Preemptive-Repeat 000 GI/G/1 and MAP/G/1 000000 RV of FPE

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Existence and uniqueness of solution

$$\begin{array}{ll} R &=& Q + \sum_{i=1}^{N} R_{i} \\ Q, N, R \geq 0, \quad \overline{q} = \mathbb{E}Q < \infty, \quad \overline{n} = \mathbb{E}N < 1, \\ Q, N \text{ possibly dependent} \end{array}$$

Existence and uniqueness:

Galton Watson process with # of offspring distributed as NIndividuals carry i.i.d. weights distributed as Q(weight, # of offspring) $\stackrel{\mathcal{D}}{=} (Q, N)$

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1

RV of FPE

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Existence and uniqueness of solution

$$R = Q + \sum_{i=1}^{N} R_i$$

$$Q, N, R \ge 0, \quad \overline{q} = \mathbb{E}Q < \infty, \quad \overline{n} = \mathbb{E}N < 1,$$

$$Q, N \text{ possibly dependent}$$

Existence and uniqueness:

Galton Watson process with # of offspring distributed as NIndividuals carry i.i.d. weights distributed as Q(weight, # of offspring) $\stackrel{\mathcal{D}}{=} (Q, N)$ \Rightarrow total weight R in tree is solution Minimal solution ≥ 0 Unique non-negative solution with $\overline{r} = \mathbb{E}R < \infty$; $\overline{r} = \frac{\overline{q}}{1 - \overline{r}}$

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 000000 RV of FPE

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

One Big Jump Heuristics

$$R = Q + \sum_{i=1}^{N} R_i$$

M/G/1 and Branching 00000	LIFO-Preemptive-Repeat 000	GI/G/1 and MAP/G/1 000000	RV of FPE ○○●○○○○○○○○
One Big Jump	Heuristics		
$R = Q + \sum_{i=1}^{N}$	R _i		

In general: tail of $\sum_{i=1}^{N} R_i$ is asymptotically $\geq \overline{n} \mathbb{P}(R > x)$ This is the part of tail of r.h.s.

coming from "normal" values of N and a large value of some R_i .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Upper bound by RW argument; omitted

M/G/1 and Branching 00000	LIFO-Preemptive-Repeat 000	GI/G/1 and MAP/G/1 000000	RV of FPE ००●००००००००
One Big Jump	• Heuristics		
	,		

 $R = Q + \sum_{i=1}^{N} R_i$ In general: tail of $\sum_{i=1}^{N} R_i$ is asymptotically $\geq \overline{n} \mathbb{P}(R > x)$

This is the part of tail of r.h.s.

coming from "normal" values of N and a large value of some R_i . Part from large values of Q or N or both,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

and "normal" values of the R_i is $\mathbb{P}(Q + \overline{r}N > x)$

Upper bound by RW argument; omitted

One Rig lum	n Heuristics		
00000	000	000000	00000
M/G/1 and Branching	LIFO-Preemptive-Repeat	GI/G/1 and MAP/G/1	RV of F

PE <u>20</u>0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

One Big Jump Heuristics

 $R = Q + \sum_{i=1}^{N} R_i$ In general: tail of $\sum_{i=1}^{N} R_i$ is asymptotically $\geq \overline{n} \mathbb{P}(R > x)$ This is the part of tail of r.h.s. coming from "normal" values of N and a large value of some R_i . Part from large values of Q or N or both, and "normal" values of the P is $\mathbb{P}(Q + \overline{n}N \geq x)$

and "normal" values of the R_i is $\mathbb{P}(Q + \overline{r}N > x)$

$$\mathbb{P}(R > x) \geq \mathbb{P}(Q + \overline{r}N > x) + \overline{n}\mathbb{P}(R > x)$$

Upper bound by RW argument; omitted

M/G/1 and Branching	LIFO-Preemptive-Repeat	GI/G/1 and MAP/G/1	RV of FPE
00000		000000	oo●oooooo
One Big Jump H	Heuristics		

$R = Q + \sum_{i=1}^{N} R_i$

In general: tail of $\sum_{i=1}^{N} R_i$ is asymptotically $\geq \overline{n} \mathbb{P}(R > x)$ This is the part of tail of r.h.s.

