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M/G/1 and Branching LIFO-Preemptive-Repeat GI/G/1 and MAP/G/1 RV of FPE

Markov Chain Fixed-Point Equation

Xn Markov chain, state space E
Recursion Xn+1 = ϕ(Xn,Un)
Un uniform(0, 1) representing additional randomization:

U 7→ any high-dimensional r.v. in nice space

Fixed-point equation for stationary distribution π:

X = ϕ(X ,U)

Existence of E -valued solution X equivalent to existence of π
Properties of π/X ?

GI/G/1 waiting time: W
D
= (W + S − T )+

Stable distributions:

X
D
=

1

n1/α
(X1 + · · ·+ Xn)
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M/G/1 Busy Period

Poisson rate λ, service times S1,S2, . . ., workload S1 +

N(t)∑
i=2

Si − t
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Sub-busy periods

S = S1
S2

S3

S6

Fixed-point equation B
d
= S +

N∑
i=1

Bi

Can be reinterpreted in terms of
LIFO (Last in First Out) Preemptive Resume
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LIFO Preemptive-Resume Family Tree
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Application to stability

Queue stable

⇐⇒
Busy period terminates
⇐⇒

Branching tree finite
⇐⇒

Offspring mean m ≤ 1

But m = E
[

# arrivals during service
]

= λES = ρ

Look next at stability problem for LIFO preemptive repeat queues
Somewhat different branching connection
Queueing Systems 2017, with Peter Glynn

Two variants:
LIFO-Preemptive-Repeat-Different
LIFO-Preemptive-Repeat-Identical
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LIFO-Preemptive-Repeat

Initial service requirement S∗0 ; busy period B(S∗0 )
Sk service requirement of kth interrupting customer
S∗k service requirement after kth interruption;

S∗
0

S∗
1 S∗

2

B(S1) B(S2)

In Repeat-Different, must wait for interarrival time > S∗k
In Repeat-Identical, must wait for interarrival time > S∗0
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LIFO-Preemptive-Repeat

Initial service requirement S∗0 ; busy period B(S∗0 )
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Stability of Preemptive-Repeat-Identical

Interarrival distr’n F (t) = P(T ≤ t)
Service time of ancestor S

Must wait for interarrival time > S , otherwise restart.
D(s) time in system when S = s, D = D(S)
Fixed-Point Equation D(s) = T ∧ s + 1(T ≤ s)

[
D + D(s)

]
Children: all new arrivals preemptying during service
P(restart|S = s) = P(T ≤ s)=F(S)
N: # of children; geometric(F (s)) given S = s

Offspring mean m = EN = E
F (S)

1− F (S)
= E

1

F (S)
− 1

Theorem

LIFO Preemptive-Repeat-Identical FPE is stable iff E
1

F (S)
≤ 2.

With Poisson arrivals, F (s) = 1− e−λs : iff EeλS ≤ 2.
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M/G/1 Stability

FIFO or LIFO Pr-Resume: ρ = λES < 1

FIFO Pr-Repeat-Identical: EeλS ≤ 2

FIFO Pr-Repeat-Different: Ee−λS ≥ 1/2
Proof: GW, N = 0 or 2, P(N = 2) = P(T ≤ S)

EeλS ≤ 2 ⇒ Ee−λS ≥ 1/2 (Jensen to 1/x)
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GI/G/1 Stability

F (t) = P(T ≤ t), G (s) = P(S ≤ s)

FIFO or LIFO Pr-Resume: ρ =
ES
ET
≤ 1

LIFO Pr-Repeat: at repeat, next arrival has distr’n 6= F .
F IFR ⇒ smaller stability region than for M/G/1
F DFR ⇒ larger stability region than for M/G/1
LIFO Pr-Repeat-Different: EUG (T ) ≥ 2 where UG =

∑∞
0 G ∗n

Proof: # customers at arrival epochs forms random walk

LIFO Pr-Repeat-Identical: ???
Will present approach covering phase-type T
In fact treat more general MAP arrivals
Multitype Galton-Watson but ...

Example:
G Erlang(2) with density se−s ⇒ UG (t) = 3/4 + t/2 + e−2t/4
Stability: 2ET + Ee−2T ≥ 5
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LIFO Pr-Repeat-Different: EUG (T ) ≥ 2 where UG =
∑∞

0 G ∗n

Proof: # customers at arrival epochs forms random walk

LIFO Pr-Repeat-Identical: ???
Will present approach covering phase-type T
In fact treat more general MAP arrivals
Multitype Galton-Watson but ...

Example:
G Erlang(2) with density se−s ⇒ UG (t) = 3/4 + t/2 + e−2t/4
Stability: 2ET + Ee−2T ≥ 5
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Markovian arrival process:
Background finite Markov process J(t)
Poisson(λi ) when J(t) = i
Possible extra jumps when i 7→ j

Includes PH renewal processes
Dense
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Stability of MAP/G/1 LIFO Preemptive-Repeat-Identical

S = s

... ...
B(S1) B(S2)

T

J ... ...

