The Markov embedding problem: a new look from an algebraic perspective

Michael Baake

Bielefeld
(joint work with Jeremy Sumner, UTAS)

Menu

- The embedding problem
- Simple case: $d=2$
- Algebraic notions
- Selected results
- symmetric matrices
- equal-input matrices
- circulant matrices
- Outlook

The embedding problem

M Markov matrix:
Q Markov generator:
Markov semigroup:

$$
M_{i j} \geqslant 0 \text { and } \sum_{j} M_{i j}=1
$$

$$
Q_{i j} \geqslant 0 \text { for } i \neq j, \quad \sum_{j} Q_{i j}=0
$$

$$
\left\{\mathrm{e}^{t Q}: t \geqslant 0\right\}
$$

Problem

 When is $M=\mathrm{e}^{t Q}$ with generator Q and $t \geqslant 0$?Necessary conditions:

- $\sigma(M)=\mathrm{e}^{\sigma(Q)}, 0 \notin \sigma(M), 0<\operatorname{det}(M) \leqslant 1$
- If $\lambda \in \sigma(M)$ with $\lambda \neq 1$, then $|\lambda|<1$ (Elving)
- $\lambda \in \sigma(M)$ real with $\lambda<0$: even alg. multiplicity
- M reducible or strictly positive (and primitive)
- $M_{i j}>0$ and $M_{j k}>0$ implies $M_{i k}>0$

Simple case: $d=2$

Theorem (Kendall)

A Markov matrix $M=\left(\begin{array}{cc}1-a & a \\ b & 1-b\end{array}\right)$, $a, b \in[0,1]$, is embeddable iff
$0<\operatorname{det}(M)=1-a-b \leqslant 1$, or, equivalently, iff
$0 \leqslant a+b<1$.

Example

$$
M=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
1 & 0
\end{array}\right), \quad M^{2}=\left(\begin{array}{cc}
\frac{3}{4} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right), \quad M^{\prime}=\left(\begin{array}{cc}
\frac{5}{6} & \frac{1}{6} \\
\frac{1}{3} & \frac{2}{3}
\end{array}\right), \quad\left(M^{\prime}\right)^{2}=M^{2}
$$

Algebraic notions

Lemma For $B \in \operatorname{Mat}(d, \mathbb{R})$ are equivalent:

- The char. polynomial of B is also its minimal polynomial
- The relation $\operatorname{dim}\left(V_{\lambda}\right)=1$ holds for every $\lambda \in \sigma(B)$
- B is cyclic: $\left\{u, B u, \ldots, B^{d-1} u\right\}$ is basis of \mathbb{R}^{d} for some $u \in \mathbb{R}^{d}$
- The ring $\operatorname{cent}(B):=\{C \in \operatorname{Mat}(d, \mathbb{R}):[B, C]=0\}$ is Abelian
- One has $\operatorname{cent}(B)=\mathbb{R}[B]$, the ring of real polynomials in B

Proposition Let $M=\mathrm{e}^{Q}$ and set $A=M-\mathbb{1}$. Then:

- $[A, Q]=0$, where $\lambda \in \sigma(Q)$ implies $\lambda=0$ or $\operatorname{Re}(\lambda)<0$
- If M is cyclic, $Q \in \operatorname{alg}(A):=\left\langle A, A^{2}, \ldots, A^{d-1}\right\rangle_{\mathbb{R}}$

Consequence Stable approximation possible ...

