Wurm, Baird, Bean, Connolly, Helfgott, Nguyen

Fantastic coral

Coral-algal symbiosis Coral Bleaching The Adaptive Bleaching Hypothesi

A Fluid Model

Model assumption The model

Coral mortalit

Critical threshold Time to mortality

Results

Time to mortality Simulation comparison Numerical inversion

Future work

Model for the ABH A fluid-fluid model

POLYP FICTION

A **Stochastic Fluid Model** for the Adaptive Bleaching Hypothesis

 $\begin{array}{ccc} \mbox{Max Wurm }^1 & \mbox{Nigel Bean }^1 & \mbox{Giang Nguyen }^1 \\ \mbox{Ariella Helfgott }^3 & \mbox{Andrew Baird }^2 & \mbox{Sean Connolly }^2 \end{array}$

¹University of Adelaide ²James Cook University ³University of Oxford

MAM10, Hobart, February 14, 2019

Wurm, Baird, Bean, Connolly, Helfgott, Nguyen

Fantastic coral

Coral-algal symbiosis Coral Bleaching The Adaptive Bleaching Hypothesis

A Fluid Model

Model assumptions The model

Coral mortalit

Critical threshold Time to mortality

Results

Time to mortality Simulation comparison Numerical inversion

Future work

Model for the ABH A fluid-fluid model

Fantastic coral and where to find it

Figure 1: The Great Barrier Reef [4].

Wurm, Baird, Bean, Connolly, Helfgott, Nguyen

Fantastic coral

- Coral-algal symbiosis
- Coral Bleaching The Adaptive Bleaching Hypothesis
- A Fluid Model
- Model assumption

Coral mortality

Critical threshold Time to mortality

Results

Time to mortality Simulation comparison Numerical inversion

Future work

Model for the ABH A fluid-fluid model

- Zooxanthellae are a kind of algae which form symbioses with coral.
- The zooxanthellae provide energy to the coral, and in return receive shelter and access to light.
- They also give it *pretty colours*.
- They are sensitive to environmental conditions (water temperature, etc.).

Coral-algal symbiosis

Figure 2: Diagram of a coral polyp [6].

Wurm, Baird, Bean, Connolly, Helfgott, Nguyen

Fantastic coral

Coral-algal symbiosis

Coral Bleaching

The Adaptive Bleaching Hypothesis

A Fluid Mode

Model assumptions The model

Coral mortality

Critical threshold Time to mortality

Results

Time to mortality Simulation comparison Numerical inversion

Future worl

Model for the ABH A fluid-fluid model

Figure 3: Coral bleaching on the Great Barrier Reef [5].

Coral bleaching

- Zooxanthellae are expelled from coral polyps.
- Can occur if there is a change in environment.
- Different to normal zooxanthellae decay!
- Coral can still live and recover after bleaching.

Wurm, Baird, Bean, Connolly, Helfgott, Nguyen

Fantastic coral

Coral-algal symbiosis Coral Bleaching

The Adaptive Bleaching Hypothesis

A Fluid Model

Model assumption: The model

Coral mortalit

Critical threshold Time to mortality

Results

Time to mortality Simulation comparison Numerical inversion

Future work

Model for the ABH A fluid-fluid model

The Adaptive Bleaching Hypothesis

- The Hypothesis: coral bleaching is an adaptive response to environmental change [3].
- The idea: coral is looking for zooxanthellae better suited to the surrounding environment.
- Explains long-term resilience of coral to environmental changes.
- How can we look at it mathematically?

Wurm, Baird, Bean, Connolly, Helfgott, Nguyen

Fantastic coral

Coral-algal symbiosis Coral Bleaching The Adaptive Bleaching Hypothesis

A Fluid Model

Model assumptions

Coral mortalit

Critical threshold Time to mortality

Results

Time to mortality Simulation comparison Numerical inversion

Future work

Model for the ABH A fluid-fluid model

Model building

Key facts and assumptions:

- 1 Number of zooxanthellae is large enough to consider the population as continuous.
- 2 Zooxanthellae clades (types):
 - Simultaneous association with multiple clades.
 - Serial association with multiple clades.
 - Clades have different environmental tolerances.
 - Clades have different (constant) growth rates.
- **3** Coral can uptake zooxanthellae from the environment.
- There is a *critical algal threshold* which meets the coral's energy demand. Density above this level stores energy, density below this level consumes energy.

