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Multi-type Galton-Watson process

Each individual has a type i in a countable type set X

The process initially contains a single individual of type ϕ0

Each individual lives for a single generation

At death, individuals of type i have children according to the
progeny distribution : pi (r) : r = (r1, r2, . . .), where

pi (r) = probability that a type i gives birth to r1 children of
type 1, r2 children of type 2, etc.

All individuals are independent
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Multi-type Galton-Watson process

Population size vector : Zn = (Zn1,Zn2, . . .), n ∈ N0

Progeny generating vector G (s) = (G1(s),G2(s),G3(s), . . .),
where Gi (s) is the p.g.f. of an individual of type i

Gi (s) = E
(
sZ1

∣∣∣ϕ0 = i
)

=
∑
r

pi (r)
∞∏
k=1

srkk , s ∈ [0, 1]X .

Mean progeny matrix M with elements

mij =
∂Gi (s)

∂sj

∣∣∣∣
s=1

= E(Z1j |ϕ0 = i).
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Extinction in sets of types

For A ⊆ X the extinction probability vector q(A) has entries

qi (A) = P

[
lim
n→∞

∑
`∈A

Zn` = 0
∣∣ϕ0 = i

]

For any A ⊆ X the vector q(A) satisfies the fixed point equation

s = G (s).

That is, q(A) is an element of

S = {s ∈ [0, 1]∞ : s = G (s)}.
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Global and partial extinction probabilities

Global extinction probability vector : ext. of the whole process

q = q(X )

Partial extinction probability vector : ext. of all types

q̃ = lim
k→∞

q({1, . . . , k})

We have
0 ≤ q ≤ q̃ ≤ 1
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The set S of fixed points in the irreducible case

The vector q is the minimal non-negative element of S

Finite type case :

The set S contains at most two elements, q = q̃ and 1.

Infinite type case :

Moyal (1962) : S contains at most a single solution with
lim supi si < 1 (corresponding to q).

Spataru (1989) : S contains at most two elements, q and 1.

But, there exist cases where q < q̃ < 1 !

Bertacchi and Zucca (2014,2015) : provided an irreducible
process where S contains uncountably many elements.

Can we say more about S ? Can we determine which elements in S
correspond to extinction probability vectors q(A) ?
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Lower Hessenberg branching processes

We assume M is lower Hessenberg

M =


m00 m01 0 0 0 . . .
m10 m11 m12 0 0
m20 m21 m22 m23 0

...
. . .


Type i ≥ 0 individuals cannot have offspring of type j > i + 1.

We assume mi ,i+1 > 0 for all i ≥ 0.

0 1 2 3 4 . . .
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Fixed points

Under the lower Hessenberg assumption s = G (s) can be
expressed as

s0 = G0(s0, s1)

s1 = G1(s0, s1, s2)

...

si = Gi (s0, s1, . . . , si , si+1)

...

→ It suffices to study the one-dimensional projection sets :

Si = {x ∈ [0, 1] : ∃ s ∈ S , such that si = x}.
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Fixed points

Illustration of Si :

qi = q̃i < 1 :

qi = q̃i = 1 :

qi < q̃i = 1 :

qi < q̃i < 1 :

0

0

0

0

qi = q̃i 1

qi = q̃i = 1

q̃i = 1qi

1qi q̃i

Theorem (Braunsteins and H., 2019)

Suppose {Zn} is irreducible. If S = {1} then q = q̃ = 1, otherwise

q = minS and q̃ = supS\{1}.

In particular,
Si = [qi , q̃i ] ∪ 1, i ≥ 0.
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General extinction events

In an irreducible lower Hessenberg branching process, q(A) takes
at most two distinct values :

q(A) = q̃ if |A| <∞

q(A) = q if |A| =∞

→ for LHBPs, we have identified the location of all q(A) in S .
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Now we add layers...

1-D LHBP :

0 1 2 3 4 . . .

2-D LHBP :

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

. . .

. . .
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Now we add layers...
Example : the double nearest-neighbour BRW

0, 1 1, 1 2, 1 3, 1

0, 2 1, 2 2, 2 3, 2 . . .