3D symmetric matrices

$$
\begin{gathered}
M=\left(\begin{array}{ccc}
1-a-b & a & b \\
a & 1-a-c & c \\
b & c & 1-b-c
\end{array}\right), \quad Q=\left(\begin{array}{ccc}
-\alpha-\beta & \alpha & \beta \\
\alpha & -\alpha-\gamma & \gamma \\
\beta & \gamma & -\beta-\gamma
\end{array}\right) \\
\Delta=\alpha+\beta+\gamma, \quad s=\sqrt{\alpha^{2}+\beta^{2}+\gamma^{2}-\alpha \beta-\beta \gamma-\gamma \alpha}
\end{gathered}
$$

Theorem For M symmetric Markov are equivalent:

1. M is embeddable.
2. M is embeddable with symmetric Q.
3. There are $\alpha, \beta, \gamma \geqslant 0$ such that

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\frac{1}{3}\left(1-\frac{\sinh (s)}{s} \Delta \mathrm{e}^{-\Delta}-\cosh (s) \mathrm{e}^{-\Delta}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+\frac{\sinh (s)}{s} \mathrm{e}^{-\Delta}\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right) .
$$

Equal-input matrices

C : equal columns $\left(c_{1}, \ldots, c_{d}\right), \quad c_{i} \geqslant 0, \quad c:=c_{1}+\ldots+c_{d}$

$$
M=(1-c) \mathbf{1}+C, \quad Q=C-c \mathbf{1}
$$

Theorem Let M be an equal-input Markov matrix. Then:

- M is equal-input embeddable iff $0 \leqslant c<1$;
- d even: no further equal-input matrices are embeddable;
- d odd admits additional cases.

Example

$$
\begin{aligned}
& Q=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1 \\
1 & 0 & -1
\end{array}\right), \quad M=\exp \left(\frac{2 \pi}{\sqrt{3}} Q\right)=\left(\begin{array}{ccc}
\frac{1}{3}-2 \delta & \frac{1}{3}+\delta & \frac{1}{3}+\delta \\
\frac{1}{3}+\delta & \frac{1}{3}-2 \delta & \frac{1}{3}+\delta \\
\frac{1}{3}+\delta & \frac{1}{3}+\delta & \frac{1}{3}-2 \delta
\end{array}\right) \\
& \delta=\frac{1}{3} \mathrm{e}^{-\pi \sqrt{3}}, \quad c=1+3 \delta>1, \quad \text { neg. double eigenvalue, } \quad Q \text { is circulant }
\end{aligned}
$$

Circulant matrices

P : permutation matrix for $(1,2, \ldots, d)$
Real circulant matrices: $\mathbb{R}[P]$
$Q_{i}:=P^{i}-\mathbf{1}, 1 \leqslant i<d$

Theorem $\quad(d=3)$
For $M=\mathbf{1}+a Q_{1}+b Q_{2}$
circulant Markov are equivalent:

1. M is embeddable
2. M is circulant embeddable
3. $(a, b) \neq\left(\frac{1}{3}, \frac{1}{3}\right)$ in depicted region

Circulant matrices, ctd

Circulant generators: $\quad Q_{1}, Q_{2}, Q_{3}$

Theorem $\quad(d=4)$
For $M=\mathbf{1}+x Q_{1}+y Q_{2}+z Q_{3}$
circulant Markov are equivalent:

1. M is embeddable
2. M is circulant embeddable
3. (x, y, z) in depicted region, except the front edge

Remark Result for general d similar

Outlook

- Other matrix classes
- Doubly stochastic matrices
- Concrete results for $d=4$
- Infinite dimensions

References

- M. Baake and J. Sumner, Notes on Markov embedding, preprint
- E.B. Davies, Embeddable Markov matrices, Electronic J. Probab. 15 (2010) paper 47, 1474-1486; arXiv:1001.1693.
- G. Elving, Zur Theorie der Markoffschen Ketten, Acta Soc. Sci. Fennicae A2 (1937) 1-17.
- S. Johansen, Some results on the imbedding problem for finite Markov chains, J. London Math. Soc. 8 (1974) 345-351.
- J.F.C. Kingman, The imbedding problem for finite Markov chains, Z. Wahrscheinlichkeitsth. verw. Geb. 1 (1962) 14-24.
- P. Lencastre, F. Raischel, T. Rogers and P.G. Lind, From empirical data to timeinhomogeneous continuous Markov processes, Phys. Rev. E 93 (2016) 032135, 1-11; arXiv:1510.07282.

