The probabilities of extinction in a branching random walk on a strip

Sophie Hautphenne

The University of Melbourne

Joint work with Peter Braunsteins (UoM & UQ)

MAM10, Hobart, February 13, 2019

1

Multi-type Galton-Watson process

- Each individual has a type i in a countable type set \mathcal{X}
- The process initially contains a single individual of type φ_0
- Each individual lives for a single generation
- At death, individuals of type *i* have children according to the progeny distribution : *p_i(r)* : *r* = (*r*₁, *r*₂,...), where

 $p_i(\mathbf{r}) =$ probability that a type *i* gives birth to r_1 children of type 1, r_2 children of type 2, etc.

All individuals are independent

Population size vector : $\boldsymbol{Z}_n = (Z_{n1}, Z_{n2}, \ldots), n \in \mathbb{N}_0$

Progeny generating vector $\boldsymbol{G}(\boldsymbol{s}) = (G_1(\boldsymbol{s}), G_2(\boldsymbol{s}), G_3(\boldsymbol{s}), \ldots)$, where $G_i(\boldsymbol{s})$ is the p.g.f. of an individual of type *i*

$$G_i(\boldsymbol{s}) = \mathbb{E}\left(\left.\boldsymbol{s}^{\boldsymbol{Z}_1}\right| \varphi_0 = i\right) = \sum_{\boldsymbol{r}} p_i(\boldsymbol{r}) \prod_{k=1}^{\infty} s_k^{r_k}, \qquad \boldsymbol{s} \in [0,1]^{\mathcal{X}}.$$

Mean progeny matrix M with elements

$$m_{ij} = \left. \frac{\partial G_i(s)}{\partial s_j} \right|_{s=1} = \mathbb{E}(Z_{1j}|\varphi_0 = i).$$

For $A \subseteq \mathcal{X}$ the extinction probability vector $\boldsymbol{q}(A)$ has entries

$$q_i(A) = \mathbb{P}\left[\lim_{n \to \infty} \sum_{\ell \in A} Z_{n\ell} = 0 \, \big| \, \varphi_0 = i \right]$$

For any $A \subseteq \mathcal{X}$ the vector $\boldsymbol{q}(A)$ satisfies the fixed point equation $\boldsymbol{s} = \boldsymbol{G}(\boldsymbol{s}).$

That is, q(A) is an element of

$$\boldsymbol{S} = \{ \boldsymbol{s} \in [0,1]^\infty : \boldsymbol{s} = \boldsymbol{G}(\boldsymbol{s}) \}.$$

Global extinction probability vector : ext. of the whole process

 $\boldsymbol{q} = \boldsymbol{q}(\mathcal{X})$

Partial extinction probability vector : ext. of all types

$$\widetilde{oldsymbol{q}} = \lim_{k o \infty} oldsymbol{q}(\{1,\ldots,k\})$$

We have

 $0 \leq q \leq \widetilde{q} \leq 1$

The set S of fixed points in the irreducible case

The vector q is the minimal non-negative element of S

Finite type case :

• The set S contains at most two elements, $q = \tilde{q}$ and 1.

Infinite type case :

- Moyal (1962): S contains at most a single solution with lim sup_i s_i < 1 (corresponding to q).
- Spataru (1989) : S contains at most two elements, q and 1.
- But, there exist cases where $q < \tilde{q} < 1$!
- Bertacchi and Zucca (2014,2015) : provided an irreducible process where *S* contains uncountably many elements.

Can we say more about S? Can we determine which elements in S correspond to extinction probability vectors q(A)?

Lower Hessenberg branching processes

• We assume *M* is lower Hessenberg

$$M = \begin{bmatrix} m_{00} & m_{01} & 0 & 0 & 0 & \dots \\ m_{10} & m_{11} & m_{12} & 0 & 0 & \\ m_{20} & m_{21} & m_{22} & m_{23} & 0 & \\ \vdots & & & \ddots \end{bmatrix}$$

- Type $i \ge 0$ individuals cannot have offspring of type j > i + 1.
- We assume $m_{i,i+1} > 0$ for all $i \ge 0$.

Under the lower Hessenberg assumption $\boldsymbol{s} = \boldsymbol{G}(\boldsymbol{s})$ can be expressed as

$$s_{0} = G_{0}(s_{0}, s_{1})$$

$$s_{1} = G_{1}(s_{0}, s_{1}, s_{2})$$

$$\vdots$$

$$s_{i} = G_{i}(s_{0}, s_{1}, \dots, s_{i}, s_{i+1})$$

$$\vdots$$

 \rightarrow It suffices to study the one-dimensional projection sets :

$$S_i = \{x \in [0,1] : \exists s \in S, \text{such that } s_i = x\}.$$

Fixed points

Illustration of S_i :

Theorem (Braunsteins and H., 2019)

Suppose $\{Z_n\}$ is irreducible. If $S = \{1\}$ then $q = \tilde{q} = 1$, otherwise

$$q = \min S$$
 and $\tilde{q} = \sup S \setminus \{1\}$.

In particular,

 $S_i = [q_i, \widetilde{q}_i] \cup 1, \quad i \ge 0.$

In an irreducible lower Hessenberg branching process, q(A) takes at most two distinct values :

•
$$\boldsymbol{q}(A) = \widetilde{\boldsymbol{q}}$$
 if $|A| < \infty$

•
$$\boldsymbol{q}(A) = \boldsymbol{q}$$
 if $|A| = \infty$

 \rightarrow for LHBPs, we have identified the location of all q(A) in S.