Compute pij = Pi (JB = j)

=

∫ ∞
0

pij(s)G (ds)

Stability ⇐⇒
∑d

j=1 pij = 1
Auxiliary quantity: pij(s) = Pi (JB = j |S = s) = Ps

i (JB = j)
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Fixed-point equation for P

Λ = C + D, Q = −C−1D

Ψ(P) =

∫ ∞
0

(
I− (I− eCs)QP

)−1
eCs G (ds)

Related MA work (preemptive-repeat-different)

Bini, D.A.,Latouche, G. and Meini, B. (2003)
Solving nonlinear matrix equations arising in tree-Like stochastic
processes.
Linear Algebra and its Applications. 366, 39–64

He, Q.-M and Alfa, A.S. (1998)
The MMAP[K]/PH[K]/1 queues with a last-come-first-served preemptive
service discipline

Queueing Systems 29, 269–291.
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Figure: H2 arrivals, θ = 1/8, η = 14.6
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Stability region for Eq/M/1 and H2/M/1

Comparison: for M/M/1, stability ⇐⇒ EeλS ≤ 2 ⇐⇒ ρ ≤ 1/2

Eq/M/1 is DFR so region should be smaller than both M/M/1 and

region E
1

F (S)
≤ 2 coming from D(s) = T ∧ s + 1(T ≤ s)

[
D + D(s)

]
(first ρ value)

q = 2 q = 3 q = 4

0.44 0.36 0.35 0.32 0.29 0.29

Eq/M/1 is IFR so region should be larger
θ η1 η2 η3 η4 η5

1/8 0.43 0.58 0.31 0.66 0.21 0.72 0.12 0.78 0.04 0.84
3/8 0.49 0.53 0.43 0.58 0.36 0.62 0.25 0.66 0.11 0.71
5/8 0.50 0.52 0.48 0.54 0.46 0.56 0.43 0.58 0.37 0.60
7/8 0.50 0.50 0.50 0.51 0.50 0.52 0.49 0.53 0.49 0.53
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Back to FPE for FIFO/LIFO Busy Period R

R
d
= Q +

N∑
i=1

Ri

Other examples:
weighted branching

Google PageRank Algorithm R = Q +
N∑
i=1

AiRi

Jelenkovic & Olvera-Cravioto 2010, Volkovich & Litvak 2010
Heavy-tails: Q,N regularly varying (RV);

LQ(x)

xα(Q) ,
LN(x)

xα(N)

Recent work with Sergey Foss, Jagers Festschrift 2018:
Fill gaps in JOC, VL (tails of same order; dependence; Ai = 1)
Simplify proof
Extend to a multivariate fixed-point equation
Ai ≡ 1 throughout

de Meyer & Teugels 1980, Zwart 2000: N |Q = q Poisson(λq)
Light tails: Palmowski & Rolski
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M/G/1 and Branching LIFO-Preemptive-Repeat GI/G/1 and MAP/G/1 RV of FPE

Existence and uniqueness of solution

R = Q +
N∑
i=1

Ri

Q,N,R ≥ 0, q = EQ <∞, n = EN < 1,
Q,N possibly dependent

Existence and uniqueness:
Galton Watson process with # of offspring distributed as N
Individuals carry i.i.d. weights distributed as Q

(weight, # of offspring)
D
= (Q,N)

⇒ total weight R in tree is solution
Minimal solution ≥ 0

Unique non-negative solution with r = ER <∞; r =
q

1− n
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q

1− n
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One Big Jump Heuristics

R = Q +
N∑
i=1

Ri

In general: tail of
∑N

1 Ri is asymptotically ≥ n P(R > x)
This is the part of tail of r.h.s.

coming from ”normal” values of N and a large value of some Ri .
Part from large values of Q or N or both,

and ”normal” values of the Ri is P(Q + rN > x)

P(R > x) ≥ P(Q + rN > x) + nP(R > x)

Theorem

If tail of a0Q + a1N is RV for all a0, a1, then

P(R > x) ∼ 1

1− n
P(Q + rN > x)

Upper bound by RW argument; omitted
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Multitype Version of FPE

R(i) = Q(i) +
K∑

k=1

Nk (i)∑
j=1

Rj(k) , i = 1, . . . ,K

Motivating example multiclass queue in Ernst-SA-Hasenbein 2018:
arrival rate λik of class k when class i customer in service

Branching processes:(
N1(i), . . . ,NK (i)

)
offspring vector of type i individual

In K -type Galton-Watson tree,
give i-individuals weights ∼ Q(i)

(weight,offspring vector) ∼
(
Q(i),N1(i), . . . ,NK (i)