. . .
c c c

a a a

c c c

a a a

y y/x y/x2 y/x3y y/x y/x2 y/x3

b b b b

b b b b

c

a

c

a

Depending on the parameter values, q(A) takes one of up to four
different values.
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Block lower Hessenberg branching processes

With d ≥ 1 layers, individuals take types in
Xd := X × {1, . . . , d}

Individuals of type 〈i , j〉 ∈ Xd are in level i and phase j

The mean progeny matrix M is block lower Hessenberg

M =


M11 M12 0 0 0 . . .
M21 M22 M23 0 0
M31 M32 M33 M34 0

...
. . .



Each block is a d × d matrix

We assume M is irreducible
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Extinction in sets

We still have

q(A) = q̃ if |A| <∞

q(Xd) = q.

However, now we can have q(A) > q for some |A| =∞.

In particular, if Ai is the set of types in phase i ∈ {1, . . . , d}, then
it is possible that

q < q(Ai ) < q̃.
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Extinction in sets

We consider sets A ∈ σ(A1, . . . ,Ad) and their complement Ā.

When do we have q < q(A) < q̃ ?

Theorem (Braunsteins and H., 2018)

Let A ∈ σ(A1, . . . ,Ad), and assume q̃(Ā) < 1 and ν(M̃(Ā)) < 1. If,
in addition,

(A)
∑∞

k=0(1>v t(Ā)
k )M̃(Ā)

0→k−11v <∞, and

(B) there exists K <∞ such that F̃
(Ā)
k ≤ K 1v · 1>v for all k ≥ 0,

then q < q(A) and q(Ā) < q̃.
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Example : double nearest-neighbour BRW

A = A1, Ā = A2

0, 1 1, 1 2, 1 3, 1

0, 2 1, 2 2, 2 3, 2 . . .

. . .

A2

A1

c c c

a a a

c c c

a a a

y y/x y/x2 y/x3y y/x y/x2 y/x3

b b b b

b b b b

c

a

c

a
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Example : double nearest-neighbour BRW

A2 is able to globally survive without the help of A1 but becomes
partially extinct,

(A) + (B) : finite expected number of (sterile) types in A1 from A2

0, 1 1, 1 2, 1 3, 1

0, 2 1, 2 2, 2 3, 2 . . .

. . .

A2

A1

c c c

a a a

y y/x y/x2 y/x3

b b b b

c

a

→ q < q(A1) and q(A2) < q̃

→ q < q(A1),q(A2) < q̃
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Computation of q(A)

First iteration to compute q(A2) :

0, 1 S

0, 2 IA2

A1

c

a

c

a

y y

b

b

I = Immortal ; S = Sterile
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Computation of q(A)

Second iteration to compute q(A2)

0, 1 1, 1 S

0, 2 1, 2 IA2

A1

c c

a a

c c

a a

y y/xy y/x

b b

b b

I = Immortal ; S = Sterile
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Computation of q(A)

Third iteration to compute q(A2)

0, 1 1, 1 2, 1 S

0, 2 1, 2 2, 2 IA2

A1

c c c

a a a

c c c

a a a

y y/x y/x2y y/x y/x2

b b b

b b b

I = Immortal ; S = Sterile
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Example : double nearest-neighbour BRW

Proposition (Braunsteins and H., 2018)

Suppose b + 2
√
ac < 1 and

µ :=

(
1− b −

√
(1− b)2 − 4ac

)
/2a > 1.

We have

(i) if x = 1 and b + y + 2
√
ac ≤ 1, then

q = q(A1) = q(A2) < q̃ = 1 ;

(ii) if x = 1 and b + y + 2
√
ac > 1, then

q = q(A1) = q(A2) = q̃ < 1 ;

(iii) if x > 1, then q < q̃ ;

(iv) if x > µ, then q < q(A1) < q̃ and q < q(A2) < q̃.
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Example : double nearest-neighbour BRW

a = 1/5, b = 0, c = 1, y = 1/5→ µ = 1.38, b + y + 2
√
ac = 1.09

Figure – The extinction probabilities q〈0,1〉, q〈0,1〉(A1), q〈0,1〉(A2) and
q̃〈0,1〉 for 1 ≤ x ≤ 3.
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Example : double nearest-neighbour BRW

We study the set of fixed points S by projecting it on level 0

→ 2-d projection set S0

0, 1 1, 1 2, 1 3, 1

0, 2 1, 2 2, 2 3, 2 . . .

