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A “quasi-stationary” distribution
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A “quasi-stationary” distribution

Think of an observer who at some time t is aware of the occupancy of some patches, yet
cannot tell exactly which of n patches are occupied.

What is the chance of there being
precisely i patches occupied?

If we were equipped with the full set of state probabilities pi (t) = P(X (t) = i),
i = 0, 1, . . . , n, we would evaluate the conditional probability

ui (t) = P(X (t) = i |X (t) 6= 0) =
pi (t)

1− p0(t)
,

for i in the set C = {1, . . . , n} of transient states.

Then, in view of the behaviour observed in our simulation, it would be natural for us to
seek a distribution u = (ui , i ∈ C) over C such that if ui (t) = ui for a particular t > 0,
then ui (s) = ui for all s > t.

Such a distribution is called a stationary conditional distribution or quasi-stationary
distribution (QSD). It might then also be a limiting conditional distribution (LCD) in
that ui (t)→ ui as t →∞.
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The QSD for the n-patch metapopulation model
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Evanescence - yes, there is a QSD
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Quasi-stationary distributions

Consider the setting of a non-explosive continuous-time Markov chain X = (X (t), t ≥ 0)
whose state space consists of a communicating class C and an absorbing state 0 which is
accessible from C : indeed reached with probability 1.

It is easy to prove that a distribution u = (ui , i ∈ C) is a QSD iff, for some µ > 0,

uP(t) = e−µtu, t > 0, (1)

where P(t) = (pij(t), i , j ∈ C) are the transition probabilities restricted to C .

On differentiating both sides near t = 0 we get

uQ = −µu, (2)

where Q = (qij , i , j ∈ C) is the q-matrix of transition rates (again restricted to C).

This can be justified:

Pollett, P.K. (1986) On the equivalence of µ-invariant measures for the minimal process and its q-matrix. Stochastic Process.
Appl. 22, 203–221.
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Quasi-stationary distributions

A distribution u = (ui , i ∈ C) is a QSD iff, for some µ > 0,

uP(t) = e−µtu, t > 0, (1)

in which case
uQ = −µu. (2)

The (more interesting) converse∗, when a distribution u satisfying (2) also satisfies (1)
(and hence is a QSD), happens iff µ =

∑
i∈C uiqi0.

∗Pollett, P.K., and Vere-Jones, D. (1992) A note on evanescent processes. Aust. J. Statist. 34, 531–536.

Note that (1) entails
Pu(X (t) ∈ C) = e−µt .

There is a maximum decay rate†, and the corresponding QSD is termed “extremal”.

†Kingman, J.F.C. (1963) The exponential decay of Markov transition probabilities. Proc. London Math. Soc. 13, 337–358.
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Limiting conditional distributions

As for when a QSD is also a LCD, the picture is complete for irreducible (C irreducible)
finite-state Markov chains: the QSD u is unique, and, for all initial distributions
w = (wi , i ∈ C), u is the LCD.

Darroch, J.N., and Seneta, E. (1967) On quasi-stationary distributions in absorbing continuous-time finite Markov chains. J.
Appl. Probab. 4, 192–196.

The same can be said for reducible finite-state Markov chains, but we need to take into
communicating class ordering an accessibility under w .

Van Doorn, E.A., and Pollett, P.K. (2013) Quasi-stationary distributions for discrete-state models. European Journal of Opera-
tional Research 230, 1–14.

Otherwise, the picture it is incomplete/unsatisfactory, focussing on the notion of
λ-positive recurrence, which is difficult to check (especially from Q), and, anyway, is not
necessary for the existence of an LCD.
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Quasi-stationary distributions

The picture is also complete for specific models, such as birth-death processes:

∗Van Doorn, E.A. (1991) Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes. Adv.
Appl. Probab. 23 683–700.

∗Kijima, M., Nair, M.G., Pollett, P.K., and van Doorn, E. (1997) Limiting conditional distributions for birth-death processes.
Adv. Appl. Probab. 29, 185–204.

Conditions are given to delineate three possible cases:

(i) no QSD, and ui (t)→ 0 (fixed initial state i).

(ii) a unique QSD u, and ui (t)→ ui (fixed initial state i).

(iii) a one-parameter family of QSDs, and we get convergence (again for fixed initial
state) to the extremal QSD.
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Domain of attraction problem

Let u = (ui , i ∈ C) be a given QSD. If u is a LCD for some initial distribution
w = (wi , i ∈ C), that is

lim
t→∞

Pw (X (t) = j |X (t) 6= 0) = uj , j ∈ C ,

we say that w is in the domain of attraction of u.

Exercise 1 : Identify the domains of attraction.
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The Yaglom limit

Yaglom∗ was the first to identify explicitly a LCD, establishing the existence of such for
the subcritical Bienaymé-Galton-Watson branching process (Heathcote, Seneta, and
Vere-Jones† relaxed the condition the variance of number of offspring be finite).

∗Yaglom, A.M. (1947) Certain limit theorems of the theory of branching processes. Dokl. Acad. Nauk SSSR 56,
795–798 (in Russian).

†Heathcote, C.R., Seneta, E., and Vere-Jones, D. (1967) A refinement of two theorems in the theory of branching
processes. Teor. Verojatnost. i Primenen. 12, 341–346; Theory Probab. Appl. 12, 297–301.

Theorem If the expected number m of offspring is less than 1, then

ui = lim
n→∞

P(Xn = i |Xn 6= 0, X0 = 1), i ∈ C ,

exists and defines a proper probability distribution u = (ui , i ∈ C) over C .
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Origins of the idea

The idea of a limiting conditional distribution goes back further than Yaglom, at least to
Wright∗ in his discussion of gene frequencies in finite populations:

“As time goes on, divergences in the frequencies of factors may be expected to increase
more and more until at last some are either completely fixed or completely lost from the
population. The distribution curve of gene frequencies should, however, approach a definite
form if the genes which have been wholly fixed or lost are left out of consideration.”

∗Wright, S. (1931) Evolution in Mendelian populations. Genetics 16, 97–159.

The idea of “quasi stationarity” was crystallized by Bartlett†:

“While presumably on the above model [for the interactions between active and passive forms
of flour beetle] extinction of the population will occur after a long enough time, this may
(for a deterministic ‘ceiling’ population not too small, but fluctuations relatively small) be
so long delayed as to be negligible and an effective or quasi stationarity be established.”

†Bartlett, M.S. (1957) On theoretical models for competitive and predatory biological systems. Biometrika 44, 27–42.
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Origins of the idea

Bartlett∗ later coined the term “quasi-stationary distribution”:

“It may still happen that the time to extinction is so long that it is still of more relevance to
consider the effectively ultimate distribution (called a ‘quasi-stationary’ distribution) of [the

population process] N.”

∗Bartlett, M.S. (1960) Stochastic Population Models in Ecology and Epidemiology. Methuen, London. [Page 24]

He then outlined an approach to modelling quasi stationarity whereby the process is
resurrected after extinction, and the resulting stationary distribution evaluated (extinction
in finite mean time implies that this “return process” is positive recurrent).
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He then outlined an approach to modelling quasi stationarity whereby the process is
resurrected after extinction, and the resulting stationary distribution evaluated (extinction
in finite mean time implies that this “return process” is positive recurrent).

Ewens† coined term return process, and pseudo-transient distribution:

†Ewens, W.J. (1963) The diffusion equation and a pseudo-distribution in genetics. J. Royal Statist. Soc., Ser. B 25, 405–412.

†Ewens, W.J. (1964) The pseudo-transient distribution and its uses in genetics. J. Appl. Probab. 1, 141–156.
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He then outlined an approach to modelling quasi stationarity whereby the process is
resurrected after extinction, and the resulting stationary distribution evaluated (extinction
in finite mean time implies that this “return process” is positive recurrent).

Darroch and Seneta† had reservations:

“. . . we mention another objection to it, namely that a(α) [the pseudo-transient distribution]
depends on α [the resurrection law] to such an extent that it can be made into almost any
distribution over T [C here] by suitable choice of α.”

†Darroch, J.N., and Seneta, E. (1965) On quasi-stationary distributions in absorbing discrete-time finite Markov chains. J. Appl.
Probab. 2, 88–100.
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However, these distributions appear to be “close”
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The quasi-stationary distribution (bars), and the pseudo-transient distribution when the resurrec-
tion law assigns all its mass to state 1 (circles), for the earlier 20-patch metapopulation model.
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The return process and return map

Define the return process Xν with state space C to have exactly the same behaviour
as X while in C , but, on reaching 0, to be returned instantly to C according to a
distribution ν = (νi , i ∈ C). Thus, its q-matrix Qν will have entries

qν
ij = qij + qi0νj , i , j ∈ C .

Under extra the condition that X is absorbed in finite mean time, Xν will have a
stationary distribution πν .

The map Φ : ν 7→ πν is called the return map, and it is clear that any QSD u is is a
fixed point of Φ (that is, u = πu ), because∑

i∈C

uiq
u

ij = 0 iff
∑
i∈C

uiqij = −µuj , where µ =
∑
i∈C

uiqi0.

Under mild conditions the return map is contractive, and iteration leads us to the
extremal QSD∗.

∗Ferrari, P.A., Kesten, H., Mart́ınez, S., and Picco, P. (1995) Existence of quasistationary distributions: a renewal dynamical
approach. Ann. Probab. 23, 501-521.
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Define the return process Xν with state space C to have exactly the same behaviour
as X while in C , but, on reaching 0, to be returned instantly to C according to a
distribution ν = (νi , i ∈ C). Thus, its q-matrix Qν will have entries
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The QSD and πν can be close

Write

dTV(u, v) := sup
A⊆C
|u{A} − v{A}| =

1

2

∑
k∈C

|uk − bk |

for total variation distance between two probability measures, u = (ui , i ∈ C) and
v = (vi , i ∈ C), on C .

Under mild conditions, X has a unique QSD u, and, for any probability measure ν on C ,
we have dTV(u,πν) ≤ B. The bound is expressed solely in terms of hitting probabilities
and expected hitting times of X .

Barbour, A.D., and Pollett, P.K. (2010) Total variation approximation for quasi-equilibrium distributions. J. Appl. Probab. 47,
934–946.

We argue that the bound is expected to be small when the process spends a long time in
quasi equilibrium.

For example, in the n-patch metapopulation model, the bound is geometrically small
in n.
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The QSD and πν can be close - precise statement

Write
τA := inf{t > 0 : X (t) ∈ A, X (s) /∈ A for some s < t}

for the first entrance time of a set A.

Theorem Suppose that there exist s ∈ C , p > 0, and T <∞, such that

(i) Pk(X hits s before 0) ≥ p ;

(ii) Ek(τ{s,0}) ≤ T ,

uniformly for all k ∈ C , and suppose that 2UT/p < 1, where

U =
∑
k∈C

qk0

qkEk(τ{k,0})
(qk = −qkk).

Then, X has a unique QSD u, and, for any probability measure ν on C ,

dTV(u,πν) ≤ 2UT/p.

For n-patch metapopulation model we may take s := bn(1− e/c)c.
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The QSD and πν are close for any ν under the quasi stationary regime
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The quasi-stationary distribution (bars), and the pseudo-transient distribution when the resurrec-
tion law assigns all its mass to state 1 (circles), for the earlier 20-patch metapopulation model.
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The return map

The return map thus provides a useful alternative to modelling quasi stationarity.

It is usually simpler to evaluate than the QSD. For example, for absorbing birth-death
processes on C = {1, 2, . . . ,N} (N ≤ ∞), with birth rates (bi , i ∈ C) and death rates
(di , i ∈ C), ν 7→ πν is given by

πν
i = πν

1
d1

di

i∑
j=1

i−1∏
k=j

bk
dk

aνj , i = 1, 2, . . . ,N,

where aνj =
∑N

l=j νl .

Clancy, D., and Pollett, P.K. (2003) A note on quasi-stationary distributions of birth-death processes and the SIS logistic epidemic.
J. Appl. Probab. 40, 821–825.

One can approximate the extremal QSD to any level accuracy by iterating the return
map.
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The QSD and πν with ν = δ{1} are not close when X is evanescent
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The quasi-stationary distribution (bars), and the pseudo-transient distribution when the resurrec-
tion law assigns all its mass to state 1 (circles), for the earlier 20-patch metapopulation model.
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The QSD and πν with ν = δ{1} (evanescent regime)
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The QSD and πν under 2 iterations of the return map (evanescent regime)
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The QSD and πν under 2 iterations of the return map (evanescent regime)
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The QSD and πν under 4 iterations of the return map (evanescent regime)
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The QSD and πν under 5 iterations of the return map (evanescent regime)

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Phil. Pollett (The University of Queensland) Quasi stationarity 28 / 29



The QSD and πν are close for any ν under the quasi stationary regime
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The quasi-stationary distribution (bars), and the pseudo-transient distribution (circles), for the
earlier 20-patch metapopulation model.
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