)
R(i) <∞: offspring mean matrix M = (mik) has spr. < 1

mik = ENk(i)
Uniqueness then easy when EQ(i) <∞
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R(i) = Q(i) +
K∑

k=1

Nk (i)∑
i=1

Ri (k) , i = 1, . . . ,K

Condition (loosely):

V(i) =
(
Q(i),N1(i), . . . ,NK (i)

)
MRV + ”similarity in i”

⇒ a0Q(i) + a1N1(i) + · · ·+ aKNK (i) RV ∀ a0, a1, . . . , aK
almost ⇐⇒

Precisely (polar L1 coordinates)
‖V(i)‖ = Q(i) + N1(i) + · · ·+ NK (i)

Θ(i) =
1

‖V(i)‖
V(i) ∈ B = {v : ‖v = 1}

Reference RV tail F (x) =
L(x)

xα

P
(
‖V(i)‖ > x

)
∼ biF (x) where either

(1) bi = 0 or
(2) bi > 0, P

(
Θ(i) ∈ ·

∣∣ ‖V(i)‖ > x
)
→ µi (·)

for some measure µi on B
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Outline of approach

No extension of random walk argument found

Instead induction K − 1 7→ K ; K = 1 done in first part

Idea: Foss 1980, 84 reduces problems for K -class queues to K − 1
by serving all class K customers first

Constants don’t need to be identified in each step
Enough to get P(R(i) > x) ∼ diF (x), i = 1, . . . ,K − 1
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Reducing from 2 types to 1

•

•
•
•

•
•

•

•

•
•

N

•

N

•

•
•

•

•

N

•

•

•

•

•

green: type 1
red: type 2 descendants of the ancestor in direct line
blue: the rest of type 2

Reduced 1-type tree:
same ancestor, children original ones of type 1 + all N
Addded weight of ancestor: all weigths of •

R(1)
D
= Q̃ +

Ñ∑
i=1

Ri (1)
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Reducing from 2 types to 1, continued

Got R(1)
D
= Q̃ +

Ñ∑
i=1

Ri (1).

Next verify 1-type condition on MRV of (Q̃, Ñ)

; know then

P(R(1) > x) ∼ d1F (x), similarly P(R(2) > x) ∼ d2F (x) (∗)

Use ”one big jump heuristics” together with

R(i) = Q(i) +

N1(i)∑
i=1

Ri (1) +

N2(i)∑
i=1

R2(k) , i = 1, 2 to get

di = ai + n1(i)d1 + n2(i)d2 where

ai = lim
x→∞

P
(
Q(i) + r1N1(i) + r2N2(i) > x

)
F (x)

Two equations, two unknowns
(*) helps to make ”one big jump heuristics” rigorous
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R(i) = Q(i) +
K∑

k=1

Nk (i)∑
i=1

Ri (k) , i = 1, . . . ,K

Theorem

Assume that spr(M) < 1,
∫∞
0

F (x)dx <∞ and that MRV holds. Then

P(R(i) > x) ∼ diF (x) as x →∞, (1)

with the di given as the unique solution to the set

di = ai +
K∑

k=1

mikdk , i = 1, . . . ,K ,

of linear equations where

ai = lim
x→∞

P
(
Q(i) + r1N1(i) + r2N2(i) > x

)
F (x)

and the r i solve

r i = qi +
K∑

k=1

mik rk , i = 1, . . . ,K .
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Lemma

Let Z1,Z2, . . . be i.i.d. and RV with finite mean z and define
Sk = Z1 + · · ·+ Zk . Then for any δ > 0

sup
y≥δk

∣∣∣P(Sk > kz + y)

kF (y)
− 1
∣∣∣ → 0, k →∞.

Corollary

For 0 < ε < 1/z, d(F , ε) = lim sup
x→∞

sup
k<εx

P(Sk > x)

kF (x)
< ∞

Lemma

Let N = (N1, . . . ,Np) be MRV with P
(
‖N‖ > x

)
∼ cNF (x) and let Z

(i)
m

be independent with Z
(j)
i ∼ Fj for Z

(j)
i and z j = EZ (j)

m . Define

S
(j)
m = Z

(j)
1 + · · ·+ Z

(j)
m . If F j(x) ∼ cjF (x), then

P
(
S
(1)
N1

+ · · ·+ S
(p)
Np

> x
)
∼ P(z1N1 + · · ·+ z1Np > x) + c0F (x)

where c0 = c1EN1 + · · ·+ cpENp .
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Theorem

Let V = (T,N) ∈ [0,∞)p × N be MRV(F ), let
Z,Z1,Z2, . . .∈ [0,∞)q be i.i.d., independent of (T,N) and
MRV(F ), and define S =

∑N
1 Zi . Then V∗ = (T,N,S) is

MRV(F ).
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