High order low variance matrix-exponential distributions

Gábor Horváth¹ Illés Horváth² Miklós Telek¹

¹Budapest University of Technology and Economics, Hungary ²MTA-BME Information Systems Research Group, Hungary

MAM, Febr 13-15, 2019, Hobart, Australia

Long studied open problem:

Minimal CV of matrix exponential distributions 2006: conjectures and numerical values up to order 15 2016: minimal numerical values up to order 47 present: close to minimal up to order \sim 200 suboptimal values up to order \sim 1000

- 2 Concentrated ME distribution
- 3 Numerical optimization
- 4 Heuristic approach
- 5 Final remarks

Matrix exponential (ME) distributions

Summary

• Distributions with density function

$$f(\mathbf{x}) = \alpha e^{\mathbf{A}\mathbf{x}}(-\mathbf{A})\mathbb{1},$$

where α is a row vector, **A** is a square matrix and 1 is the column vector of ones no sign constraints, lack of stochastic interpretation.

• It is hard to check (in general) if f(x) is non-negative.

Matrix exponential (ME) distributions

• The *k*th moment of ME with
$$f(x) = \alpha e^{A_x} (-A) \mathbb{1}$$
 is

$$\mu_k = \int_x x^k f(x) dx = k! \alpha (-\mathbf{A})^{-k} \mathbb{1},$$

• its squared coefficient of variation (SCV) is

$$SCV = \frac{\mu_0 \mu_2}{\mu_1^2} - 1.$$

SCV is insensitive to multiplication and scaling, i.e. $SCV(f(x)) = SCV(c_1f(c_2x)).$

Phase type (PH) distributions

Summary

- Same as ME, but sign constraints apply for α and $\textbf{\textit{A}}$:
 - α is non-negative,
 - **A** has negative diagonal and non-negative off-diagonal elements.
- ME distributions of order *N* is a superset of phase type PH distributions of order *N*.

Properties

Bounded SCV (Aldous-Shepp , O'Cinneide)

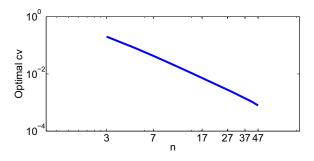
$$SCV \geq \frac{1}{N}.$$

Concentrated ME distributions

Only conjectures are available for minimal SCV of order N

Ν	SCV	1/ <i>SCV</i>	date
3	0.20090	4.9776	
5	0.081264	12.306	
:	÷	÷	2006
15	0.0093128	107.38	
17	0.0072074	138.75	
19	0.0057368	174.31	
21	0.0046708	214.10	
:	÷	÷	2016
45	0.00088322	1132.2	
47	0.00078490	1274.0	

Concentrated ME distributions



- SCV decays with $2/N^2$ instead of 1/N.
- This results are provided by a well defined ME "structure"
- using numerical optimization.

Exponential cosine-square functions

The set of *exponential cosine-square* functions of order *n* has the form

$$f^+(t) = ce^{-\eta t}\prod_{i=1}^n \cos^2\left(rac{\omega t - \phi_i}{2}
ight).$$

- $f^+(t)$ is non-negative by construction.
- Based on $SCV(f(x)) = SCV(c_1f(c_2x))$ we assume $c = \eta = 1$.
- $f^+(t)$ of order *n* is a subset of ME of order N = 2n + 1,
- with parameters ω and ϕ_i , $i = 1, \ldots, n$.

Persisting conjecture:

ME(2n + 1) with minimal SCV is $f^+(t)$ of order n.

Numerical optimization

Results for $N \le 47$ are obtained by built in functions of general purpose (matlab, mathematica) packages.

For efficient numerical minimization of the SCV for N > 47we need accurate and efficient computation methods with low computational complexity for

- i) for computation of the SCV based on the parameters,
- ii) for minimization of the SCV.

Hyper-trigonometric form of $f^+(t)$

Theorem

An exponential cosine-square function can be transformed to the following hyper-trigonometric form

$$egin{aligned} f^+(t) &= e^{-t} \prod_{i=1}^n \cos^2\left(rac{\omega t - \phi_i}{2}
ight) \ &= c^{(n)} \cdot e^{-t} + e^{-t} \sum_{k=1}^n a_k^{(n)} \cos(k\omega t) \ &+ e^{-t} \sum_{k=1}^n b_k^{(n)} \sin(k\omega t), \end{aligned}$$

where $c^{(n)} = \frac{1}{2}a_0^{(n)}$ and the coefficients $a_k^{(n)}$, $b_k^{(n)}$ can be calculated recursively.