Wurm, Baird, Bean, Connolly, Helfgott, Nguyen

Fantastic coral

- Coral-algal symbiosis Coral Bleaching The Adaptive Bleaching Hypothesis
- A Fluid Model

Model assumptions

Coral mortalit

Critical threshold Time to mortality

Results

Time to mortality Simulation comparison Numerical inversio

Future work

Model for the ABH A fluid-fluid model

• Model the density of zooxanthellae by the *level* X(t).

- The *phase* process φ(t) is a CTMC representing the dominant clade of zooxanthellae and whether population growth/decay is occurring.
- Density changes linearly, depending on the current phase.
- State space is $S = S_+ \cup S_- \cup S_0$.
 - S_+ : population growth.
 - S₋: population decay.
 - S_0 : constant density (only on boundaries).
- Transition rates and growth/decay rates.
- Special matrices for upper/lower boundary.

A fluid model for coral

Fantastic coral

Coral-algal symbiosis Coral Bleaching The Adaptive Bleaching Hypothesi

A Fluid Model

Model assumptions

The model

Coral mortality

Critical threshold Time to mortality

Results

Time to mortality Simulation comparison Numerical inversior

Future work

Model for the ABH A fluid-fluid model

An example realisation

zooxanthellae density X(t)

 $\varphi(t) \in \hat{\mathcal{S}}_0$

1

z

 $arphi(t)\in\mathcal{S}_ arphi(t)\in\mathcal{S}_+$ critical threshold

Wurm, Baird, Bean, Connolly, Helfgott, Nguyen

Fantastic coral

- Coral-algal symbiosis Coral Bleaching The Adaptive Bleaching Hypothesis
- A Fluid Model
- Model assumption: The model

Coral mortalit

- Critical threshold
- Time to mortality

Results

Time to mortality Simulation comparison Numerical inversion

Future work

Model for the ABH A fluid-fluid model

Critical threshold and coral mortality

- Define z as the *critical threshold*. Above z the coral is storing energy and below z the coral is depleting energy.
- Assume coral can spend a maximum time of τ on a single visit below z before mortality ('death by τ ').
- Mortality assumed to be *independent* of previous visits!

Wurm, Baird, Bean, Connolly, Helfgott, Nguyen

Fantastic coral

Coral-algal symbiosis Coral Bleaching The Adaptive Bleaching Hypothesis

A Fluid Mode Model assumptions

Coral mortality

Critical threshold Time to mortality

Results

Time to mortality Simulation comparison Numerical inversion

Future work

Model for the ABH A fluid-fluid model

Time to mortality (TTM)

Reach z from 1.

2 Any number of visits below z ($t < \tau$) then above z.

3 Visit below z of length τ .

20

Future work

Model for the ABH A fluid-fluid model

Figure 4: Time to Mortality density using $\tau = 20$.

t

60

80

100

40

Comparison to simulation

Figure 5: Comparison between TTM density and simulated results.

Wurm, Baird, Bean, Connolly, Helfgott, Nguyen

Fantastic coral

Coral-algal symbiosis Coral Bleaching The Adaptive Bleaching Hypothesis

A Fluid Model

Model assumption The model

Coral mortali

Critical threshold Time to mortality

Results

Time to mortality Simulation comparison

Numerical inversion

Future work

Model for the ABH A fluid-fluid model

Numerical inversion [1] quirks

- Minimum times to do certain events.
- TTM density has discrepancies at these values.
- LST inversion becomes unstable.
- Need to compensate by double shifting the density.

Wurm, Baird, Bean, Connolly, Helfgott, Nguyen

Fantastic coral

Coral-algal symbiosis Coral Bleaching The Adaptive Bleaching Hypothesis

A Fluid Mode

Model assumptio The model

Coral mortality

Critical threshold Time to mortalit

Results

Time to mortalit Simulation comparison

Numerical inversion

Future work

Model for the ABH A fluid-fluid model

Time to mortality (TTM)

- 1 Reach z from 1.
- 2 Any number of visits below z ($t < \tau$) then above z.
- **3** Visit below z of length τ .

