On some fixed-point problems connecting branching and queueing

Søren Asmussen
Aarhus University
http://home.math.au.dk/asmus

MAM10
Hobart, February 13, 2017

Markov Chain Fixed-Point Equation

X_{n} Markov chain, state space E
Recursion $X_{n+1}=\varphi\left(X_{n}, U_{n}\right)$
U_{n} uniform $(0,1)$ representing additional randomization:

Markov Chain Fixed-Point Equation

X_{n} Markov chain, state space E
Recursion $X_{n+1}=\varphi\left(X_{n}, U_{n}\right)$
U_{n} uniform $(0,1)$ representing additional randomization:
$U \mapsto$ any high-dimensional r.v. in nice space

Markov Chain Fixed-Point Equation

X_{n} Markov chain, state space E
Recursion $X_{n+1}=\varphi\left(X_{n}, U_{n}\right)$
U_{n} uniform $(0,1)$ representing additional randomization:
$U \mapsto$ any high-dimensional r.v. in nice space
Fixed-point equation for stationary distribution π :

$$
X=\varphi(X, U)
$$

Markov Chain Fixed-Point Equation

X_{n} Markov chain, state space E
Recursion $X_{n+1}=\varphi\left(X_{n}, U_{n}\right)$
U_{n} uniform $(0,1)$ representing additional randomization:
$U \mapsto$ any high-dimensional r.v. in nice space
Fixed-point equation for stationary distribution π :

$$
X=\varphi(X, U)
$$

Existence of E-valued solution X equivalent to existence of π

Markov Chain Fixed-Point Equation

X_{n} Markov chain, state space E
Recursion $X_{n+1}=\varphi\left(X_{n}, U_{n}\right)$
U_{n} uniform $(0,1)$ representing additional randomization:
$U \mapsto$ any high-dimensional r.v. in nice space
Fixed-point equation for stationary distribution π :

$$
X=\varphi(X, U)
$$

Existence of E-valued solution X equivalent to existence of π Properties of π / X ?

Markov Chain Fixed-Point Equation

X_{n} Markov chain, state space E
Recursion $X_{n+1}=\varphi\left(X_{n}, U_{n}\right)$
U_{n} uniform $(0,1)$ representing additional randomization:
$U \mapsto$ any high-dimensional r.v. in nice space
Fixed-point equation for stationary distribution π :

$$
X=\varphi(X, U)
$$

Existence of E-valued solution X equivalent to existence of π Properties of π / X ?

GI/G/1 waiting time: $W \stackrel{\mathcal{D}}{=}(W+S-T)^{+}$

Markov Chain Fixed-Point Equation

X_{n} Markov chain, state space E
Recursion $X_{n+1}=\varphi\left(X_{n}, U_{n}\right)$
U_{n} uniform $(0,1)$ representing additional randomization:
$U \mapsto$ any high-dimensional r.v. in nice space
Fixed-point equation for stationary distribution π :

$$
X=\varphi(X, U)
$$

Existence of E-valued solution X equivalent to existence of π Properties of π / X ?

GI/G/1 waiting time: $W \stackrel{\mathcal{D}}{=}(W+S-T)^{+}$
Stable distributions:

$$
X \stackrel{\mathcal{D}}{=} \frac{1}{n^{1 / \alpha}}\left(X_{1}+\cdots+X_{n}\right)
$$

M/G/1 Busy Period

M/G/1 Busy Period

M/G/1 Busy Period

FIFO (First in First Out)
Children: arrivals during service

Sub-busy periods

Sub-busy periods

Sub-busy periods

Sub-busy periods

Fixed-point equation $B \stackrel{d}{=} S+\sum_{i=1}^{N} B_{i}$

Sub-busy periods

Fixed-point equation $B \stackrel{d}{=} S+\sum_{i=1}^{N} B_{i}$
Can be reinterpreted in terms of LIFO (Last in First Out) Preemptive Resume

LIFO Preemptive-Resume Family Tree

Application to stability

Queue stable

Application to stability

Queue stable

Busy period terminates

Application to stability

Queue stable

Busy period terminates
\Longleftrightarrow
Branching tree finite

Application to stability

Queue stable

Busy period terminates
\Longleftrightarrow
Branching tree finite

Offspring mean $m \leq 1$

Application to stability

Queue stable

Busy period terminates
\Longleftrightarrow
Branching tree finite
\Longleftrightarrow
Offspring mean $m \leq 1$
But $m=\mathbb{E}[\#$ arrivals during service $]=\lambda \mathbb{E} S=\rho$

Application to stability

Queue stable

Busy period terminates
\Longleftrightarrow
Branching tree finite
\Longleftrightarrow
Offspring mean $m \leq 1$
But $m=\mathbb{E}[\#$ arrivals during service $]=\lambda \mathbb{E} S=\rho$
Look next at stability problem for LIFO preemptive repeat queues Somewhat different branching connection Queueing Systems 2017, with Peter Glynn

Application to stability

Queue stable

Busy period terminates
\Longleftrightarrow
Branching tree finite
\Longleftrightarrow
Offspring mean $m \leq 1$
But $m=\mathbb{E}[\#$ arrivals during service $]=\lambda \mathbb{E} S=\rho$
Look next at stability problem for LIFO preemptive repeat queues Somewhat different branching connection Queueing Systems 2017, with Peter Glynn

Two variants:
LIFO-Preemptive-Repeat-Different LIFO-Preemptive-Repeat-Identical

LIFO-Preemptive-Repeat

Initial service requirement S_{0}^{*}; busy period $B\left(S_{0}^{*}\right)$
S_{k} service requirement of k th interrupting customer S_{k}^{*} service requirement after k th interruption;

LIFO-Preemptive-Repeat

Initial service requirement S_{0}^{*}; busy period $B\left(S_{0}^{*}\right)$ S_{k} service requirement of k th interrupting customer S_{k}^{*} service requirement after k th interruption;

Preemptive-Resume

LIFO-Preemptive-Repeat

Initial service requirement S_{0}^{*}; busy period $B\left(S_{0}^{*}\right)$
S_{k} service requirement of k th interrupting customer
S_{k}^{*} service requirement after k th interruption;

Preemptive-Repeat-Different: $S_{0}^{*}, S_{1}^{*}, \ldots$ i.i.d.
In Repeat-Different, must wait for interarrival time $>S_{k}^{*}$

LIFO-Preemptive-Repeat

Initial service requirement S_{0}^{*}; busy period $B\left(S_{0}^{*}\right)$
S_{k} service requirement of k th interrupting customer
S_{k}^{*} service requirement after k th interruption;

Preemptive-Repeat-Identical: $S_{0}^{*}=S_{1}^{*}=\cdots$
In Repeat-Identical, must wait for interarrival time $>S_{0}^{*}$

Stability of Preemptive-Repeat-Identical

Interarrival distr'n $F(t)=\mathbb{P}(T \leq t)$
Service time of ancestor S

Stability of Preemptive-Repeat-Identical

Interarrival distr'n $F(t)=\mathbb{P}(T \leq t)$
Service time of ancestor S
Must wait for interarrival time $>S$, otherwise restart.