200

・ 同 ト ・ ヨ ト ・ ヨ

Hyper-trigonometric representation of $f^+(t)$

• for
$$n = 1$$
: $a_0^{(1)} = 1$, $b_0^{(1)} = 0$, $a_1^{(1)} = \frac{1}{2}\cos\phi_1$, $b_1^{(1)} = \frac{1}{2}\sin\phi_1$,

- for $k > n, n \ge 1$: $a_k^{(n)} = b_k^{(n)} = 0$,
- for k = 0, n ≥ 1:

$$\begin{aligned} a_0^{(n)} &= \frac{1}{2}a_0^{(n-1)} + \frac{1}{2}a_1^{(n-1)}\cos\phi_n + \frac{1}{2}b_1^{(n-1)}\sin\phi_n, \\ b_0^{(n)} &= 0, \end{aligned}$$

• for $1 \le k \le n, n \ge 2$:

$$a_{k}^{(n)} = \frac{1}{2}a_{k}^{(n-1)} + \frac{1}{2}\frac{a_{k-1}^{(n-1)} + a_{k+1}^{(n-1)}}{2}\cos\phi_{n} + \frac{1}{2}\frac{b_{k+1}^{(n-1)} - b_{k-1}^{(n-1)}}{2}\sin\phi_{n},$$

$$b_{k}^{(n)} = \frac{1}{2}b_{k}^{(n-1)} + \frac{1}{2}\frac{b_{k-1}^{(n-1)} + b_{k+1}^{(n-1)}}{2}\cos\phi_{n} + \frac{1}{2}\frac{a_{k-1}^{(n-1)} - a_{k+1}^{(n-1)}}{2}\sin\phi_{n}.$$

Hyper-trigonometric representation of $f^+(t)$

Based on the $a_k^{(n)}$, $b_k^{(n)}$ coefficients SCV is obtained efficiently.

Corollary

The μ_i , i = 0, 1, 2 moments of the exponential cosine-square function are

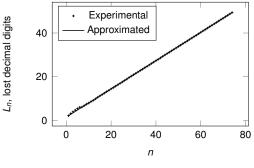
$$\begin{split} \mu_0 &= c^{(n)} + \sum_{k=1}^n \frac{a_k^{(n)} + b_k^{(n)} k\omega}{1 + (k\omega)^2}, \\ \mu_1 &= c^{(n)} + \sum_{k=1}^n \frac{a_k^{(n)} + 2b_k^{(n)} k\omega - a_k^{(n)} (k\omega)^2}{(1 + (k\omega)^2)^2}, \\ \mu_2 &= 2c^{(n)} + \sum_{k=1}^n \frac{2a_k^{(n)} + 6b_k^{(n)} k\omega - 6a_k^{(n)} (k\omega)^2 - 2b_k^{(n)} (k\omega)^3}{(1 + (k\omega)^2)^3}. \end{split}$$

High order low variance matrix-exponential distributions

< ロ > < 同 > < 回 > < 回 > < 回 > <

Floting point computation of the coefficients

The computation of $a_k^{(n)}$, $b_k^{(n)}$ is prone to numerical errors



 $L_n \approx 1.487 + 0.647 n.$

The required floating point precision is L_n + 16 decimal digits to obtain an the coefficients in 16 decimal digits accuracy.

Floting point computation with the coefficients

Once the $a_k^{(n)}$, $b_k^{(n)}$ coefficients are computed with appropriate *high precision*,

standard precision is sufficient for all further computations.

Optimization methods

For finding the parameters (ω, ϕ_i) which provide the minimal SCV we got success with *evolution strategies*.

We compared three of them

$$T_{\text{CMA-ES}} < T_{(1+1)\text{-ES}} << T_{\text{BIPOP-CMA-ES}},$$

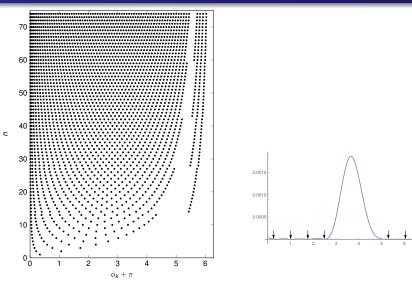
 $Q_{\text{CMA-ES}} \sim Q_{(1+1)\text{-ES}} < Q_{\text{BIPOP-CMA-ES}}.$

Numerical optimization

Heuristic approact

Final remarks

Optimal parameters



High order low variance matrix-exponential distributions

◆□ > ◆□ > ◆豆 > ◆豆 >

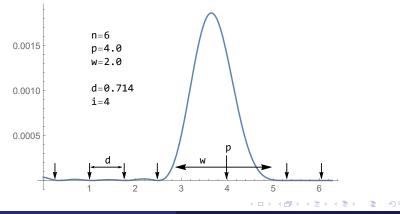
Complexity as a function of **n**

The number of parameters to optimize is n + 1,

- \rightarrow complexity of optimization increases super linearly with *n*.
- \rightarrow complexity gets prohibitive around *n* = 180.
- \rightarrow low complexity suboptimal minimum is needed.

Heuristic approach with three parameters

- equidistant ϕ_i parameters, below and above the spike
- ϕ_i are defined by: place of spike (*p*), width of spike (*w*)

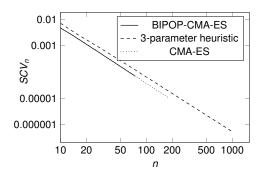


Numerical optimization

Heuristic approach

Final remarks

Heuristic approach



- The heuristic minimum is < 2 times larger (for all *n*).
- ME distributions with SCV $< 10^{-6}$ can be obtained.

Final remarks

Main messages:

- While the min SCV of *phase type* distribution decays *linearly*, the min SCV of matrix exponential distribution decays quadratically with the order.
- We can compute concentrated matrix exponential distribution up to order 10³ with SCV < 10⁻⁶.
- The obtained concentrated matrix exponential distribution can be efficiently used in stochastic models with deterministic delays with **fairly nice numerical stability** (next talk).