coming from "normal" values of N and a large value of some R_i . Part from large values of Q or N or both,

and "normal" values of the R_i is $\mathbb{P}(Q + \overline{r}N > x)$

$$\mathbb{P}(R > x) \geq \mathbb{P}(Q + \overline{r}N > x) + \overline{n}\mathbb{P}(R > x)$$

Theorem

If tail of $a_0Q + a_1N$ is RV for all a_0, a_1 , then

$$\mathbb{P}(R > x) \sim \frac{1}{1-\overline{n}}\mathbb{P}(Q + \overline{r}N > x)$$

Upper bound by RW argument; omitted

・ロト・西・・川・・ うくの

M/G/1 and Branching	LIFO-Preemptive-Repeat	GI/G/1 and MAP/G/1	RV of FPE
00000	000	000000	ooc●ooooooo
Multitype Versio	n of FPE		

$$R(i) = Q(i) + \sum_{k=1}^{K} \sum_{j=1}^{N_k(i)} R_j(k), \quad i = 1, ..., K$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

M/G/1 and Branching	LIFO-Preemptive-Repeat	GI/G/1 and MAP/G/1	RV of FPE
00000	000	000000	000●0000000
Multitype Versio	n of FPE		

$$R(i) = Q(i) + \sum_{k=1}^{K} \sum_{j=1}^{N_k(i)} R_j(k), \quad i = 1, ..., K$$

Branching processes:

 $(N_1(i), \ldots, N_K(i))$ offspring vector of type *i* individual In *K*-type Galton-Watson tree,

give *i*-individuals weights $\sim Q(i)$

M/G/1 and Branching	LIFO-Preemptive-Repeat	GI/G/1 and MAP/G/1	RV of FPE
00000	000	000000	000●0000000
Multitype Versio	n of FPE		

$$R(i) = Q(i) + \sum_{k=1}^{K} \sum_{j=1}^{N_k(i)} R_j(k), \quad i = 1, ..., K$$

Branching processes:

 $(N_1(i), \ldots, N_K(i))$ offspring vector of type *i* individual In *K*-type Galton-Watson tree,

give *i*-individuals weights $\sim Q(i)$ (weight,offspring vector) $\sim (Q(i), N_1(i), \dots, N_K(i))$

M/G/1 and Branching	LIFO-Preemptive-Repeat	GI/G/1 and MAP/G/1	RV of FPE
00000	000	000000	000●0000000
Multitype Versio	n of FPE		

$$R(i) = Q(i) + \sum_{k=1}^{K} \sum_{j=1}^{N_k(i)} R_j(k), \quad i = 1, \dots, K$$

Branching processes:

 $ig(N_1(i), \dots, N_K(i)ig)$ offspring vector of type *i* individual In *K*-type Galton-Watson tree, give *i*-individuals weights $\sim Q(i)$ (weight,offspring vector) $\sim (Q(i), N_1(i), \dots, N_K(i))$ $R(i) < \infty$: offspring mean matrix $\mathbf{M} = (m_{ik})$ has spr. < 1 $m_{ik} = \mathbb{E}N_k(i)$ Uniqueness then easy when $\mathbb{E}Q(i) < \infty$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

M/G/1	Branching

$$R(i) = Q(i) + \sum_{k=1}^{K} \sum_{i=1}^{N_k(i)} R_i(k), \quad i = 1, ..., K$$

Condition (loosely):

M/G/1 and Branching	LIFO-Preemptive-Repeat	GI/G/1 and MAP/G/1	RV of FPE
00000	000	000000	

$$R(i) = Q(i) + \sum_{k=1}^{K} \sum_{i=1}^{N_k(i)} R_i(k), \quad i = 1, \dots, K$$

Condition (loosely):

 $\mathbf{V}(i) = (Q(i), N_1(i), \dots, N_K(i)) \text{ MRV} + " \text{similarity in } i"$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

M/G/1 and Branching	LIFO-Preemptive-Repeat	GI/G/1 and MAP/G/1	RV of FPE
00000	000	000000	0000●000000

$$R(i) = Q(i) + \sum_{k=1}^{K} \sum_{i=1}^{N_k(i)} R_i(k), \quad i = 1, \dots, K$$

