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Markov Chain Fixed-Point Equation

X, Markov chain, state space E

Recursion X411 = o(Xp, Un)

Uy, uniform(0, 1) representing additional randomization:
U ~— any high-dimensional r.v. in nice space

Fixed-point equation for stationary distribution 7:
X = p(X,U)

Existence of E-valued solution X equivalent to existence of
Properties of /X 7

GI/G/1 waiting time: W 2 (W + S — T)*

Stable distributions:

1
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FIFO (First in First Out)
Children: arrivals during service
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Sub-busy periods

N
Fixed-point equation B 25+ Z B;

i=1
Can be reinterpreted in terms of
LIFO (Last in First Out) Preemptive Resume
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But m = E[ # arrivals during service| = AES = p

Look next at stability problem for LIFO preemptive repeat queues
Somewhat different branching connection
Queueing Systems 2017, with Peter Glynn

Two variants:
LIFO-Preemptive-Repeat-Different
LIFO-Preemptive-Repeat-ldentical
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55

Preemptive-Repeat-Different: Sg, 57, ...

i.i.d.
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LIFO-Preemptive-Repeat

Initial service requirement S;; busy period B(Sg)
Sk service requirement of kth interrupting customer
S; service requirement after kth interruption;

St S5
B(S1) B(S2)

Preemptive-Repeat-ldentical: S5 = S =---

In Repeat-ldentical, must wait for interarrival time > S;
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Stability of Preemptive-Repeat-ldentical

Interarrival distr'n F(t) =P(T <'t)
Service time of ancestor S
Must wait for interarrival time > S, otherwise restart.
D(s) time in system when S =5, D = D(S)
Fixed-Point Equation D(s) = T As+1(T <s)[D+ D(s)]
Children: all new arrivals preemptying during service
P(restart|S = s) =P(T < s)=F(S)
N: # of children; geometric(F(s)) given S ='s
F(S) 1

OfFSp”ng mean m = EN = Em = Eﬁ—l

1
LIFO Preemptive-Repeat-Identical FPE is stable iff Eﬁ <2.
With Poisson arrivals, F(s) =1 —e™?S: iff Ee*> < 2.
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FIFO Pr-Repeat-Different: Fe™*° > 1/2
Proof: GW, N=0o0r 2, P(N =2)=P(T <5)
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M/G/1 Stability

FIFO or LIFO Pr-Resume: p = AES < 1
FIFO Pr-Repeat-ldentical: Ee*® < 2
FIFO Pr-Repeat-Different: Fe™*° > 1/2

Ee?® <2 = Ee ™ >1/2 (Jensen to 1/x)
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F(t)=P(T <t), G(s)=P(S <5s)
ES
FIFO or LIFO Pr-Resume: p = ET <1
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F IFR = smaller stability region than for M/G/1
F DFR = larger stability region than for M/G/1
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Example:
G Erlang(2) with density se™* = Ug(t) = 3/4+t/2+e72t/4
Stability: 2ET +Ee 27 > 5
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GI/G/1 Stability

F(t)=P(T <t), G(s)=P(S <5s)
ES
FIFO or LIFO Pr-Resume: p = ET <1
LIFO Pr-Repeat: at repeat, next arrival has distr'n # F.
F IFR = smaller stability region than for M/G/1
F DFR = larger stability region than for M/G/1
LIFO Pr-Repeat-Different: EUg(T) > 2 where Ug = ¢° G*"

LIFO Pr-Repeat-Identical: 777

Will present approach covering phase-type T
In fact treat more general MAP arrivals
Multitype Galton-Watson but ...
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Markovian arrival process:

Markovian arrival process:

Background finite Markov process J(t)
Poisson(A;) when J(t) =i

Possible extra jumps when j — j

Includes PH renewal processes
Dense
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Stability of MAP/G/1 LIFO Preemptive-Repeat-Identical

Compute p; = Pi(Jp =j) = / pij(s) G(ds)
Stability <= Z}j:l pij=1 °
Auxiliary quantity: pji(s) =Pi(Jg =j|S =) = P;(Jg =)
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Fixed-point equation for P

A=C+D,Q=-C'D
V(P) = /Ooo(l — (1—¢®)QP) '€ G(ds)

Related MA work (preemptive-repeat-different)

Bini, D.A.,Latouche, G. and Meini, B. (2003)

Solving nonlinear matrix equations arising in tree-Like stochastic
processes.

