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Markov modulated Brownian motion(MMBM)

MMBM is a two-dimensional Markov process composed of level
process F (t) and phase process J(t).

The phase process J is an irreducible continuous-time Markov process
with finite state space S, infinitesimal generator Q, and stationary
probability vector π.

The state space of J is finite and partitioned into certain subsets as
S = Sb ∪ Su ∪ Sd ∪ S0.
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Markov modulated Brownian motion(MMBM)

The level process F is defined as the following stochastic integral

F (t) = a+

∫ t

0
µJ(u)du+

∫ t

0
σJ(u)dB(u), a ≥ 0, (1) {def-MMBFde}

where, {B(·)} is a standard Brownian motion independent of J and

(i) σi > 0 and µi is an arbitrary real number for i ∈ Sb,

(ii) σi = 0 and
µi > 0 for i ∈ Su
µi < 0 for i ∈ Sd
µi = 0 for i ∈ S0

The level process behaves like a Brownian motion, but its drift and
diffusion parameter change depending on the specific Markovian
environmental state of J .

The MMBM can be considered as a generalization of the classical
Brownian motion.
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Beginning of MMBM

MMBM was first introduced by Asmussen(1995, STM). In the paper,
he derived the stationary distribution of the one-sided MMBM using
time reversal arguments and so-called the time-changed process.

Rogers(1994, AAP), referring to an unpublished version of
Asmussen’s paper, considered a special case of the two-sided reflected
MMBM and provided a simple form of its steady-state distribution
using Martingale techniques and Wiener-Hopf factorizations.

Ramaswami(1999, The ITC paper) put the MMBM directly within
the framework of Matrix Analytic Methods and the level crossing path
based framework. He also drew connections with QBDs in a way that
led to quadratically convergent algorithms. That was put on a firm
theoretical framework by him and Ahn in a series of papers.
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Analyzing tool and problem

From previous research, one can see that the Laplace-Stieltjes
transform matrix of first passage times and first passage probability
matrix in the MMBM play crucial roles in its analysis.

Laplace-Stieltjes transform matrix
I Let τ = inf{t > 0 : F (t) < 0}, a ≥ 0, s a complex number with

non-negative real part, and χ(·) the indicator function.
I LST matrix is defined as the following equation: for i, j ∈ S,

[f̂(s, a)]i,j = E[e−sτχ(J(τ) = j, τ <∞) | F (0) = a, J(0) = i]. (2)

First passage probability matrix

[f̂(0, a)]i,j = P [J(τ) = j, τ <∞ | F (0) = a, J(0) = i]. (3)
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Analyzing tool and problem

Especially, most of formulas concerning to MMBM can be represented
with H and Ψ matrices, which are defined as:

eH(s)a =
{

[f̂(s, a)]i,j

}
i,j∈Sb∪Sd

, H := H(0) (4)

Ψ(s) =
{

[f̂(s, 0)]i,j

}
i∈Sb∪Su,j∈Sb∪Sd

, Ψ := Ψ(0) (5)

Note that H matrices are (|Sb|+ |Sd|) dimensional square matrices,
but the dimension of Ψ matrices is (|Sb|+ |Su|)× (|Sb|+ |Sd|).

A related problem is that it is impossible to obtain closed-form
formulas of these matrices. Therefore the development of numerical
methods for their computation has received considerable attention in
the literature.
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Matrix equations for computation

Several numerical methods have been suggested in the literature.

In our research, we restrict our attention to
I the algorithms based on the quadratic matrix equation(QME)

developed by Asmussen(1995)

I the algorithms based on non-symmetric algebraic Riccati
equation(NARE) derived by Ahn and Ramaswami(2017).
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Matrix equations for computation: QME

Asmussen(1995) presented a quadratic matrix equation for H when
σi > 0 for all i ∈ S, which is of the form

∆σ2/2H
2 + ∆µH +Q = 0, (6) {QME}

where ∆σ2/2 = diag{σ2
i /2, i ∈ S} and ∆µ = diag{µi, i ∈ S}.