Wurm, Baird, Bean, Connolly, Helfgott, Nguyen

Fantastic coral

Coral-algal symbiosis Coral Bleaching The Adaptive Bleaching Hypothesis

A Fluid Model

Model assumptions The model

Coral mortalit

Critical threshold Time to mortality

Results

Time to mortality Simulation comparison Numerical inversion

Future work

Model for the ABH A fluid-fluid model

Modelling the ABH

Where to from here?

- Form two models: bleaching and no bleaching.
- Model environmental conditions more precisely.
- Compare time to mortality densities in basic and bleaching model to draw conclusions about the Adaptive Bleaching Hypothesis.

Wurm, Baird, Bean, Connolly, Helfgott, Nguyen

Fantastic coral

Coral-algal symbiosis Coral Bleaching The Adaptive Bleaching Hypothesis

A Fluid Model

Model assumptions The model

Coral mortalit

Critical threshold Time to mortality

Results

Time to mortality Simulation comparison Numerical inversio

Future work Model for the ABH

A fluid-fluid model for the ABH

- Fluid model approximates energy by zooxanthellae density.
- Assumption of 'death by au' breaks down easily.
- Fluid-fluid model [2] considers an energy process Y(t).
 - Energy process has rates which depend on existing zooxanthellae process *X*(*t*).
 - Generator is much more complicated.

Figure 6: A situation where the 'death by τ ' definition of mortality breaks down.

Wurm, Baird, Bean, Connolly, Helfgott, Nguyen

Fantastic coral

Coral-algal symbiosis Coral Bleaching The Adaptive Bloaching Humothoric

A Fluid Model

Model assumptions The model

Coral mortalit

Critical threshold Time to mortality

Results

Time to mortality Simulation comparison Numerical inversion

Future work

Model for the ABH A fluid-fluid model

Abate, J., and Whitt, W.

Numerical inversion of Laplace transforms of probability distributions. *ORSA Journal on computing* 7, 1 (1995), 36–43.

BEAN, N. G., AND O'REILLY, M. M.

The stochastic fluid-fluid model: a stochastic fluid model driven by an uncountable-state process, which is a stochastic fluid model itself.

Stochastic Processes and their Applications 124, 5 (2014), 1741-1772.

BUDDEMEIER, R. W., AND FAUTIN, D. G.

Coral bleaching as an adaptive mechanism. *BioScience* 43, 5 (1993), 320–326.

CASHEN, E.

Saving the Great Barrier Reef. Businessdestinations, online, Feb. 2017.

Marshall, P.

Bleached Acropora coral on the Great Barrier Reef, Queensland, Australia. Great Barrier Reef marine park authority, 2009.

SMITHSONIAN INSTITUTION.

What is coral? A coral polyp and zooxanthellae. Online, 2019.

References

Wurm, Baird, Bean, Connolly, Helfgott, Nguyen

Fantastic coral

Coral-algal symbiosis Coral Bleaching The Adaptive Bleaching Hypothesis

A Fluid Model

Model assumptions The model

Coral mortality

Critical threshold Time to mortality

Results

Time to mortality Simulation comparison Numerical inversion

Future work

Model for the ABH A fluid-fluid model

Questions

Wurm, Baird, Bean, Connolly, Helfgott, Nguyen

Fantastic coral

Coral-algal symbiosis Coral Bleaching The Adaptive Bleaching Hypothesis

A Fluid Model

Model assumptions The model

Coral mortalit

Critical threshold Time to mortality

Results

Time to mortality Simulation comparison Numerical inversio

Future work

Model for the ABH A fluid-fluid model

TTM derivation

The Laplace Stieltjes Transform of the time to mortality has an expression of the following form:

Wurm, Baird, Bean, Connolly, Helfgott, Nguyen

Fantastic coral

Coral-algal symbiosis Coral Bleaching The Adaptive Bleaching Hypothesis

A Fluid Model

Model assumptions The model

Coral mortalit

Critical threshold Time to mortality

Results

Time to mortality Simulation comparison Numerical inversior

Future work

Model for the ABH A fluid-fluid model

• Start with some LST $\hat{F}(s)$, which has inverse LST f(t).

- Would like to shift about the point $t = t^*$.
- Define $f(t) = g(t t^*) \mathbb{I}[t \ge t^*]$, with $LST(g(t)) = \hat{G}(s)$.
- Then $\hat{G}(s) = e^{st^*}\hat{F}(s)$.
- Invert $\hat{G}(s)$ and evaluate at $t \ge t^*$.

LST shifting