Linear Algebra and its Applications. 366, 39-64

He, Q.-M and Alfa, A.S. (1998)

The MMAP[K]/PH[K]/1 queues with a last-come-first-served preemptive
service discipline

Queueing Systems 29, 269-291.
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H, arrivals, § =1/8, n = 14.6
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Stability region for E;/M/1 and Hy/M/1

Comparison: for M/M/1, stability «= Ee’® <2 <= p<1/2
E;/M/1 is DFR so region should be smaller than both M/M/1 and
region ]EF(IS) < 2 coming from D(s) = T As+1(T <s)[D+ D(s)]
(first p value)
q=2 qg=3 g=4
0.440.36 0.350.32 0.29 0.29

Eq/M/1 is IFR so region should be larger
g ‘ m 2 3 N4 5
1/8 1 043058 0.310.66 0.210.72 0.120.78 0.04 0.84
3/8 1049053 043058 0.360.62 0.250.66 0.110.71
5/8 | 0.50 0.52 0.480.54 0.460.56 0.430.58 0.37 0.60
7/8 | 0.50 0.50 0.50 0.51 0.50 0.52 0.49 0.53 0.49 0.53
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N
RgQ—&—ZRi
i—1

Other examples:
weighted branching

N
Google PageRank Algorithm R = Q + ZA,-R,-

i=1
Jelenkovic & Olvera-Cravioto 2010, Volkovich & Litvak 2010
. . L Ly(x
Heavy-tails: Q, N regularly varying (RV); Xg((g)), Xﬁg,\,))
Recent work with Sergey Foss, Jagers Festschrift 2018:
Fill gaps in JOC, VL (tails of same order; dependence; A; = 1)

Simplify proof




RV of FPE
©0000000000

Back to FPE for FIFO/LIFO Busy Period R

N
RgQ—&—ZRi
i—1

Other examples:
weighted branching

N
Google PageRank Algorithm R = Q + ZA,-R,-

Jelenkovic & Olvera-Cravioto 2010, VoIkovichI 8; Litvak 2010
Heavy-tails: Q, N regularly varying (RV); ig((g)), iﬁg;))
Recent work with Sergey Foss, Jagers Festschrift 2018:
Fill gaps in JOC, VL (tails of same order; dependence; A; = 1)
Simplify proof
Extend to a multivariate fixed-point equation




RV of FPE
©0000000000

Back to FPE for FIFO/LIFO Busy Period R

N
RgQ—&—ZRi
i—1

Other examples:
weighted branching

N
Google PageRank Algorithm R = Q + ZA,-R,-

Jelenkovic & Olvera-Cravioto 2010, VoIkovichI 8; Litvak 2010
Heavy-tails: Q, N regularly varying (RV); ig((g)), iﬁg;))
Recent work with Sergey Foss, Jagers Festschrift 2018:
Fill gaps in JOC, VL (tails of same order; dependence; A; = 1)
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Extend to a multivariate fixed-point equation
A; = 1 throughout
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Back to FPE for FIFO/LIFO Busy Period R

N
RgQ—&—ZRi
i—1

Other examples:
weighted branching

N
Google PageRank Algorithm R = Q + ZA,-R,-

Jelenkovic & Olvera-Cravioto 2010, VoIkovichI 8; Litvak 2010
Heavy-tails: Q, N regularly varying (RV); ig((g)), iﬁg;))
Recent work with Sergey Foss, Jagers Festschrift 2018:
Fill gaps in JOC, VL (tails of same order; dependence; A; = 1)
Simplify proof
Extend to a multivariate fixed-point equation
A; = 1 throughout

de Meyer & Teugels 1980, Zwart 2000: N | Q = g Poisson(\q)
Light tails: Palmowski & Rolski
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Existence and uniqueness of solution