Based on this QME, Asmussen(1995), Karandikar and Kulkarni(1995),
and Nguyen and Latouche(2015) proposed the algorithms using a
block diagonal decomposition, the eigen-decomposition of
linearization, and the Cyclic Reduction method, respectively.
More recently, Nguyen and Poloni(2017) proposed a quadratically
convergent algorithm of our special attention.

I The algorithm is based on the Cyclic Reduction and GTH-like method
and it is an extension of the algorithm developed by Nguyen and
Latouche [15].

I They proved the componentwise accuracy and stability of their
algorithm, and also demonstrated its superiority to other existing
algorithms with numerical examples.
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Matrix equations for computation: NARE

The form of NARE, AZ + ZB + ZCZ +D = 0, was introduced by
Rogers(1994) in relation to an MMBM without Brownian
components, which is called an MMFF in the literature.

An NARE for Ψ(s) of the MMFF was observed by Ahn and
Ramaswami (2004, Theorem 12), but they did not give an attention
to it.

Later, Bean, O’Reilly, and Peter(2005) investigated furthermore the
NARE of the MMFF and showed its probabilistic meaning and
usefulness through their subsequent papers.

An NARE for the MMBM was developed by Ahn and
Ramaswami(2017, STM).
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Background of our research

Our approach to analyzing MMBM was initiated by Ramaswami.

Ramaswami published a paper in 1999 to show that the MMFF can
be analyzed using QBDs and matrix analytic methods.

Later, Ramaswai also published a paper in 2013, in which he
constructed a sequence of simple MMFFs and showed its
weak-convergence to the Brownian motion.

This paper was extended by Ahn and Ramaswami(2017) to analyze
MMBM, in which a variant of the Ψ matrix satisfies an NARE
AZ + ZB + ZCZ +D = 0 and H can be represented as
H = B + CX, where X is the minimal non-negative solution of the
NARE.
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Background of our research

Several results on the one and two-sided reflected MMBM with or
without ph-type jumps, which are represented by the minimal
non-negative solution of the NARE, were published in its subsequent
papers.

Concerning the results, it has to be mentioned that some of the
subsequent papers rely heavily on the paper of Bean and
O’Reilly(2013) titled by “A stochastic two-dimensional fluid model”.

I also have to mention that various results on the extension of
Ramaswami(2013) have been achieved by Latouche and his
colleagues.
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Motivation for our research

In Ahn and Ramaswami(2013), they showed that the minimal solution
of their NARE can be computed by so-called the Newton’s method,
which is known quadratically convergent.

Later, it was observed that the proposed algorithm failed to produce
numbers or gave unexpected values when MMBM is null-recurrent.

To resolve the observed problem, Meini and I started to investigate
Ahn and Ramaswami’s NARE and intended to propose algorithms.

We also wanted to check how our proposed algorithms perform in
comparison to existing algorithms for MMBM.
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Contribution of our paper

The contribution of our paper consist of three parts:
I we show directly a relation between the solutions of the NARE and the

quadratic matrix equation by Asmussen without limit arguments as in
Ahn and Ramaswami(2017).

I we proposed doubling algorithms based on the shifted NARE for
computation of Ψ and H matrices of the MMBM with non-negative
diffusion parameter(σ ≥ 0), and show that their quadratic convergence
even when the MMBM is null-recurrent.

I We discuss about theoretical comparison of the doubling algorithms to
the Nguyen and Poloni’s algorithm, which is confirmed by numerical
examples.

In this presentation, we will talk about the first and second parts, and
also show the results of our numerical study.

For simple presentation, our talk will be restricted to the first-passage
probability matrices of the Brownian case. That is, we assume that
the diffusion parameter of the MMBM is positive and s = 0.
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Section II. Relation between the solutions of the NARE
and QME

The relation is proved by using the theories on matrix polynomials,
that is, the results on matrix pencil, linearization and standard triple
of matrix polynomials.
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Ahn and Ramaswami’s work on NARE for MMBM

Ramaswami(2013) considered a sequence of simple MMFF’s (Jbn, F
b
n)

of which the infinitesimal generator and rate vector are given as

Qn =

(
−n

2
n
2

n
2 −n

2

)
and µn =

(√
n

2
−
√
n

2

)
, (7)

and showed weak convergence of the level process F bn to Brownian
motion.