Condition (loosely):

$$\mathbf{V}(i) = (Q(i), N_1(i), \dots, N_K(i)) \text{ MRV} + \text{"similarity in } i\text{"} \\ \Rightarrow a_0 Q(i) + a_1 N_1(i) + \dots + a_K N_K(i) \text{ RV } \forall a_0, a_1, \dots, a_K$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

M/G/1 and Branching	LIFO-Preemptive-Repeat	GI/G/1 and MAP/G/1	RV of FPE
	000	000000	0000●000

$$R(i) = Q(i) + \sum_{k=1}^{K} \sum_{i=1}^{N_k(i)} R_i(k), \quad i = 1, \dots, K$$

Condition (loosely): $\mathbf{V}(i) = (Q(i), N_1(i), \dots, N_K(i)) \text{ MRV} + \text{"similarity in } i\text{"}$ $\Rightarrow a_0Q(i) + a_1N_1(i) + \dots + a_KN_K(i) \text{ RV } \forall a_0, a_1, \dots, a_K$ almost \iff

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

æ.

$$R(i) = Q(i) + \sum_{k=1}^{K} \sum_{i=1}^{N_k(i)} R_i(k), \quad i = 1, \dots, K$$

Condition (loosely):

$$\mathbf{V}(i) = (Q(i), N_1(i), \dots, N_K(i)) \text{ MRV} + \text{"similarity in } i\text{"}$$

$$\Rightarrow a_0Q(i) + a_1N_1(i) + \dots + a_KN_K(i) \text{ RV } \forall a_0, a_1, \dots, a_K$$
almost \iff
Precisely (polar L_1 coordinates)

$$\|\mathbf{V}(i)\| = Q(i) + N_1(i) + \dots + N_K(i)$$

$$\mathbf{\Theta}(i) = \frac{1}{\|\mathbf{V}(i)\|} \mathbf{V}(i) \in \mathcal{B} = \{\mathbf{v} : \|\mathbf{v} = 1\}$$

$$R(i) = Q(i) + \sum_{k=1}^{K} \sum_{i=1}^{N_k(i)} R_i(k), \quad i = 1, \dots, K$$

Condition (loosely): $\mathbf{V}(i) = (Q(i), N_1(i), \dots, N_K(i))$ MRV + "similarity in i" $\Rightarrow a_0 Q(i) + a_1 N_1(i) + \dots + a_K N_K(i) \text{ RV } \forall a_0, a_1, \dots, a_K$ almost ⇔ Precisely (polar L_1 coordinates) $\|\mathbf{V}(i)\| = Q(i) + N_1(i) + \cdots + N_K(i)$ $\boldsymbol{\Theta}(i) = \frac{1}{\|\boldsymbol{\mathsf{V}}(i)\|} \boldsymbol{\mathsf{V}}(i) \in \mathcal{B} = \{\boldsymbol{\mathsf{v}} : \|\boldsymbol{\mathsf{v}} = 1\}$ Reference RV tail $\overline{F}(x) = \frac{L(x)}{x^{\alpha}}$ $\mathbb{P}(\|\mathbf{V}(i)\| > x) \sim b_i \overline{F}(x)$ where either (1) $b_i = 0$ or (2) $b_i > 0$, $\mathbb{P}(\Theta(i) \in \cdot \mid \|\mathbf{V}(i)\| > x) \rightarrow \mu_i(\cdot)$ for some measure μ_i on \mathcal{B}

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - 釣A(?)