N
R=Q+) R

i=1
QN,R>0, g=EQ<oo,n=EN<1,
Q, N possibly dependent

Existence and uniqueness:

Galton Watson process with # of offspring distributed as N

Individuals carry i.i.d. weights distributed as Q

(weight, # of offspring) 2 (Q,N)

= total weight R in tree is solution

Minimal solution > 0 B
g

1—-7n

Unique non-negative solution with 7 = ER < c0; 7 =
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One Big Jump Heuristics

N
R = Q+ Z R;i
i=1
In general: tail of Zf’ R; is asymptotically > aP(R > x)

This is the part of tail of r.h.s.
coming from "normal” values of N and a large value of some R;.

Upper bound by RW argument: omitted
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One Big Jump Heuristics

N
R = Q—i—ZRi
i—1

In general: tail of Ziv R; is asymptotically > AP(R > x)
This is the part of tail of r.h.s.
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Upper bound by RW argument: omitted
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One Big Jump Heuristics

N
R = Q—i—ZRi
i—1

In general: tail of Ziv R; is asymptotically > AP(R > x)
This is the part of tail of r.h.s.

coming from "normal” values of N and a large value of some R;.
Part from large values of Q or N or both,

and "normal” values of the R; is P(Q + 7N > x)

P(R>x) > P(Q+TN > x)+7nP(R > x)

If tail of agQ + a1 N is RV for all ag, a1, then

P(R>x) ~ Tlﬁ]P’(QJrFN > x)

Upper bound by RW argument: omitted
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iRj i=1,....K

1 j=1

K Ng(7)
R() = Qi)+
k=

Motivating example multiclass queue in Ernst-SA-Hasenbein 2018:
arrival rate \jx of class k when class i customer in service
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(Nl(i), ce NK(i)) offspring vector of type i individual
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Multitype Version of FPE

K Nk(i)
R(i) = )+
k=

SRk, i=1,....K
1 j=1

Motivating example multiclass queue in Ernst-SA-Hasenbein 2018:
arrival rate \jx of class k when class i customer in service

Branching processes:
(Nl(i), ce NK(i)) offspring vector of type i individual
In K-type Galton-Watson tree,
give i-individuals weights ~ Q(/)
(weight,offspring vector) ~ (Q(i), Ni(i), ..., Nk(i))

R(i) < oo: offspring mean matrix M = (mjx) has spr. <1
mi, — ENk(I)
Uniqueness then easy when EQ(/) < oo
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R(I) = Q)+ DD Ri(k), i=1,....K

k=1 i=1
Condition (loosely):
V(i) = (Q(i), N1(i), ..., Nk(i)) MRV + "similarity in /"
= aoQ(I) + 31N1(i) + -+ aKNK(i) RV Vag,ai,...,ax



K Ni(i)
R() = Q) +D_ D Ri(k), i=1,....K
k=1 i=1
Condition (loosely):
V(i) = (Q(i), N1(i), ..., Nk(i)) MRV + "similarity in /"
= aoQ(I) + 31N1(i) + -+ aKNK(i) RV Vag,ai,...,ax
almost <«<—
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K Ni(i)
R(i )+ > > Ri(k 1,...,K
k=1 i=1
Condltlon (loosely):
= (Q(i),N ., Nk(i)) MRV + "similarity in /"
:> () 31N1() -+3KNK(i) RV Vag,ai,...,ax
aImost —=

Precisely (polar Ly coordinates)
HV(')H = Q(i)+ Ny(i) + - -+ Nk (i)
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K Ni(i)
R(i )+ > > Ri(k 1,...,K
k=1 i=1
Condltlon (loosely):
= (Q(i),N ., Nk(i)) MRV + "similarity in /"
:> () 31N1() -+3KNK(i) RV Vag,ai,...,ax
aImost —=

Precisely (polar Ly coordinates)
HV(')H = Q(i)+ Ny(i) + - -+ Nk (i)