Later, Ahn and Ramaswami(2016) considered a sequence of MMBM
of which the level process Fn is defined as

Fn(t) = a+

∫ t

0
µJ(u)du+

∫ t

0
σJ(u)dF

b
n(u) (8)

and showed its weak convergence to the level process F (t) of the
MMBM defined as

F (t) = a+

∫ t

0
µJ(u)du+

∫ t

0
σJ(u)dB(u). (9)
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Ahn and Ramaswami’s work on NARE for MMBM

They also proved the weak-convergence of the first passage time
τn = inf{t ≥ 0 : Fn(t) ≤ 0} to τ = inf{t ≥ 0 : F (t) ≤ 0} using the
limit theorems of Lindvall(1974,AAP).

This weak convergence guarantees that limn→∞Hn = H.

With η being the first transition time of J , they considered the
expansion of the following two probability matrices:

Ψn = P [J(τn) = j, τn <∞ | Fn(0) = 0, J(0) = i] (10)

= I +

√
2

n
Ψ1 +

2

n
·+ · · · , (11)

Ψ(1)
n = P [J(τn) = j, τn < η | Fn(0) = 0, J(0) = i] (12)

= I +

√
2

n
Ψ

(1)
1 +

2

n
·+ · · · (13)
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Ahn and Ramaswami’s work on NARE for MMBM

Then, they proved that Ψ1 −Ψ
(1)
1 is the minimal non-negative

solution of the following NARE

AZ + ZB + ZCZ +D = 0, (14) {Psi*:Riccati:0}

of which the coefficient matrices, with Λ = diag{−[Q]ii},
∆σ = diag{σi, i ∈ S}, ∆µ = diag{µi, i ∈ S} and
∆ = ∆−2

σ ∆µ + ∆−1
σ (2Λ + ∆−2

σ ∆2
µ)1/2, are given as

A = ∆−2
σ ∆µ −∆−1

σ (2Λ + ∆−2
σ ∆2

µ)1/2, B = −∆, (15)

C = ∆−1
σ , and D = 2∆−1

σ (Q+ Λ).

They also showed that H = limn→∞Hn = B + C(Ψ1 −Ψ
(1)
1 ).

Hereafter, we use X to denote the minimal non-negative solution of
the NARE (14).
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Relation between the solutions of the NARE and QME

In relation to the QME ∆σ2/2U
2 + ∆µU +Q = 0, we consider the

following monic matrix polynomial given in Nguyen and Poloni(2017)

P (λ) = λ2I − 2λ∆−2
σ ∆µ + 2∆−1

σ Q∆−1
σ . (16)
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Relation between the solutions of the NARE and QME

Letting L =
(−B −C
D A

)
, we can verify that the matrix pencil

W (λ) = λI − L can be factored as

W (λ) = E(λ)

[
P (λ) 0

0 I

]
F (λ), (17) {eq:lin}

with

E(λ) =
(

0 I
−I (λI−(D1−D2(s))∆σ

)
, F (λ) =

(
∆σ 0

λI−(D1+D2(s)) ∆−1
σ

)
.

Equation (17) shows that W (λ) is a linearization of the matrix
polynomial P (λ), that is, E(λ) and F (λ) are matrix polynomials such
that det(E(λ)) and det(F (λ)) are different from zero and
independent of λ.
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Relation between the solutions of the NARE and QME

This linearization implies that, for any λ such that detP (λ) 6= 0,

[
∆σ 0

]
(λI − L)−1

[
0
−I

]
= P (λ)−1. (18) {StanTriple}

Letting V = ( ∆σ 0 ) and U =
(

0
−I
)
, (18) implies that (V,L, U) is a

standard triple for P (λ) by Theorem 2.6 in [10].

Hence, from the definition of the standard triple and Proposition 2.1
in [10], the following two equations hold:

V L2 − 2∆−2
σ ∆µV L+ 2∆−1

σ Q∆−1
σ V = 0 (19) {StanTriEq1}

L2U − 2LU∆−2
σ ∆µ + 2U∆−1

σ Q∆−1
σ = 0 (20) {StanTriEq2}
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Relation between the solutions of the NARE and QME

With K =
(
I 0
X I

)
, we define L̃ = K−1LK. Then we can verify that

V K = V , K−1U = U , and

L̃ =
(
−(B+CX) −C

0 A+XC

)
and L̃2 =

(
(B+CX)2 BC−CA

0 (A+XC)2

)
. (21)

Multiplying (19) on the right by K(s) and (20) on the left by K(s)−1

yields

V L̃2 − 2∆−2
σ ∆µV L̃+ 2∆−1

σ Q∆−1
σ V = 0, (22) {eq2:sp1}

L̃2U − 2L̃U∆−2
σ ∆µ + 2U∆−1

σ Q∆−1
σ = 0, (23) {eq2:sp2}
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Relation between the solutions of the NARE and QME

Finally, we can derive the following equations from Equations (22)
and (23)

∆σ2/2(B + CX)2 + ∆µ(B + CX) +Q = 0 (24)[
∆σ(A+XC)∆−1

σ

]2
∆σ2/2 −

[
∆σ(A+XC)∆−1

σ

]
∆µ +Q = 0.

That is, the matrices B +CX and ∆σ(A+XC)∆−1
σ are solutions of

the quadratic matrix equations ∆σ2/2U
2 + ∆µU +Q = 0 and

U2∆σ2/2 − U∆µ +Q = 0, respectively.
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III. Doubling Algorithms
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Preliminaries for doubling algorithms

The matrix M =
( −B −C
−D −A

)
is an irreducible singular M -matrix. That

is, M can be represented as M = ρ(Z)− Z with Z ≥ 0 and ρ(Z)
denoting the spectral radius of Z.

the left and right eigenvectors corresponding to the eigenvalue 0 are
given as

u := ( u1
u2 ) =

(
∆−1Λπ′

0.5∆σπ′

)
and v := ( v1

v2 ) =
(

1
∆∆σ1

)
,

It holds that

m = u′1v1 − u′2v2 = −
∑
i∈S

[π]i[µ]i = −µ.

Note that −m is the average drift of the MMBM (F, J).

According to the sign of m, the MMBM is called
transient(m < 0⇔ µ > 0), positive recurrent(m > 0⇔ µ < 0), or
null-recurrent(m = 0⇔ µ = 0)
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Preliminaries for doubling algorithms

BZ + ZA+ ZDZ + C = 0 is called the dual NARE of the original
NARE AZ + ZB + ZCZ +D = 0. We denote by Y the minimal
non-negative solution of the dual NARE.

We define R = −B − CX and S = −A−DY , and denote their
Cayley transforms by Rγ and Sγ , that is,

Rγ = (R+ γI)−1(R− γI) and Sγ = (S + γI)−1(S − γI).
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Structure-preserving doubling algorithm (SDA)

The SDA presented in [13] is given in Table 1.

SDA for an NARE AZ + ZB + ZCZ +D = 0

1. Choose γ ≥ max{−[A]ii,−[B]ii, i ∈ S} and set(
E0 G0

H0 F0

)
=

(
γI −B −C
−D γI −A

)−1(
γI +B C
D γI −A

)
2. Ek+1 = Ek(I −GkHk)

−1Ek;
Fk+1 = Fk(I −HkGk)

−1Fk;
Gk+1 = Gk + Ek(I −GkHk)

−1GkFk;
Hk+1 = Hk + Fk(I −HkGk)

−1HkEk;

3. Z = H∞;

Table: Structure-preserving doubling algorithm
{TabSDAo}
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Theorem 4.1 of [12]

Theorem 1 (a) If m > 0 (positive recurrent case), then ρ(Rγ) = 1 and
ρ(Sγ) < 1. Furthermore, {Hk} converges to X quadratically with

lim sup
k→∞

2k
√
||Hk −X|| ≤ ρ(Rγ)ρ(Sγ) = ρ(Sγ), (25)

{Fk} converges to 0 quadratically with lim supk→∞
2k
√
||Fk|| ≤ ρ(Sγ),

and {Ek} is bounded. The notation ||A|| denotes the maximum of the
absolute values of the elements in a matrix A.
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Theorem 4.1 of [12]

Theorem 1 (b) If m < 0 (transient case), then ρ(Rγ) < 1 and ρ(Sγ) = 1.
Furthermore, {Hk} converges to X quadratically with

lim sup
k→∞

2k
√
||Hk −X|| ≤ ρ(Rγ)ρ(Sγ) = ρ(Rγ), (26)

{Ek} converges to 0 quadratically with lim supk→∞
2k
√
||Ek|| ≤ ρ(Rγ),

and {Fk} is bounded.
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Theorem 4.1 of [12]

Theorem 1 (c) If m = 0 (null recurrent case), then ρ(Rγ) = 1 and
ρ(Sγ) = 1. In this case, {Hk} converges to X and {Ek}, {Fk} are
bounded.
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Alternating-directional doubling algorithm(ADDA) by
Wang, Wang, and Li [18]

The ADDA algorithm for NARE, which was developed by Wang,
Wang, and Li [18], can be considered to be an extension of the SDA.

It differs from the SDA only in its initial setup that build E0, F0, G0,
and H0.

Initial setup

α ≥ αopt := max{−[A]ii} and β ≥ βopt := max{−[B]ii}, (27) {ADDA:alpha:beta}

(
E0 G0

H0 F0

)
=

(
αI −B −C
−D βI −A

)−1(
βI +B C
D αI −A

)
.(28)
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Theorems 3.2 and 3.3 of Wang, Wang, and Li [18]

Theorem 2

(a) It holds that 0 ≤ Ĥk ≤ Ĥk+1 ≤ X and

lim sup
k→∞

2k
√
||Ĥk −X|| ≤ ρ(Rβ,α)ρ(Sα,β), (29) {ADDA:ConvRate}

where Rβ,α = (βR− I)(αR+ I)−1 and Sα,β = (αS − I)(βS + I)−1.
The optimal α and β that minimize the right-hand side of (29) are
α = αopt and β = βopt.

(b) For the transient and positive recurrent cases, ρ(Rβ,α)ρ(Sα,β) < 1.

(c) For the null-recurrent case, ρ(Rα,β)ρ(Sα,β) = 1.
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ADDA and SDA

The SDA is a particular case of the ADDA. That is, if we let
α = β = γ, then the ADDA is equivalent to the SDA.

Wang, Wang, and Li also showed that the upper-bound is less than
that of the SDA, that is, ρ(Rβ,α)ρ(Sα,β) ≤ ρ(Rγ)ρ(Sγ) with
γ = max{α, β}. Hence the ADDA converges faster than the SDA
(Section 5 of [18]).
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Shifted NARE

As for the null-recurrent case, it is known that the SDA and ADDA
can show a linear convergence of rate 1/2 [12, 18].

Guo, Iannazzo, and Meini [12] proposed a shift technique for
improving the convergence rate for the null-recurrent case.

Recall that the left and right eigenvectors corresponding to the
eigenvalue 0 of M =

( −B −C
−D −A

)
are given as

u := ( u1
u2 ) =

(
∆−1Λπ′

0.5∆σπ′

)
and v := ( v1

v2 ) =
(

1
∆∆σ1

)
,

We let υ = (u′1)−1 and define p = (p′1 p′2)′ = (v′1)−11 so that
p > 0 and p′v = 1.
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Shifted NARE

For positive and null recurrent cases, the shifted NARE is given as

ÂZ + ZB̂ + ZĈZ + D̂ = 0 (30) {NARE:shift}

where, with a scalar η > 0,

Â = A+ ηv2p
′
2, B̂ = B − ηv1p

′
1, Ĉ = C − ηv1p

′
2, D̂ = D + ηv2p

′
1.

For transient case, the shifted NARE is given as

ÂtZ + ZB̂t + ZĈtZ + D̂t = 0, (31) {shift:NARE:transient}

where Ât = B′ + ηυu11
′, B̂t = A′ − ηυu21

′, Ĉt = C ′ − ηυu21
′,

D̂t = D′ + ηυu11
′.