Stability of Preemptive-Repeat-Identical

Interarrival distr'n $F(t)=\mathbb{P}(T \leq t)$
Service time of ancestor S
Must wait for interarrival time $>S$, otherwise restart.
$D(s)$ time in system when $S=s, D=D(S)$
Fixed-Point Equation $D(s)=T \wedge s+\mathbf{1}(T \leq s)[D+D(s)]$

Stability of Preemptive-Repeat-Identical

Interarrival distr'n $F(t)=\mathbb{P}(T \leq t)$
Service time of ancestor S
Must wait for interarrival time $>S$, otherwise restart.
$D(s)$ time in system when $S=s, D=D(S)$
Fixed-Point Equation $D(s)=T \wedge s+\mathbf{1}(T \leq s)[D+D(s)]$
Children: all new arrivals preemptying during service
$\mathbb{P}($ restart $\mid S=s)=\mathbb{P}(T \leq s)=\mathrm{F}(\mathrm{S})$
N : \# of children; geometric $(F(s))$ given $S=s$
Offspring mean $m=\mathbb{E} N=\mathbb{E} \frac{F(S)}{1-F(S)}=\mathbb{E} \frac{1}{\bar{F}(S)}-1$

Stability of Preemptive-Repeat-Identical

Interarrival distr'n $F(t)=\mathbb{P}(T \leq t)$
Service time of ancestor S
Must wait for interarrival time $>S$, otherwise restart.
$D(s)$ time in system when $S=s, D=D(S)$
Fixed-Point Equation $D(s)=T \wedge s+\mathbf{1}(T \leq s)[D+D(s)]$
Children: all new arrivals preemptying during service
$\mathbb{P}($ restart $\mid S=s)=\mathbb{P}(T \leq s)=\mathrm{F}(\mathrm{S})$
N : \# of children; geometric $(F(s))$ given $S=s$
Offspring mean $m=\mathbb{E} N=\mathbb{E} \frac{F(S)}{1-F(S)}=\mathbb{E} \frac{1}{\bar{F}(S)}-1$

Theorem

LIFO Preemptive-Repeat-Identical FPE is stable iff $\mathbb{E} \frac{1}{\bar{F}(S)} \leq 2$. With Poisson arrivals, $F(s)=1-\mathrm{e}^{-\lambda s}$: iff $\mathbb{E} \mathrm{e}^{\lambda S} \leq 2$.

M/G/1 Stability

M/G/1 Stability

FIFO or LIFO Pr-Resume: $\rho=\lambda \mathbb{E} S<1$

M/G/1 Stability

FIFO or LIFO Pr-Resume: $\rho=\lambda \mathbb{E} S<1$
FIFO Pr-Repeat-Identical: $\mathbb{E} \mathrm{e}^{\lambda S} \leq 2$

M/G/1 Stability

FIFO or LIFO Pr-Resume: $\rho=\lambda \mathbb{E} S<1$
FIFO Pr-Repeat-Identical: $\mathbb{E} e^{\lambda S} \leq 2$
FIFO Pr-Repeat-Different: $\mathbb{E} e^{-\lambda S} \geq 1 / 2$

M/G/1 Stability

FIFO or LIFO Pr-Resume: $\rho=\lambda \mathbb{E} S<1$
FIFO Pr-Repeat-Identical: $\mathbb{E} \mathrm{e}^{\lambda S} \leq 2$
FIFO Pr-Repeat-Different: $\mathbb{E} \mathrm{e}^{-\lambda S} \geq 1 / 2$

$$
\text { Proof: } \mathrm{GW}, N=0 \text { or } 2, \mathbb{P}(N=2)=\mathbb{P}(T \leq S)
$$

M/G/1 Stability

FIFO or LIFO Pr-Resume: $\rho=\lambda \mathbb{E} S<1$
FIFO Pr-Repeat-Identical: $\mathbb{E e}^{\lambda S} \leq 2$
FIFO Pr-Repeat-Different: $\mathbb{E e}^{-\lambda S} \geq 1 / 2$
$\mathbb{E} \mathrm{e}^{\lambda S} \leq 2 \Rightarrow \mathbb{E}^{-\lambda S} \geq 1 / 2$ (Jensen to $1 / x$)

GI/G/1 Stability

$$
F(t)=\mathbb{P}(T \leq t), G(s)=\mathbb{P}(S \leq s)
$$

GI/G/1 Stability

$F(t)=\mathbb{P}(T \leq t), G(s)=\mathbb{P}(S \leq s)$
FIFO or LIFO Pr-Resume: $\rho=\frac{\mathbb{E} S}{\mathbb{E} T} \leq 1$

GI/G/1 Stability

$F(t)=\mathbb{P}(T \leq t), G(s)=\mathbb{P}(S \leq s)$
FIFO or LIFO Pr-Resume: $\rho=\frac{\mathbb{E} S}{\mathbb{E} T} \leq 1$
LIFO Pr-Repeat: at repeat, next arrival has distr'n $\neq F$.
F IFR \Rightarrow smaller stability region than for M/G/1
F DFR \Rightarrow larger stability region than for M/G/1