1 ] ={v: |v=

Reference RV tail F(x) = @
Xa
P(|IV(i)|| > x) ~ biF(x) where either
(1) b =0or
(2) bi >0, P(O(i) € - | V()| > x) — pil")
for some measure u; on B
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No extension of random walk argument found
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by serving all class K customers first
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Outline of approach

No extension of random walk argument found
Instead induction K — 1+ K; K =1 done in first part

Idea: Foss 1980, 84 reduces problems for K-class queues to K — 1
by serving all class K customers first

Constants don't need to be identified in each step
Enough to get P(R(i) > x) ~ d;F(x), i=1,...,K -1
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green: type 1
red: type 2 descendants of the ancestor in direct line
blue: the rest of type 2
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Reducing from 2 types to 1

green: type 1

red: type 2 descendants of the ancestor in direct line
blue: the rest of type 2
Reduced 1-type tree:

same ancestor, children original ones of type 1 + all a
Addded weight of ancestor: all weigths of e

N
R(1) 2 @+ Ri(1)



RV of FPE
00000000000
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I
Got R(1) 2 Q+ > Ri(1).
i=1

Next verify 1-type condition on MRV of (C~), N)
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Reducing from 2 types to 1, continued

N
Got R(1) 2 Q+ > Ri(1)
Next verify 1-type condition on MRV of (C~), N) ; know then
P(R(1) > x) ~ diF(x), similarly P(R(2) > x) ~ daF(x) (%)

Use "one big jump heuristics” together with
Ny (i) No (1)

R(i) = Q()+ > Ri(1)+ Z Ro(k), i=1,2to get
i=1

d = a; —i—ﬁl(')dl —|—ﬁ2(')d2 where

2 — Iim P(Q(i) 4+ F1N1(i) + P2 N (i) > x)
! X—$00 F(X)
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Reducing from 2 types to 1, continued

N
Got R(1) 2 Q+ > Ri(1)
Next verify 1-type condition on MRV of (C~), N) ; know then
P(R(1) > x) ~ diF(x), similarly P(R(2) > x) ~ daF(x) (%)

Use "one bigjump heuristics” together with
1(7) Na(i)

R(i) = +ZR(1 +ZR2 , i=1,2to get

d = a; —i—ﬁl(')dl —|—ﬁ2(')d2 where

2 — Iim P(Q(i) 4+ F1N1(i) + P2 N (i) > x)
! X—$00 F(X)

Two equations, two unknowns
(*) helps to make "one big jump heuristics” rigorous



M/G/1 and Branching LIFO-Preemptive-Repeat G and RV of FPE

00000000800

Assume that spr(M) < 1, [~ F(x)dx < oo and that MRV holds. Then

P(R(i) > x) ~ d;F(x) as x — oo, (1)

with the d; given as the unique solution to the set

K
d;:a;+Zm;kdk, i=1,...,K,
k=1

of linear equations where

o i PO TN () + oMo (i) > x)
! X—»00 F(X)

and the r; solve

K
o= gt m, =LK,



M/G/1 and Branching LIFO-Preemptive-Repeat G and MAP/G RV of FPE

00000000080

Lemma

Let Zy,2,, ... be i.i.d. and RV with finite mean Z and define
Sk =21+ -+ Zx. Then for any § > 0

’IP(S;( > kz +y)
sup | ————=~
y>ok kF(y)

Corollary

P(S
For0 <e<1/z d(F,e) = limsup sup M <
X—00 k<ex kF(X)

—1} 0, k- oco.

| A

Lemma

Let N = (Ni, ..., N,) be MRV with P(||N|| > x) ~ cnF(x) and let Z{))
be independent with Z(’) ~ F; for ZU) and z; = —EZY). Define
9 = ZU) 4 29, IF Fj(x) ~ ¢;F(x), then

P(s$) +---+S,(\,’:’ >x) ~ P@N + -+ 2N, > x) + aoF(x)

where cn — ~IFN: - ...+ ~ RN
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Let V = (T, N) € [0,00)” x N be MRV(F), let
Z,2,,Z,,...€[0,00)9 be i.i.d., independent of (T, N) and
MRV(F), and define S = Ef’ Z;. ThenV* =(T,N,S) is
MRV(F).
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