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 000000 RV of FPE

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline of approach

No extension of random walk argument found

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 000000 RV of FPE

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Outline of approach

No extension of random walk argument found Instead induction $K - 1 \mapsto K$; K = 1 done in first part

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline of approach

- No extension of random walk argument found Instead induction $K - 1 \mapsto K$; K = 1 done in first part
- Idea: Foss 1980, 84 reduces problems for K-class queues to K-1 by serving all class K customers first

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Outline of approach

No extension of random walk argument found

Instead induction $K - 1 \mapsto K$; K = 1 done in first part

Idea: Foss 1980, 84 reduces problems for K-class queues to K - 1 by serving all class K customers first

Constants don't need to be identified in each step Enough to get $\mathbb{P}(R(i) > x) \sim d_i \overline{F}(x), i = 1, \dots, K-1$

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 000000 RV of FPE ooooooooooo

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Reducing from 2 types to 1

green: type 1 red: type 2 descendants of the ancestor in direct line blue: the rest of type 2

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 000000 RV of FPE

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Reducing from 2 types to 1

green: type 1 red: type 2 descendants of the ancestor in direct line blue: the rest of type 2 Reduced 1-type tree: same ancestor, children original ones of type 1 + all

Addded weight of ancestor: all weigths of •

LIFO-Preemptive-Repeat

GI/G/1 and MAP/G/1 000000

Reducing from 2 types to 1

green: type 1 red: type 2 descendants of the ancestor in direct line blue: the rest of type 2 Reduced 1-type tree:

same ancestor, children original ones of type 1 + all \blacktriangle Addded weight of ancestor: all weigths of \bullet

$$R(1) \stackrel{\mathcal{D}}{=} \widetilde{Q} + \sum_{i=1}^{N} R_i(1)_{i=1} + e^{i(1)} + e^{$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Reducing from 2 types to 1, continued

$$ext{Got } R(1) \stackrel{\mathcal{D}}{=} \widetilde{Q} + \sum_{i=1}^{\widetilde{N}} R_i(1).$$

Next verify 1-type condition on MRV of $(\widetilde{Q}, \widetilde{N})$

Reducing from 2 types to 1, continued $\tilde{}$

Got
$$R(1) \stackrel{\mathcal{D}}{=} \widetilde{Q} + \sum_{i=1}^{N} R_i(1).$$

Next verify 1-type condition on MRV of $(\widetilde{Q}, \widetilde{N})$; know then

 $\mathbb{P}(R(1) > x) \sim d_1 \overline{F}(x)$, similarly $\mathbb{P}(R(2) > x) \sim d_2 \overline{F}(x)$ (*)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

M/G/1 and Branching LIFO-Preemptive-Repeat GI/G/1 and MAP/G/1 **RV of FPE**

Reducing from 2 types to 1, continued

Got
$$R(1) \stackrel{\mathcal{D}}{=} \widetilde{Q} + \sum_{i=1}^{N} R_i(1).$$

Next verify 1-type condition on MRV of $(\widetilde{Q}, \widetilde{N})$; know then

$$\mathbb{P}(R(1) > x) \sim d_1 \overline{F}(x)$$
, similarly $\mathbb{P}(R(2) > x) \sim d_2 \overline{F}(x)$ (*)

Use "one big jump heuristics" together with $R(i) = Q(i) + \sum_{i=1}^{N_1(i)} R_i(1) + \sum_{i=1}^{N_2(i)} R_2(k), \quad i = 1, 2 \text{ to get}$

$$d_i = a_i + \overline{n}_1(i)d_1 + \overline{n}_2(i)d_2 \quad \text{where} \\ a_i = \lim_{x \to \infty} \frac{\mathbb{P}(Q(i) + \overline{r}_1 N_1(i) + \overline{r}_2 N_2(i) > x)}{\overline{F}(x)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

M/G/1 and Branching	LIFO-Preemptive-Repeat	GI/G/1 and MAP/G/1	RV of FPE
00000	000	000000	0000000000000

Reducing from 2 types to 1, continued

Got
$$R(1) \stackrel{\mathcal{D}}{=} \widetilde{Q} + \sum_{i=1}^{N} R_i(1).$$

Next verify 1-type condition on MRV of $(\widetilde{Q}, \widetilde{N})$; know then

$$\mathbb{P}(R(1) > x) \sim d_1 \overline{F}(x)$$
, similarly $\mathbb{P}(R(2) > x) \sim d_2 \overline{F}(x)$ (*)