. . .

A2

A1

c c c

a a a

c c c

a a a

y y/x y/x2 y/x3y y/x y/x2 y/x3

b b b b

b b b b

c

a

c

a
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Example : double nearest-neighbour BRW

0.7 0.8 0.9 1

s
1

0.7

0.8

0.9

1

s
2

x=1

Figure – The projection set S0 for a specific value of x (with the
shorthand notation si for s〈0,i〉, i = 1, 2).
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Example : double nearest-neighbour BRW

0.7 0.8 0.9 1

s
1

0.7

0.8

0.9

1

s
2

x=1.05

Figure – The projection set S0 for a specific value of x (with the
shorthand notation si for s〈0,i〉, i = 1, 2).
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Example : double nearest-neighbour BRW

0.7 0.8 0.9 1

s
1

0.7

0.8

0.9

1

s
2

x=1.07

Figure – The projection set S0 for a specific value of x (with the
shorthand notation si for s〈0,i〉, i = 1, 2).
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Example : double nearest-neighbour BRW

0.7 0.8 0.9 1

s
1

0.7

0.8

0.9

1

s
2

x=1.15

Figure – The projection set S0 for a specific value of x (with the
shorthand notation si for s〈0,i〉, i = 1, 2).
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Example : double nearest-neighbour BRW

0.7 0.8 0.9 1

s
1

0.7

0.8

0.9

1

s
2

x=1.2

Figure – The projection set S0 for a specific value of x (with the
shorthand notation si for s〈0,i〉, i = 1, 2).
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Example : double nearest-neighbour BRW

0.7 0.8 0.9 1

s
1

0.7

0.8

0.9

1

s
2

x=1.3

Figure – The projection set S0 for a specific value of x (with the
shorthand notation si for s〈0,i〉, i = 1, 2).
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Example : double nearest-neighbour BRW

0.7 0.8 0.9 1

s
1

0.7

0.8

0.9

1

s
2

x=1.4

Figure – The projection set S0 for a specific value of x (with the
shorthand notation si for s〈0,i〉, i = 1, 2).
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Example : double nearest-neighbour BRW

0.7 0.8 0.9 1

s
1

0.7

0.8

0.9

1

s
2

x=1.5

Figure – The projection set S0 for a specific value of x (with the
shorthand notation si for s〈0,i〉, i = 1, 2).
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Example : double nearest-neighbour BRW

0.7 0.8 0.9 1

s
1

0.7

0.8

0.9

1

s
2

x=1.6

Figure – The projection set S0 for y = 1/5 and a specific value of x
(with the shorthand notation si for s〈0,i〉, i = 1, 2).
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Example : double nearest-neighbour BRW

0.7 0.8 0.9 1

s
1

0.7

0.8

0.9

1

s
2

x=1.8

Figure – The projection set S0 for y = 1/5 and a specific value of x
(with the shorthand notation si for s〈0,i〉, i = 1, 2).

33



Example : double nearest-neighbour BRW

0.7 0.8 0.9 1

s
1

0.7

0.8

0.9

1

s
2

x=2

Figure – The projection set S0 for y = 1/5 and a specific value of x
(with the shorthand notation si for s〈0,i〉, i = 1, 2).
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Example : double nearest-neighbour BRW

0.7 0.8 0.9 1

s
1

0.7

0.8

0.9

1

s
2

x=5

Figure – The projection set S0 for y = 1/5 and a specific value of x
(with the shorthand notation si for s〈0,i〉, i = 1, 2).
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Example : double nearest-neighbour BRW

0.7 0.8 0.9 1

s
1

0.7

0.8

0.9

1

s
2

x=20

Figure – The projection set S0 for y = 1/5 and a specific value of x
(with the shorthand notation si for s〈0,i〉, i = 1, 2).
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Conjecture

If q = q̃ then S = {q, 1}, whereas if q < q̃ then S contains a
continuum of elements, whose minimum is q, and whose maximum
is q̃.

In addition, the boundary of any projection set is differentiable
everywhere except at each point that corresponds to an extinction
probability vector q(A) for some A ⊆ Xd .

We believe that this conjecture applies more generally to any
irreducible branching process with countably many types.
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