GI/G/1 Stability

$F(t)=\mathbb{P}(T \leq t), G(s)=\mathbb{P}(S \leq s)$
FIFO or LIFO Pr-Resume: $\rho=\frac{\mathbb{E} S}{\mathbb{E} T} \leq 1$
LIFO Pr-Repeat: at repeat, next arrival has distr'n $\neq F$.
F IFR \Rightarrow smaller stability region than for M/G/1
F DFR \Rightarrow larger stability region than for $\mathrm{M} / \mathrm{G} / 1$
LIFO Pr-Repeat-Different: $\mathbb{E} U_{G}(T) \geq 2$ where $U_{G}=\sum_{0}^{\infty} G^{* n}$

GI/G/1 Stability

$F(t)=\mathbb{P}(T \leq t), G(s)=\mathbb{P}(S \leq s)$
FIFO or LIFO Pr-Resume: $\rho=\frac{\mathbb{E} S}{\mathbb{E} T} \leq 1$
LIFO Pr-Repeat: at repeat, next arrival has distr'n $\neq F$.
F IFR \Rightarrow smaller stability region than for M/G/1
F DFR \Rightarrow larger stability region than for $\mathrm{M} / \mathrm{G} / 1$
LIFO Pr-Repeat-Different: $\mathbb{E} U_{G}(T) \geq 2$ where $U_{G}=\sum_{0}^{\infty} G^{* n}$
Proof: \# customers at arrival epochs forms random walk

GI/G/1 Stability

$F(t)=\mathbb{P}(T \leq t), G(s)=\mathbb{P}(S \leq s)$
FIFO or LIFO Pr-Resume: $\rho=\frac{\mathbb{E} S}{\mathbb{E} T} \leq 1$
LIFO Pr-Repeat: at repeat, next arrival has distr'n $\neq F$.
F IFR \Rightarrow smaller stability region than for $\mathrm{M} / \mathrm{G} / 1$
F DFR \Rightarrow larger stability region than for $\mathrm{M} / \mathrm{G} / 1$
LIFO Pr-Repeat-Different: $\mathbb{E} U_{G}(T) \geq 2$ where $U_{G}=\sum_{0}^{\infty} G^{* n}$

Example:
G Erlang(2) with density $s \mathrm{e}^{-s} \Rightarrow U_{G}(t)=3 / 4+t / 2+\mathrm{e}^{-2 t} / 4$ Stability: $2 \mathbb{E} T+\mathbb{E} \mathrm{e}^{-2 T} \geq 5$

GI/G/1 Stability

$F(t)=\mathbb{P}(T \leq t), G(s)=\mathbb{P}(S \leq s)$
FIFO or LIFO Pr-Resume: $\rho=\frac{\mathbb{E} S}{\mathbb{E} T} \leq 1$
LIFO Pr-Repeat: at repeat, next arrival has distr'n $\neq F$.
F IFR \Rightarrow smaller stability region than for M/G/1
$F D F R \Rightarrow$ larger stability region than for $\mathrm{M} / \mathrm{G} / 1$
LIFO Pr-Repeat-Different: $\mathbb{E} U_{G}(T) \geq 2$ where $U_{G}=\sum_{0}^{\infty} G^{* n}$

LIFO Pr-Repeat-Identical: ???

GI/G/1 Stability

$F(t)=\mathbb{P}(T \leq t), G(s)=\mathbb{P}(S \leq s)$
FIFO or LIFO Pr-Resume: $\rho=\frac{\mathbb{E} S}{\mathbb{E} T} \leq 1$
LIFO Pr-Repeat: at repeat, next arrival has distr'n $\neq F$.
F IFR \Rightarrow smaller stability region than for $\mathrm{M} / \mathrm{G} / 1$
F DFR \Rightarrow larger stability region than for $\mathrm{M} / \mathrm{G} / 1$
LIFO Pr-Repeat-Different: $\mathbb{E} U_{G}(T) \geq 2$ where $U_{G}=\sum_{0}^{\infty} G^{* n}$

LIFO Pr-Repeat-Identical: ???
Will present approach covering phase-type T
In fact treat more general MAP arrivals
Multitype Galton-Watson but ...

Markovian arrival process:

Markovian arrival process:
Background finite Markov process $J(t)$ Poisson $\left(\lambda_{i}\right)$ when $J(t)=i$
Possible extra jumps when $i \mapsto j$

Markovian arrival process:

Markovian arrival process:
Background finite Markov process $J(t)$
Poisson $\left(\lambda_{i}\right)$ when $J(t)=i$
Possible extra jumps when $i \mapsto j$
Includes PH renewal processes
Dense

Stability of MAP/G/1 LIFO Preemptive-Repeat-Identical

Stability of MAP/G/1 LIFO Preemptive-Repeat-Identical

Compute $\bar{p}_{i j}=\mathbb{P}_{i}\left(J_{B}=j\right)$
Stability $\Longleftrightarrow \sum_{j=1}^{d} \bar{p}_{i j}=1$

Stability of MAP/G/1 LIFO Preemptive-Repeat-Identical

Compute $\bar{p}_{i j}=\mathbb{P}_{i}\left(J_{B}=j\right)$
Stability $\Longleftrightarrow \sum_{j=1}^{d} \bar{p}_{i j}=1$
Auxiliary quantity: $p_{i j}(s)=\mathbb{P}_{i}\left(J_{B}=j \mid S=s\right)=\mathbb{P}_{i}^{s}\left(J_{B}=j\right)$

Stability of MAP/G/1 LIFO Preemptive-Repeat-Identical

Compute $\bar{p}_{i j}=\mathbb{P}_{i}\left(J_{B}=j\right)=\int_{0}^{\infty} p_{i j}(s) G(\mathrm{~d} s)$
Stability $\Longleftrightarrow \sum_{j=1}^{d} \bar{p}_{i j}=1$
Auxiliary quantity: $p_{i j}(s)=\mathbb{P}_{i}\left(J_{B}=j \mid S=s\right)=\mathbb{P}_{i}^{s}\left(J_{B}=j\right)$

Fixed-point equation for \mathbf{P}

$$
\boldsymbol{\Lambda}=\mathbf{C}+\mathbf{D}, \mathbf{Q}=-\mathbf{C}^{-1} \mathbf{D}
$$

Fixed-point equation for \mathbf{P}

$$
\begin{aligned}
& \mathbf{\Lambda}=\mathbf{C}+\mathbf{D}, \mathbf{Q}=-\mathbf{C}^{-1} \mathbf{D} \\
& \Psi(\mathbf{P})=\int_{0}^{\infty}\left(\mathbf{I}-\left(\mathbf{I}-\mathrm{e}^{\mathbf{C}_{s}}\right) \mathbf{Q P}\right)^{-1} \mathrm{e}^{\mathbf{C}_{s}} G(\mathrm{~d} s)
\end{aligned}
$$