Use "one big jump heuristics" together with $R(i) = Q(i) + \sum_{i=1}^{N_1(i)} R_i(1) + \sum_{i=1}^{N_2(i)} R_2(k), \quad i = 1, 2 \text{ to get}$ $d_i = a_i + \overline{n}_1(i)d_1 + \overline{n}_2(i)d_2 \quad \text{where}$

$$a_i = \lim_{x \to \infty} \frac{\mathbb{P}(Q(i) + \overline{r}_1 N_1(i) + \overline{r}_2 N_2(i) > x)}{\overline{F}(x)}$$

Two equations, two unknowns (*) helps to make "one big jump heuristics" rigorous

$$\frac{M/G/1 \text{ and Branching}}{NOOO} = Q(i) + \sum_{k=1}^{K} \sum_{i=1}^{N_k(i)} R_i(k), \quad i = 1, \dots, K$$

Theorem

Assume that spr(M) < 1, $\int_0^\infty \overline{F}(x) \, dx < \infty$ and that MRV holds. Then

$$\mathbb{P}(R(i) > x) \sim d_i \overline{F}(x) \text{ as } x \to \infty, \tag{1}$$

with the d_i given as the unique solution to the set

$$d_i = a_i + \sum_{k=1}^{K} m_{ik} d_k, \qquad i = 1, \ldots, K,$$

of linear equations where

$$a_i = \lim_{x \to \infty} \frac{\mathbb{P}(Q(i) + \overline{r}_1 N_1(i) + \overline{r}_2 N_2(i) > x)}{\overline{F}(x)}$$

and the \overline{r}_i solve

$$\overline{r}_i = \overline{q}_i + \sum_{i=1}^K m_{ik} \overline{r}_k, \qquad i = 1, \dots, K.$$

200

M/G/1 and Branching 00000	LIFO-Preemptive-Repeat 000	GI/G/1 and MAP/G/1 000000	RV of FPE 000000000●0
Lemma			
Let Z_1, Z_2, \ldots $S_k = Z_1 + \cdots$	be i.i.d. and RV with find + Z_k . Then for any $\delta > 0$	ite mean z and define 0	
	$\sup_{y\geq \delta k}\Bigl \frac{\mathbb{P}(S_k>k\overline{z}+y)}{k\overline{F}(y)}-$	$1\Big \rightarrow 0, \ k \rightarrow \infty.$	
Corollary			
For $0<\epsilon<1$	$(\overline{z}, d(F, \epsilon) = \limsup_{x \to \infty} \sup_{k < \epsilon}$	$p_{ex} \frac{\mathbb{P}(S_k > x)}{k\overline{F}(x)} < \infty$	
Lemma			

Let
$$\mathbf{N} = (N_1, ..., N_p)$$
 be MRV with $\mathbb{P}(\|\mathbf{N}\| > x) \sim c_{\mathbf{N}}\overline{F}(x)$ and let $Z_m^{(i)}$
be independent with $Z_i^{(j)} \sim F_j$ for $Z_i^{(j)}$ and $\overline{z}_j = \mathbb{E}Z_m^{(j)}$. Define
 $S_m^{(j)} = Z_1^{(j)} + \dots + Z_m^{(j)}$. If $\overline{F}_j(x) \sim c_j\overline{F}(x)$, then
 $\mathbb{P}(S_{N_1}^{(1)} + \dots + S_{N_p}^{(p)} > x) \sim \mathbb{P}(\overline{z}_1N_1 + \dots + \overline{z}_1N_p > x) + c_0\overline{F}(x)$
where $c_0 = c_1\mathbb{E}N_1 + \dots + c_n\mathbb{E}N_n$

M/G/1 and Branching	LIFO-Preemptive-Repeat	GI/G/1 and MAP/G/1	RV of FPE
			00000000000

Theorem

Let $\mathbf{V} = (\mathbf{T}, N) \in [0, \infty)^p \times \mathbb{N}$ be MRV(F), let $\mathbf{Z}, \mathbf{Z}_1, \mathbf{Z}_2, \ldots \in [0, \infty)^q$ be i.i.d., independent of (\mathbf{T}, N) and MRV(F), and define $\mathbf{S} = \sum_{i=1}^{N} \mathbf{Z}_i$. Then $\mathbf{V}^* = (\mathbf{T}, N, \mathbf{S})$ is MRV(F).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの