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Multi-type Galton-Watson process

Each individual has a type i in a countable type set X ≡ N0

The process initially contains a single individual of type ϕ0

Each individual lives for a single generation

At death, individuals of type i have children according to the
progeny distribution : pi (r) : r = (r0, r1, . . .), where

pi (r) = probability that a type i gives birth to r0 children of
type 0, r1 children of type 1, etc.

All individuals are independent
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Multi-type Galton-Watson process

Population size : Zn = (Zn1,Zn2, . . .), n ∈ N0, where

Zni : # of individuals of type i in the nth generation

{Zn}n≥0 : ∞-dim Markov process with abs. state 0 = (0, 0, . . .).
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Multi-type Galton-Watson process

Progeny generating vector G(s) = (G1(s),G2(s),G3(s), . . .), where
Gi (s) is the progeny generating function of an individual of type i

Gi (s) = E
(
sZ1

∣∣∣ϕ0 = i
)

=
∑
r

pi (r)
∞∏
k=1

srkk , s ∈ [0, 1]X .

Mean progeny matrix M with elements

mij =
∂Gi (s)

∂sj

∣∣∣∣
s=1

= expected number of direct offspring of type j

born to a parent of type i
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Extinction probabilities

Global extinction probability vector q = (q0, q1, q2, . . .), with
entries

qi = P
[

lim
n→∞

Zn = 0
∣∣ϕ0 = i

]
Partial extinction probability vector q̃ = (q̃0, q̃1, q̃2, . . .), with

q̃i = P
[
∀` : lim

n→∞
Zn` = 0

∣∣ϕ0 = i
]

We have
0 ≤ q ≤ q̃ ≤ 1
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Example 1 : nearest neighbour BRW

Suppose the mean progeny matrix is

M =


b c 0 0 0 . . .
a b c 0 0
0 a b c 0
0 0 a b c
...

. . .
. . .

. . .

 ,

which can be represented as

0 1 2 3 . . .

c c c

a a a

b b b b

c

a
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Example 1 : nearest neighbour BRW

a = 1/20, b = 1/2, c = 1/2
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In this case q < q̃ = 1.
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Extinction criteria

Finite-type case :

If ρ(M) is the Perron-Frobenius eigenvalue of M, then

q = q̃ = 1 if and only if ρ(M) ≤ 1.

Infinite-type case :

If ν(M) is the convergence norm of M, then

q̃ = 1 if and only if ν(M) ≤ 1.

Can we construct a global extinction criterion ?
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Lower Hessenberg branching processes

We assume M is lower Hessenberg

M =


m00 m01 0 0 0 . . .
m10 m11 m12 0 0
m20 m21 m22 m23 0

...
. . .


Type i ≥ 0 individuals cannot have offspring of type j > i + 1.

We assume mi ,i+1 > 0 for all i ≥ 0.

0 1 2 3 4 . . .
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Embedded GWPVE

There is always a well defined Galton-Watson process in a
varying environment, {Yk}, embedded within the LHBP
{Zn}.

GWPVEs, {Yk}k≥1, are single type branching processes whose
progeny generating function,

gk(s) =
∞∑
`=0

P(Yk+1 = `|Yk = 1)s`,

varies deterministically with the generation k .
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Embedded Galton-Watson process in varying environment

{Zn}
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Embedded Galton-Watson process in varying environment
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Embedded Galton-Watson process in varying environment

{Yk}
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Embedded Galton-Watson process in varying environment

{Yk} has two absorbing states, 0 and ∞.

Lemma (B. and Hautphenne, 2019)

Partial extinction in {Zn}
a.s⇐⇒ Yk <∞ for all k ≥ 0

Global extinction in {Zn}
a.s⇐⇒ Yk = 0 for some k ≥ 0

The progeny generating functions gk(s) = E [sYk+1 |Yk = 1] may be
defective, that is, gk(1) ≤ 1.
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Relating {Zn} and {Yk}

We derive an implicit expression for gk(s) in terms of G(s).

Lemma (B. and Hautphenne, 2019)

Let gi→k(s) = gi ◦ · · · ◦ gk(s). For all k ≥ 0,

gk(s) = Gk (g1→k(s), g2→k(s), . . . , gk(s), s) .

These lead to recursive expressions for the first two moments
µk = g ′k(1) and ak = g ′′k (1).*
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Extinction Criteria

Theorem (B. and Hautphenne, 2019)

Suppose

µ0 =
m01

1−m00
and µk =

mk,k+1

1−
∑k

i=1 mki
∏k−1

j=i µj
,

then
q̃ = 1 ⇔ 0 ≤ µk <∞ ∀ k ≥ 0

and, when q̃ = 1,

q = 1 ⇔
∞∑
j=1

(
j∏

`=1

µ`

)−1
=∞.*

* : under second moment conditions.
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Example 1 : nearest neighbour BRW
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Example 1 : nearest neighbour BRW

Proposition (B. and Hautphenne, 2019)

In Example 1 q̃ = 1 if and only if

b < 1 and (1− b)2 − 4ac ≥ 0

and when q̃ = 1

µk ↗ µ :=
1− b −

√
(1− b)2 − 4ac

2a
as k →∞

so that q = 1 if and only if µ ≤ 1.
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Example 2 : polynomial growth

Suppose M0,1 = 1, and for i ≥ 1,

Mi ,i−1 = γ
i + 1

i
and Mi ,i+1 = (1− γ)

i + 1

i
, γ ∈ [0, 1].

with all remaining entries 0.

0 1 2 3 . . .1

2(1− γ) 3
2
(1− γ)

2γ 3
2
γ 4

3
γ

4
3
(1− γ)

5
4
γ
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Example 2 : Polynomial growth

Proposition (B. and Hautphenne, 2019)

In Example 2

q̃ = 1 if and only if γ < γ̃ ≈ 0.1625

q = 1 if and only if γ = 0.
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Example 2 : Polynomial growth

Figure : Approximations of q0 and q̃0 for different values of γ.
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Strong local survival

Processes fall into one of :

(i) q = q̃ = 1

(ii) q < q̃ = 1

(iii) q = q̃ < 1

(iv) q < q̃ < 1

Can we use M to determine which category a process falls in ?
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Strong local survival

We partition M into four components

M =

[
M̃(k) M̄12

M̄21
(k)M̃

]
,

where M̃(k) is a (k + 1)× (k + 1) matrix.

Theorem (B. and Hautphenne, 2019)

If there exists k ≥ 0 such that

(i) ρ
(

M̃(k)
)
> 1, and

(ii) M̄21 contains a finite number of strictly positive entries,

(iii) ν
(
(k)M̃

)
≤ 1,

then q̃ < 1, and

q = q̃ if and only if (k)q = 1.
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Strong local survival

If there exists k ≥ 0 such that

ρ
(

M̃(k)
)
> 1 M̄21 f.n.p.e. ν

(
(k)M̃

)
≤ 1

0 1 . . . k k + 1 k + 2 . . .1

2γ

2(1 − γ)

3
2
γ

k
k−1

(1 − γ)

k+1
k

γ

k+2
k+1

(1 − γ)

k+3
k+2

γ

k+3
k+2

(1 − γ)

k+4
k+3

γ

then q̃ < 1, and

q = q̃ if and only if (k)q = 1.
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Example 2 : Polynomial growth

Proposition (B. and Hautphenne, 2019)

In Example 2,

γ = 0 ⇒ q = q̃ = 1

γ ∈ (0, γ̃] ⇒ q < q̃ = 1

γ ∈ (γ̃, 1/2) ⇒ q < q̃ < 1

γ ∈ (1/2, 1] ⇒ q = q̃ < 1.
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Example 2 : Polynomial growth

The curves merge when γ = 0.5 !
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