Fixed-point equation for \mathbf{P}

$\boldsymbol{\Lambda}=\mathbf{C}+\mathbf{D}, \mathbf{Q}=-\mathbf{C}^{-1} \mathbf{D}$
$\Psi(\mathbf{P})=\int_{0}^{\infty}\left(\mathbf{I}-\left(\mathbf{I}-\mathrm{e}^{\boldsymbol{C}_{s}}\right) \mathbf{Q P}\right)^{-1} \mathrm{e}^{\mathbf{C}_{s}} G(\mathrm{~d} s)$
Related MA work (preemptive-repeat-different)
Bini, D.A.,Latouche, G. and Meini, B. (2003)
Solving nonlinear matrix equations arising in tree-Like stochastic processes.
Linear Algebra and its Applications. 366, 39-64
He, Q.-M and Alfa, A.S. (1998)
The MMAP $[\mathrm{K}] / \mathrm{PH}[\mathrm{K}] / 1$ queues with a last-come-first-served preemptive service discipline
Queueing Systems 29, 269-291.

$$
\delta=\left|1-\frac{1}{d} \sum_{i, j=1}^{d} \bar{p}_{i j}\right|
$$

Figure: H_{2} arrivals, $\theta=1 / 8, \eta=14.6$

Stability region for $E_{q} / M / 1$ and $H_{2} / M / 1$

Comparison: for $\mathrm{M} / \mathrm{M} / 1$, stability $\Longleftrightarrow \mathbb{E e}^{\lambda S} \leq 2 \Longleftrightarrow \rho \leq 1 / 2$

Stability region for $E_{q} / M / 1$ and $H_{2} / M / 1$

Comparison: for $\mathrm{M} / \mathrm{M} / 1$, stability $\Longleftrightarrow \mathbb{E} \mathrm{e}^{\lambda S} \leq 2 \Longleftrightarrow \rho \leq 1 / 2$ $E_{q} / M / 1$ is DFR so region should be smaller than both $M / M / 1$ and region $\mathbb{E} \frac{1}{\bar{F}(S)} \leq 2$ coming from $D(s)=T \wedge s+\mathbf{1}(T \leq s)[D+D(s)]$

Stability region for $E_{q} / M / 1$ and $H_{2} / M / 1$

Comparison: for $\mathrm{M} / \mathrm{M} / 1$, stability $\Longleftrightarrow \mathbb{E e}^{\lambda S} \leq 2 \Longleftrightarrow \rho \leq 1 / 2$ $E_{q} / M / 1$ is DFR so region should be smaller than both $M / M / 1$ and region $\mathbb{E} \frac{1}{\bar{F}(S)} \leq 2$ coming from $D(s)=T \wedge s+\mathbf{1}(T \leq s)[D+D(s)]$ (first ρ value)

$q=2$	$q=3$	$q=4$
0.440 .36	0.350 .32	0.290 .29

Stability region for $E_{q} / M / 1$ and $H_{2} / M / 1$

Comparison: for $\mathrm{M} / \mathrm{M} / 1$, stability $\Longleftrightarrow \mathbb{E}^{\lambda S} \leq 2 \Longleftrightarrow \rho \leq 1 / 2$ $E_{q} / M / 1$ is DFR so region should be smaller than both $M / M / 1$ and region $\mathbb{E} \frac{1}{\bar{F}(S)} \leq 2$ coming from $D(s)=T \wedge s+\mathbf{1}(T \leq s)[D+D(s)]$ (first ρ value)

$$
\begin{array}{ccc}
q=2 & q=3 & q=4 \\
\hline 0.440 .36 & 0.350 .32 & 0.290 .29
\end{array}
$$

$\mathrm{E}_{q} / \mathrm{M} / 1$ is IFR so region should be larger

θ	η_{1}	η_{2}	η_{3}	η_{4}	η_{5}
$1 / 8$	0.430 .58	0.310 .66	0.210 .72	0.120 .78	0.040 .84
$3 / 8$	0.490 .53	0.430 .58	0.360 .62	0.250 .66	0.110 .71
$5 / 8$	0.500 .52	0.480 .54	0.460 .56	0.430 .58	0.370 .60
$7 / 8$	0.500 .50	0.500 .51	0.500 .52	0.490 .53	0.490 .53

Back to FPE for FIFO/LIFO Busy Period R

$$
R \stackrel{d}{=} Q+\sum_{i=1}^{N} R_{i}
$$

Other examples:
weighted branching
Google PageRank Algorithm $R=Q+\sum_{i=1}^{N} A_{i} R_{i}$

Back to FPE for FIFO/LIFO Busy Period R

$$
R \stackrel{d}{=} Q+\sum_{i=1}^{N} R_{i}
$$

Other examples:
weighted branching
Google PageRank Algorithm $R=Q+\sum_{i=1}^{N} A_{i} R_{i}$
Jelenkovic \& Olvera-Cravioto 2010, Volkovich \& Litvak 2010

Back to FPE for FIFO/LIFO Busy Period R

$$
R \stackrel{d}{=} Q+\sum_{i=1}^{N} R_{i}
$$

Other examples: weighted branching
Google PageRank Algorithm $R=Q+\sum_{i=1}^{N} A_{i} R_{i}$
Jelenkovic \& Olvera-Cravioto 2010, Volkovich \& Litvak 2010 Heavy-tails: Q, N regularly varying (RV); $\frac{L_{Q}(x)}{x^{\alpha(Q)}}, \frac{L_{N}(x)}{x^{\alpha(N)}}$

Back to FPE for FIFO/LIFO Busy Period R

$$
R \stackrel{d}{=} Q+\sum_{i=1}^{N} R_{i}
$$

Other examples:
weighted branching
Google PageRank Algorithm $R=Q+\sum_{i=1}^{N} A_{i} R_{i}$
Jelenkovic \& Olvera-Cravioto 2010, Volkovich \& Litvak 2010 Heavy-tails: Q, N regularly varying (RV); $\frac{L_{Q}(x)}{x^{\alpha(Q)}}, \frac{L_{N}(x)}{x^{\alpha(N)}}$
Recent work with Sergey Foss, Jagers Festschrift 2018:

Back to FPE for FIFO/LIFO Busy Period R

$$
R \stackrel{d}{=} Q+\sum_{i=1}^{N} R_{i}
$$

Other examples:
weighted branching
Google PageRank Algorithm $R=Q+\sum_{i=1}^{N} A_{i} R_{i}$
Jelenkovic \& Olvera-Cravioto 2010, Volkovich \& Litvak 2010 Heavy-tails: Q, N regularly varying (RV); $\frac{L_{Q}(x)}{x^{\alpha(Q)}}, \frac{L_{N}(x)}{x^{\alpha(N)}}$
Recent work with Sergey Foss, Jagers Festschrift 2018:
Fill gaps in JOC, VL (tails of same order; dependence; $A_{i}=1$)

Back to FPE for FIFO/LIFO Busy Period R

$$
R \stackrel{d}{=} Q+\sum_{i=1}^{N} R_{i}
$$

Other examples:
weighted branching
Google PageRank Algorithm $R=Q+\sum_{i=1}^{N} A_{i} R_{i}$
Jelenkovic \& Olvera-Cravioto 2010, Volkovich \& Litvak 2010 Heavy-tails: Q, N regularly varying (RV); $\frac{L_{Q}(x)}{x^{\alpha(Q)}}, \frac{L_{N}(x)}{x^{\alpha(N)}}$
Recent work with Sergey Foss, Jagers Festschrift 2018:
Fill gaps in JOC, VL (tails of same order; dependence; $A_{i}=1$) Simplify proof

Back to FPE for FIFO/LIFO Busy Period R

$$
R \stackrel{d}{=} Q+\sum_{i=1}^{N} R_{i}
$$

Other examples:
weighted branching
Google PageRank Algorithm $R=Q+\sum_{i=1}^{N} A_{i} R_{i}$
Jelenkovic \& Olvera-Cravioto 2010, Volkovich \& Litvak 2010 Heavy-tails: Q, N regularly varying (RV); $\frac{L_{Q}(x)}{x^{\alpha(Q)}}, \frac{L_{N}(x)}{x^{\alpha(N)}}$
Recent work with Sergey Foss, Jagers Festschrift 2018:
Fill gaps in JOC, VL (tails of same order; dependence; $A_{i}=1$)
Simplify proof
Extend to a multivariate fixed-point equation

Back to FPE for FIFO/LIFO Busy Period R

$$
R \stackrel{d}{=} Q+\sum_{i=1}^{N} R_{i}
$$

Other examples:
weighted branching
Google PageRank Algorithm $R=Q+\sum_{i=1}^{N} A_{i} R_{i}$
Jelenkovic \& Olvera-Cravioto 2010, Volkovich \& Litvak 2010 Heavy-tails: Q, N regularly varying (RV); $\frac{L_{Q}(x)}{x^{\alpha(Q)}}, \frac{L_{N}(x)}{x^{\alpha(N)}}$
Recent work with Sergey Foss, Jagers Festschrift 2018:
Fill gaps in JOC, VL (tails of same order; dependence; $A_{i}=1$)
Simplify proof
Extend to a multivariate fixed-point equation
$A_{i} \equiv 1$ throughout

Back to FPE for FIFO/LIFO Busy Period R

$$
R \stackrel{d}{=} Q+\sum_{i=1}^{N} R_{i}
$$

Other examples:
weighted branching
Google PageRank Algorithm $R=Q+\sum_{i=1}^{N} A_{i} R_{i}$
Jelenkovic \& Olvera-Cravioto 2010, Volkovich \& Litvak 2010 Heavy-tails: Q, N regularly varying (RV); $\frac{L_{Q}(x)}{x^{\alpha(Q)}}, \frac{L_{N}(x)}{x^{\alpha(N)}}$
Recent work with Sergey Foss, Jagers Festschrift 2018:
Fill gaps in JOC, VL (tails of same order; dependence; $A_{i}=1$)
Simplify proof
Extend to a multivariate fixed-point equation
$A_{i} \equiv 1$ throughout
de Meyer \& Teugels 1980, Zwart 2000: $N \mid Q=q \operatorname{Poisson}(\lambda q)$ Light tails: Palmowski \& Rolski

Existence and uniqueness of solution

$$
\begin{aligned}
& R=Q+\sum_{i=1}^{N} R_{i} \\
& Q, N, R \geq 0, \quad \bar{q}=\mathbb{E} Q<\infty, \bar{n}=\mathbb{E} N<1, \\
& Q, N \text { possibly dependent }
\end{aligned}
$$

Existence and uniqueness of solution

$$
\begin{aligned}
& R=Q+\sum_{i=1}^{N} R_{i} \\
& Q, N, R \geq 0, \quad \bar{q}=\mathbb{E} Q<\infty, \bar{n}=\mathbb{E} N<1, \\
& Q, N \text { possibly dependent }
\end{aligned}
$$

Existence and uniqueness:

Existence and uniqueness of solution

$$
\begin{aligned}
& R=Q+\sum_{i=1}^{N} R_{i} \\
& Q, N, R \geq 0, \quad \bar{q}=\mathbb{E} Q<\infty, \bar{n}=\mathbb{E} N<1, \\
& Q, N \text { possibly dependent }
\end{aligned}
$$

Existence and uniqueness:
Galton Watson process with \# of offspring distributed as N Individuals carry i.i.d. weights distributed as Q

Existence and uniqueness of solution

$$
\begin{aligned}
& R=Q+\sum_{i=1}^{N} R_{i} \\
& Q, N, R \geq 0, \quad \bar{q}=\mathbb{E} Q<\infty, \bar{n}=\mathbb{E} N<1, \\
& Q, N \text { possibly dependent }
\end{aligned}
$$

Existence and uniqueness:
Galton Watson process with \# of offspring distributed as N Individuals carry i.i.d. weights distributed as Q (weight, \# of offspring) $\stackrel{\mathcal{D}}{=}(Q, N)$