In this case, the transformed NARE (31) is positive recurrent and the
minimal nonnegative solution is equal to X ′.
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Shifted NARE: positive and null recurrent case

Theorem 3 Let Ĥk denote the Hk-matrix in the k-th iteration of the SDA
when it is applied to the shifted NARE (30). Then Ĥk approximates X
which is the minimal nonnegative solution of the NARE (14) and its
convergence is quadratic with

lim sup
k→∞

2k
√
||Ĥk −X|| ≤ ρ(R̂γ)ρ(Ŝγ) < ρ(Rγ)ρ(Sγ) ≤ 1,

where R̂γ and R̂γ are the Cayley transform of R̂ = −B̂ − ĈX and

Ŝ = −Â− D̂Ŷ with Ŷ being the minimal solution of the dual NARE of
(30).
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Shifted NARE: positive and null recurrent case

Guo, Iannazzo, and Meini showed that ρ(R̂γ) < ρ(Rγ) = 1 and

ρ(Ŝγ) = ρ(Sγ) ≤ 1.

When the ADDA is applied to the shifted NARE, the upper bound of
the limit is ρ(R̂β,α)ρ(Ŝα,β)
where

R̂β,α = (βR̂− I)(αR̂+ I)−1 and Ŝα,β = (αŜ − I)(βŜ + I)−1.

It holds that ρ(R̂β,α)ρ(Ŝα,β) ≤ ρ(R̂γ)ρ(Ŝγ) < ρ(Rγ)ρ(Sγ) ≤ 1 with
γ = max{α, β}.
Therefore, when the SDA and ADDA are applied to the shifted
NARE, the quadratic convergence is guaranteed even for the
null-recurrent case.
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IV. Numerical study
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Example 1: Brownian case

We consider 10, 100, 500 for the dimension n of Q.

We let µ = µ1n and σ = σ1n with µ = 0, 1, 10 and σ = 1, 10.

We determine the values of the off-diagonal elements of Q using
ceiling number of the uniform random numbers in (0, 100), then
diagonal elements are given so that the row sums of Q are to be 0.

With these choices, for any Q, the MMBM is simply an ordinary
Brownian motion with drift parameter µ and diffusion parameter σ.

Hence, with a being the initial level, the first passage probability is
explicitly given as P (τ <∞|B(0) = a) = exp(−a(µ+ |µ|)/σ2). (See
[8].) In this example, we let a = 3.

Ahn and Meini ( ) MMBM Matrix Equations and Algorithms 39 / 45



Algorithms

In our paper, we compare the following algorithms, which are
I A1 : SDA applied to the original NARE;
I A2 : ADDA applied to the original NARE;
I A3 : SDA applied to the shifted NARE;
I A4 : ADDA applied to the shifted NARE;
I NP1 : Nguyen and Poloni’s algorithm without using GTH-like

algorithm;
I NP2 : Nguyen and Poloni’s algorithm using GTH-like algorithm

(Algorithm 3 in [16]).

But, in this talk, we present the results only on A3, A4 and NP2. It
is because the results show that A3 and A4 are better than A1 and
A2, and NP2 is better than NP1.
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Measures and stopping criterion

Measures
I To compare the accuracy of the algorithms, we consider the absolute

error values, that is, the differences between the exact
value(e−3(µ+|µ|)/σ

2

) of the first passage probability and its numerical
values computed by the algorithms.

I To compare the speed of the algorithms, we take into account the total
number of iterations and cpu-times necessary for the algorithms to
produce their values of the first passage probability.

For stopping criterion, we use the maximum matrix norm and the
value 10−12.
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Example 1: log10 (Absolute error value)

{fig1}
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Example 1: Iteration numbers

{fig2}
Ahn and Meini ( ) MMBM Matrix Equations and Algorithms 43 / 45



Example 1: CPU times

{fig3}
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V. Concluding Remarks

we show that the numerical algorithms solving the NARE developed
by Ahn and Ramaswami can be better options.

In particular, we show that the quadratically convergent doubling
algorithms (A3- and A4-Algorithms) performs better than the
NP2-Algorithm through numerical examples.

There exist other interesting methods solving NARE’s such as
Newton-method, deflating technique, and GTH-like algorithm
[11, 19, 9], which are not considered in this paper. We investigate
these algorithms in our further studies.
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