Now we add layers...

1-D LHBP :

2-D LHBP :

11

Now we add layers... Example : the double nearest-neighbour BRW

Depending on the parameter values, q(A) takes one of up to four different values.

Block lower Hessenberg branching processes

- With *d* ≥ 1 layers, individuals take types in *X_d* := *X* × {1,...,*d*}
- Individuals of type $\langle i, j \rangle \in \mathcal{X}_d$ are in level *i* and phase *j*
- The mean progeny matrix M is block lower Hessenberg

$$M = \begin{bmatrix} M_{11} & M_{12} & 0 & 0 & 0 & \dots \\ M_{21} & M_{22} & M_{23} & 0 & 0 \\ M_{31} & M_{32} & M_{33} & M_{34} & 0 \\ \vdots & & & \ddots \end{bmatrix}$$

- Each block is a $d \times d$ matrix
- We assume *M* is irreducible

We still have

- $q(A) = \widetilde{q}$ if $|A| < \infty$
- $q(\mathcal{X}_d) = q$.

However, now we can have q(A) > q for some $|A| = \infty$.

In particular, if A_i is the set of types in phase $i \in \{1, \ldots, d\}$, then it is possible that

 $\boldsymbol{q} < \boldsymbol{q}(A_i) < \widetilde{\boldsymbol{q}}.$

We consider sets $A \in \sigma(A_1, ..., A_d)$ and their complement \overline{A} . When do we have $q < q(A) < \tilde{q}$?

Theorem (Braunsteins and H., 2018)

Let $A \in \sigma(A_1, ..., A_d)$, and assume $\tilde{q}^{(\bar{A})} < 1$ and $\nu(\tilde{M}^{(\bar{A})}) < 1$. If, in addition, (A) $\sum_{k=0}^{\infty} (\mathbf{1}_v^{\top} \mathbf{t}_k^{(\bar{A})}) \tilde{\mathcal{M}}_{0 \to k-1}^{(\bar{A})} \mathbf{1}_v < \infty$, and (B) there exists $K < \infty$ such that $\tilde{F}_k^{(\bar{A})} \leq K \mathbf{1}_v \cdot \mathbf{1}_v^{\top}$ for all $k \geq 0$, then $\mathbf{q} < \mathbf{q}(A)$ and $\mathbf{q}(\bar{A}) < \tilde{\mathbf{q}}$.

$$A = A_1, \ \bar{A} = A_2$$

 A_2 is able to globally survive without the help of A_1 but becomes partially extinct,

(A) + (B): finite expected number of (sterile) types in A_1 from A_2

 $ightarrow oldsymbol{q} < oldsymbol{q}(A_1)$ and $oldsymbol{q}(A_2) < \widetilde{oldsymbol{q}}$

 $\rightarrow \boldsymbol{q} < \boldsymbol{q}(A_1), \boldsymbol{q}(A_2) < \widetilde{\boldsymbol{q}}$

First iteration to compute $q(A_2)$:

I = Immortal; S = Sterile

Second iteration to compute $q(A_2)$

I = Immortal; S = Sterile

Third iteration to compute $q(A_2)$

I = Immortal; S = Sterile

Proposition (Braunsteins and H., 2018)

Suppose $b + 2\sqrt{ac} < 1$ and

$$\mu := \left(1 - b - \sqrt{(1 - b)^2 - 4ac}\right)/2a > 1.$$

We have

(i) if
$$x = 1$$
 and $b + y + 2\sqrt{ac} \le 1$, then
 $q = q(A_1) = q(A_2) < \tilde{q} = 1$;

(ii) if
$$x = 1$$
 and $b + y + 2\sqrt{ac} > 1$, then
 $q = q(A_1) = q(A_2) = \tilde{q} < 1$;

(iii) if x > 1, then $\boldsymbol{q} < \widetilde{\boldsymbol{q}}$;

(iv) if $x > \mu$, then $q < q(A_1) < \widetilde{q}$ and $q < q(A_2) < \widetilde{q}$.

$$a = 1/5, b = 0, c = 1, y = 1/5 \rightarrow \mu = 1.38, b + y + 2\sqrt{ac} = 1.09$$

FIGURE – The extinction probabilities $q_{(0,1)}$, $q_{(0,1)}(A_1)$, $q_{(0,1)}(A_2)$ and $\tilde{q}_{(0,1)}$ for $1 \le x \le 3$.

We study the set of fixed points *S* by projecting it on level 0 \rightarrow 2-d projection set *S*₀

If $q = \tilde{q}$ then $S = \{q, 1\}$, whereas if $q < \tilde{q}$ then S contains a continuum of elements, whose minimum is q, and whose maximum is \tilde{q} .

In addition, the boundary of any projection set is differentiable everywhere except at each point that corresponds to an extinction probability vector q(A) for some $A \subseteq \mathcal{X}_d$.

We believe that this conjecture applies more generally to *any* irreducible branching process with countably many types.

The material of this talk is in

 P. Braunsteins and S. Hautphenne Extinction in lower Hessenberg branching processes with countably many types. To appear in *Annal of Applied Probability*, 2019.

 P. Braunsteins and S. Hautphenne
 The probabilities of extinction in a branching random walk on a strip.

ArXiv preprint arXiv :1805.07634, 2018.