Existence and uniqueness of solution

$R=Q+\sum_{i=1}^{N} R_{i}$
$Q, N, R \geq 0, \quad \bar{q}=\mathbb{E} Q<\infty, \bar{n}=\mathbb{E} N<1$,
Q, N possibly dependent
Existence and uniqueness:
Galton Watson process with \# of offspring distributed as N Individuals carry i.i.d. weights distributed as Q
(weight, \# of offspring) $\stackrel{\mathcal{D}}{=}(Q, N)$
\Rightarrow total weight R in tree is solution
Minimal solution ≥ 0
Unique non-negative solution with $\bar{r}=\mathbb{E} R<\infty ; \quad \bar{r}=\frac{\bar{q}}{1-\bar{n}}$

One Big Jump Heuristics

$$
R=Q+\sum_{i=1}^{N} R_{i}
$$

One Big Jump Heuristics

$$
R=Q+\sum_{i=1}^{N} R_{i}
$$

In general: tail of $\sum_{1}^{N} R_{i}$ is asymptotically $\geq \bar{n} \mathbb{P}(R>x)$
This is the part of tail of r.h.s.
coming from "normal" values of N and a large value of some R_{i}.

One Big Jump Heuristics

$R=Q+\sum_{i=1}^{N} R_{i}$
In general: tail of $\sum_{1}^{N} R_{i}$ is asymptotically $\geq \bar{n} \mathbb{P}(R>x)$
This is the part of tail of r.h.s.
coming from "normal" values of N and a large value of some R_{i}.
Part from large values of Q or N or both, and "normal" values of the R_{i} is $\mathbb{P}(Q+\bar{r} N>x)$

Upper bound by RW argument; omitted

One Big Jump Heuristics

$R=Q+\sum_{i=1}^{N} R_{i}$
In general: tail of $\sum_{1}^{N} R_{i}$ is asymptotically $\geq \bar{n} \mathbb{P}(R>x)$
This is the part of tail of r.h.s.
coming from "normal" values of N and a large value of some R_{i}.
Part from large values of Q or N or both, and "normal" values of the R_{i} is $\mathbb{P}(Q+\bar{r} N>x)$

$$
\mathbb{P}(R>x) \geq \mathbb{P}(Q+\bar{r} N>x)+\bar{n} \mathbb{P}(R>x)
$$

Upper bound by RW argument; omitted

One Big Jump Heuristics

$$
R=Q+\sum_{i=1}^{N} R_{i}
$$

In general: tail of $\sum_{1}^{N} R_{i}$ is asymptotically $\geq \bar{n} \mathbb{P}(R>x)$
This is the part of tail of r.h.s.
coming from "normal" values of N and a large value of some R_{i}.
Part from large values of Q or N or both, and "normal" values of the R_{i} is $\mathbb{P}(Q+\bar{r} N>x)$

$$
\mathbb{P}(R>x) \geq \mathbb{P}(Q+\bar{r} N>x)+\bar{n} \mathbb{P}(R>x)
$$

Theorem

If tail of $a_{0} Q+a_{1} N$ is $R V$ for all a_{0}, a_{1}, then

$$
\mathbb{P}(R>x) \sim \frac{1}{1-\bar{n}} \mathbb{P}(Q+\bar{r} N>x)
$$

Upper bound by RW argument; omitted

Multitype Version of FPE

$$
R(i)=Q(i)+\sum_{k=1}^{K} \sum_{j=1}^{N_{k}(i)} R_{j}(k), \quad i=1, \ldots, K
$$

Motivating example multiclass queue in Ernst-SA-Hasenbein 2018: arrival rate $\lambda_{i k}$ of class k when class i customer in service

Multitype Version of FPE

$$
R(i)=Q(i)+\sum_{k=1}^{K} \sum_{j=1}^{N_{k}(i)} R_{j}(k), \quad i=1, \ldots, K
$$

Motivating example multiclass queue in Ernst-SA-Hasenbein 2018: arrival rate $\lambda_{i k}$ of class k when class i customer in service

Branching processes:
$\left(N_{1}(i), \ldots, N_{K}(i)\right)$ offspring vector of type i individual
In K-type Galton-Watson tree, give i-individuals weights $\sim Q(i)$

Multitype Version of FPE

$$
R(i)=Q(i)+\sum_{k=1}^{K} \sum_{j=1}^{N_{k}(i)} R_{j}(k), \quad i=1, \ldots, K
$$

Motivating example multiclass queue in Ernst-SA-Hasenbein 2018: arrival rate $\lambda_{i k}$ of class k when class i customer in service

Branching processes:
($\left.N_{1}(i), \ldots, N_{K}(i)\right)$ offspring vector of type i individual
In K-type Galton-Watson tree, give i-individuals weights $\sim Q(i)$
(weight,offspring vector) $\sim\left(Q(i), N_{1}(i), \ldots, N_{K}(i)\right)$

Multitype Version of FPE

$$
R(i)=Q(i)+\sum_{k=1}^{K} \sum_{j=1}^{N_{k}(i)} R_{j}(k), \quad i=1, \ldots, K
$$

Motivating example multiclass queue in Ernst-SA-Hasenbein 2018: arrival rate $\lambda_{i k}$ of class k when class i customer in service

Branching processes:
$\left(N_{1}(i), \ldots, N_{K}(i)\right)$ offspring vector of type i individual
In K-type Galton-Watson tree, give i-individuals weights $\sim Q(i)$
(weight,offspring vector) $\sim\left(Q(i), N_{1}(i), \ldots, N_{K}(i)\right)$
$R(i)<\infty$: offspring mean matrix $\mathbf{M}=\left(m_{i k}\right)$ has spr. <1
$m_{i k}=\mathbb{E} N_{k}(i)$
Uniqueness then easy when $\mathbb{E} Q(i)<\infty$

$$
R(i)=Q(i)+\sum_{k=1}^{K} \sum_{i=1}^{N_{k}(i)} R_{i}(k), \quad i=1, \ldots, K
$$

Condition (loosely):

$$
R(i)=Q(i)+\sum_{k=1}^{K} \sum_{i=1}^{N_{k}(i)} R_{i}(k), \quad i=1, \ldots, K
$$

Condition (loosely):
$\mathbf{V}(i)=\left(Q(i), N_{1}(i), \ldots, N_{K}(i)\right)$ MRV + "similarity in $i "$

$$
R(i)=Q(i)+\sum_{k=1}^{K} \sum_{i=1}^{N_{k}(i)} R_{i}(k), \quad i=1, \ldots, K
$$

Condition (loosely):

$$
\begin{aligned}
& \mathbf{V}(i)=\left(Q(i), N_{1}(i), \ldots, N_{K}(i)\right) \text { MRV }+ \text { "similarity in } i " \\
& \Rightarrow \quad a_{0} Q(i)+a_{1} N_{1}(i)+\cdots+a_{K} N_{K}(i) \text { RV } \forall a_{0}, a_{1}, \ldots, a_{K}
\end{aligned}
$$

$$
R(i)=Q(i)+\sum_{k=1}^{K} \sum_{i=1}^{N_{k}(i)} R_{i}(k), \quad i=1, \ldots, K
$$

Condition (loosely):
$\mathbf{V}(i)=\left(Q(i), N_{1}(i), \ldots, N_{K}(i)\right)$ MRV + "similarity in $i "$
$\Rightarrow \quad a_{0} Q(i)+a_{1} N_{1}(i)+\cdots+a_{K} N_{K}(i)$ RV $\forall a_{0}, a_{1}, \ldots, a_{K}$
almost \qquad

$$
R(i)=Q(i)+\sum_{k=1}^{K} \sum_{i=1}^{N_{k}(i)} R_{i}(k), \quad i=1, \ldots, K
$$

Condition (loosely):

$$
\begin{aligned}
& \mathbf{V}(i)=\left(Q(i), N_{1}(i), \ldots, N_{K}(i)\right) \text { MRV }+ \text { "similarity in } i^{\prime \prime} \\
& \Rightarrow \quad a_{0} Q(i)+a_{1} N_{1}(i)+\cdots+a_{K} N_{K}(i) \text { RV } \forall a_{0}, a_{1}, \ldots, a_{K} \\
& \text { almost } \Longleftrightarrow
\end{aligned}
$$

Precisely (polar L_{1} coordinates)

$$
\begin{aligned}
& \|\mathbf{V}(i)\|=Q(i)+N_{1}(i)+\cdots+N_{K}(i) \\
& \boldsymbol{\Theta}(i)=\frac{1}{\|\mathbf{V}(i)\|} \mathbf{V}(i) \in \mathcal{B}=\{\mathbf{v}: \| \mathbf{v}=1\}
\end{aligned}
$$

$$
R(i)=Q(i)+\sum_{k=1}^{K} \sum_{i=1}^{N_{k}(i)} R_{i}(k), \quad i=1, \ldots, K
$$

Condition (loosely):

$$
\begin{aligned}
& \mathbf{V}(i)=\left(Q(i), N_{1}(i), \ldots, N_{K}(i)\right) \mathrm{MRV}+\text { "similarity in } i " \\
& \Rightarrow \quad a_{0} Q(i)+a_{1} N_{1}(i)+\cdots+a_{K} N_{K}(i) \text { RV } \forall a_{0}, a_{1}, \ldots, a_{K} \\
& \text { almost } \Longleftrightarrow
\end{aligned}
$$

Precisely (polar L_{1} coordinates)
$\|\mathbf{V}(i)\|=Q(i)+N_{1}(i)+\cdots+N_{K}(i)$
$\boldsymbol{\Theta}(i)=\frac{1}{\|\mathbf{V}(i)\|} \mathbf{V}(i) \in \mathcal{B}=\{\mathbf{v}: \| \mathbf{v}=1\}$
Reference RV tail $\bar{F}(x)=\frac{L(x)}{x^{\alpha}}$
$\mathbb{P}(\|\mathbf{V}(i)\|>x) \sim b_{i} \bar{F}(x)$ where either
(1) $b_{i}=0$ or
(2) $b_{i}>0, \mathbb{P}(\boldsymbol{\Theta}(i) \in \cdot \mid\|\mathbf{V}(i)\|>x) \rightarrow \mu_{i}(\cdot)$ for some measure μ_{i} on \mathcal{B}

Outline of approach

No extension of random walk argument found

Outline of approach

No extension of random walk argument found
Instead induction $K-1 \mapsto K ; \quad K=1$ done in first part

Outline of approach

No extension of random walk argument found Instead induction $K-1 \mapsto K ; \quad K=1$ done in first part Idea: Foss 1980, 84 reduces problems for K-class queues to $K-1$ by serving all class K customers first

Outline of approach

No extension of random walk argument found Instead induction $K-1 \mapsto K ; \quad K=1$ done in first part Idea: Foss 1980, 84 reduces problems for K-class queues to $K-1$ by serving all class K customers first

Constants don't need to be identified in each step
Enough to get $\mathbb{P}(R(i)>x) \sim d_{i} \bar{F}(x), i=1, \ldots, K-1$

Reducing from 2 types to 1

green: type 1
red: type 2 descendants of the ancestor in direct line blue: the rest of type 2

Reducing from 2 types to 1

green: type 1
red: type 2 descendants of the ancestor in direct line blue: the rest of type 2
Reduced 1-type tree:
same ancestor, children original ones of type $1+$ all Δ
Addded weight of ancestor: all weigths of \bullet

Reducing from 2 types to 1

green: type 1
red: type 2 descendants of the ancestor in direct line blue: the rest of type 2
Reduced 1-type tree:
same ancestor, children original ones of type $1+$ all Δ
Addded weight of ancestor: all weigths of \bullet

$$
R(1) \stackrel{\mathcal{D}}{=} \widetilde{Q}+\sum^{\widetilde{N}} R_{i}(1)
$$

Reducing from 2 types to 1 , continued

Got $R(1) \stackrel{\mathcal{D}}{=} \widetilde{Q}+\sum_{i=1}^{\tilde{N}} R_{i}(1)$.
Next verify 1-type condition on MRV of $(\widetilde{Q}, \widetilde{N})$

Reducing from 2 types to 1 , continued

Got $R(1) \stackrel{\mathcal{D}}{=} \widetilde{Q}+\sum_{i=1}^{\widetilde{N}} R_{i}(1)$.
Next verify 1-type condition on MRV of $(\widetilde{Q}, \widetilde{N})$; know then

$$
\mathbb{P}(R(1)>x) \sim d_{1} \bar{F}(x), \text { similarly } \mathbb{P}(R(2)>x) \sim d_{2} \bar{F}(x) \quad(*)
$$

Reducing from 2 types to 1 , continued

Got $R(1) \stackrel{\mathcal{D}}{=} \widetilde{Q}+\sum_{i=1}^{\widetilde{N}} R_{i}(1)$.
Next verify 1-type condition on MRV of $(\widetilde{Q}, \widetilde{N})$; know then

$$
\mathbb{P}(R(1)>x) \sim d_{1} \bar{F}(x), \text { similarly } \mathbb{P}(R(2)>x) \sim d_{2} \bar{F}(x) \quad(*)
$$

Use "one big jump heuristics" together with

$$
\begin{array}{r}
R(i)=Q(i)+\sum_{i=1}^{N_{1}(i)} R_{i}(1)+\sum_{i=1}^{N_{2}(i)} R_{2}(k), \quad i=1,2 \text { to get } \\
d_{i}=a_{i}+\bar{n}_{1}(i) d_{1}+\bar{n}_{2}(i) d_{2} \quad \text { where } \\
a_{i}=\lim _{x \rightarrow \infty} \frac{\mathbb{P}\left(Q(i)+\bar{r}_{1} N_{1}(i)+\bar{r}_{2} N_{2}(i)>x\right)}{\bar{F}(x)}
\end{array}
$$

Reducing from 2 types to 1 , continued

Got $R(1) \stackrel{\mathcal{D}}{=} \widetilde{Q}+\sum_{i=1}^{\tilde{N}} R_{i}(1)$.
Next verify 1-type condition on MRV of $(\widetilde{Q}, \widetilde{N})$; know then

$$
\mathbb{P}(R(1)>x) \sim d_{1} \bar{F}(x), \text { similarly } \mathbb{P}(R(2)>x) \sim d_{2} \bar{F}(x) \quad(*)
$$

Use "one big jump heuristics" together with

$$
\begin{array}{r}
R(i)=Q(i)+\sum_{i=1}^{N_{1}(i)} R_{i}(1)+\sum_{i=1}^{N_{2}(i)} R_{2}(k), \quad i=1,2 \text { to get } \\
d_{i}=a_{i}+\bar{n}_{1}(i) d_{1}+\bar{n}_{2}(i) d_{2} \quad \text { where } \\
a_{i}=\lim _{x \rightarrow \infty} \frac{\mathbb{P}\left(Q(i)+\bar{r}_{1} N_{1}(i)+\bar{r}_{2} N_{2}(i)>x\right)}{\bar{F}(x)}
\end{array}
$$

Two equations, two unknowns
$\left(^{*}\right)$ helps to make "one big jump heuristics" rigorous

$$
R(i)=Q(i)+\sum_{k=1}^{K} \sum_{i=1}^{N_{k}(i)} R_{i}(k), \quad i=1, \ldots, K
$$

Theorem

Assume that $\operatorname{spr}(\mathbf{M})<1, \int_{0}^{\infty} \bar{F}(x) \mathrm{d} x<\infty$ and that MRV holds. Then

$$
\begin{equation*}
\mathbb{P}(R(i)>x) \sim d_{i} \bar{F}(x) \text { as } x \rightarrow \infty, \tag{1}
\end{equation*}
$$

with the d_{i} given as the unique solution to the set

$$
d_{i}=a_{i}+\sum_{k=1}^{K} m_{i k} d_{k}, \quad i=1, \ldots, K
$$

of linear equations where

$$
a_{i}=\lim _{x \rightarrow \infty} \frac{\mathbb{P}\left(Q(i)+\bar{r}_{1} N_{1}(i)+\bar{r}_{2} N_{2}(i)>x\right)}{\bar{F}(x)}
$$

and the \bar{r}_{i} solve

$$
\bar{r}_{i}=\bar{q}_{i}+\sum^{k} m_{i k} \bar{r}_{k}, \quad i=1, \ldots, K .
$$

Lemma

Let Z_{1}, Z_{2}, \ldots be i.i.d. and $R V$ with finite mean \bar{z} and define $S_{k}=Z_{1}+\cdots+Z_{k}$. Then for any $\delta>0$

$$
\sup _{y \geq \delta k}\left|\frac{\mathbb{P}\left(S_{k}>k \bar{z}+y\right)}{k \bar{F}(y)}-1\right| \rightarrow 0, k \rightarrow \infty
$$

Corollary

For $0<\epsilon<1 / \bar{z}, d(F, \epsilon)=\limsup _{x \rightarrow \infty} \sup _{k<\epsilon x} \frac{\mathbb{P}\left(S_{k}>x\right)}{k \bar{F}(x)}<\infty$

Lemma

Let $\mathbf{N}=\left(N_{1}, \ldots, N_{p}\right)$ be MRV with $\mathbb{P}(\|\mathbf{N}\|>x) \sim c_{N} \bar{F}(x)$ and let $Z_{m}^{(i)}$ be independent with $Z_{i}^{(j)} \sim F_{j}$ for $Z_{i}^{(j)}$ and $\bar{z}_{j}=\mathbb{E} Z_{m}^{(j)}$. Define $S_{m}^{(j)}=Z_{1}^{(j)}+\cdots+Z_{m}^{(j)}$. If $\bar{F}_{j}(x) \sim c_{j} \bar{F}(x)$, then

$$
\mathbb{P}\left(S_{N_{1}}^{(1)}+\cdots+S_{N_{p}}^{(p)}>x\right) \sim \mathbb{P}\left(\bar{z}_{1} N_{1}+\cdots+\bar{z}_{1} N_{p}>x\right)+c_{0} \bar{F}(x)
$$

where $c_{0}=c_{1} \mathbb{E} N_{1}+\cdots+c_{0} \mathbb{E} N_{0}$

Theorem

Let $\mathbf{V}=(\mathbf{T}, N) \in[0, \infty)^{p} \times \mathbb{N}$ be $\operatorname{MRV}(F)$, let $\mathbf{Z}, \mathbf{Z}_{1}, \mathbf{Z}_{2}, \ldots \in[0, \infty)^{q}$ be i.i.d., independent of (\mathbf{T}, N) and $\operatorname{MRV}(F)$, and define $\mathbf{S}=\sum_{1}^{N} \mathbf{Z}_{i}$. Then $\mathbf{V}^{*}=(\mathbf{T}, N, \mathbf{S})$ is $M R V(F)$.

