
Matrix Analytic Methods for reflected

random walks with stochastic restarts

Leonardo Robol, UniPI

<leonardo.robol@unipi.it>

joint work with:

D. A. Bini, S. Massei, B. Meini

MAM10, Feb 2019

1

Problem of interest

We consider a QBD with infinite levels; in particular:

• It is possible to move from level i to i − 1, i + 1;

• Phase transitions are level independent.

In this case the probability transition matrix has the form

P =

Â0 A1

A−1 A0 A1

. . .
. . .

. . .

 ,
Computing the steady state probability vector can be recasted

to solving the quadratic matrix equations:

A−1 + A0G + A1G
2 = G , R2A−1 + RA0 + A1 = R

2

Problem of interest

We consider a QBD with infinite levels; in particular:

• It is possible to move from level i to i − 1, i + 1;

• Phase transitions are level independent.

In this case the probability transition matrix has the form

P =

Â0 A1

A−1 A0 A1

. . .
. . .

. . .

 ,
Computing the steady state probability vector can be recasted

to solving the quadratic matrix equations:

A−1 + A0G + A1G
2 = G , R2A−1 + RA0 + A1 = R

2

The infinite phase case

We would like to consider an infinite number of phases; then

• The matrices Ai are semi-infinite matrices;

• We would like to avoid truncating them;

• Therefore, we need approximability with a finite number

of parameters.

Our hypothesis: the phase transitions only depend on j − i , up

to some border conditions. Moreover, these probabilities decay

to zero as |j − i | → ∞.

3

The infinite phase case

We would like to consider an infinite number of phases; then

• The matrices Ai are semi-infinite matrices;

• We would like to avoid truncating them;

• Therefore, we need approximability with a finite number

of parameters.

Our hypothesis: the phase transitions only depend on j − i , up

to some border conditions. Moreover, these probabilities decay

to zero as |j − i | → ∞.

3

Random walks on a quadrant (double QBD)

Representative example: random walk on N× N

• Allowed moves only to adjacent states.

• Probabilities of going up/down/left/right are eventually

independent of position (i , j).

• The problem can be stated also on the infinite strip

{1, . . . ,m} × N.
4

Random walks on a quadrant (reset events)

We may allow reset-like events.

• At any time, with some probability ρ, the phase may be

reset to 0;

• This can be combined with moving right/left by 1 unit.

5

The link with Toeplitz matrices

Several queuing problems can be recasted in this framework.

The simpler 1D case considers movements on a line:

The probability transition matrix is as follows:

P =

ρ0 + ρ−1 ρ1
ρ−1 ρ0 ρ1

. . .
. . .

. . .

 ,
where ρ−1 is the probability of moving left, ρ1 right, and

ρ0 = 1− ρ−1 − ρ1: a quasi-Toeplitz semi-infinite matrix.

6

The restarts

If we allow restarts, or resets, with probability ρ, then the 1D

probability transition matrix takes the form

P =

1− ρ1 ρ1
ρ + ρ−1 ρ0 ρ1

ρ ρ−1 ρ0 ρ1
...

. . .
. . .

. . .

 ,

• Not Toeplitz anymore, but only for the first column and

some top-left correction.

• The non-Toeplitz part does not have finite support.

• We may consider also resets to a finite number of starting

states.

7

Computing the invariant vector

The steady state probability vector solving πTP = πT can be

recovered by finding the minimal non-negative solutions to

A−1 + A0G + A1G
2 = G , R2A−1 + RA0 + A1 = R

• Cyclic reduction (CR) is a matrix iteration that converges

to the correct solution.

• Needs to perform multiplications, sum, and inversions.

• Complexity O(m3) if the matrices Ai are m ×m — for

instance a random walk on {1, . . . ,m} × N.

8

A quick look at the matrix iteration

A
(h+1)
0 = A

(h)
0 + A

(h)
−1S

(h)A
(h)
1 + A

(h)
1 S (h)A

(h)
−1

A
(h+1)
−1 = A

(h)
−1S

(h)A
(h)
−1

A
(h+1)
1 = A

(h)
1 S (h)A

(h)
1

S (h) = (I − A
(h)
0)−1

The initial matrices are A
(0)
i := Ai , so they are Toeplitz. Is the

structure preserved?

• Experimentally, approximately, up to a top-left correction.

• Non-trivial to exploit in practice. In fact, typical

implementation ignore the structure and require O(m3)

flops =⇒ what about m =∞?.

9

A quick look at the matrix iteration

A
(h+1)
0 = A

(h)
0 + A

(h)
−1S

(h)A
(h)
1 + A

(h)
1 S (h)A

(h)
−1

A
(h+1)
−1 = A

(h)
−1S

(h)A
(h)
−1

A
(h+1)
1 = A

(h)
1 S (h)A

(h)
1

S (h) = (I − A
(h)
0)−1

The initial matrices are A
(0)
i := Ai , so they are Toeplitz. Is the

structure preserved?

• Experimentally, approximately, up to a top-left correction.

• Non-trivial to exploit in practice. In fact, typical

implementation ignore the structure and require O(m3)

flops =⇒ what about m =∞?.
9

Basic facts about Toeplitz matrices

T (a(z)) =

a0 a1 a2 . . .

a−1 a0 a1
. . .

a−2 a−1
. . .

. . .
...

. . .
. . .

. . .

 , a(z) =
∑
j∈Z

ajz
j

• a(z) is in the Wiener algebra W if∑
j∈Z

|aj | <∞

10

Hankel matrices

Given a power series f (z) =
∑∞

j=0 fjz
j , we have

H(f (z)) =

f1 f2 f3 . . .

f2 f3

f3
. . .

...

the Hankel matrix defined by f (z). Often, we use the notation

a+(z) =
∑
j≥1

ajz
j , a−(z) =

∑
j≥1

a−jz
j .

11

Toeplitz matrices are not an algebra

The power series in W form an algebra. However,

T (a(z)) · T (b(z)) 6= T (c(z)), c(z) = a(z)b(z).

The link between Toeplitz matrices and Laurent series is

indeed an isomorphism for bi-infinite matrices.

Theorem (Gohberg–Feldman)
Let a(z), b(z) ∈ W . Then,

T (a)T (b) = T (c)− H(a−)H(b+),

H(f) Hankel matrix. The correction H(a−)H(b+) is a

compact operator on `2.

Toeplitz matrices are an algebra up to compact corrections.

12

Toeplitz matrices are not an algebra

The power series in W form an algebra. However,

T (a(z)) · T (b(z)) 6= T (c(z)), c(z) = a(z)b(z).

The link between Toeplitz matrices and Laurent series is

indeed an isomorphism for bi-infinite matrices.

Theorem (Gohberg–Feldman)
Let a(z), b(z) ∈ W . Then,

T (a)T (b) = T (c)− H(a−)H(b+),

H(f) Hankel matrix. The correction H(a−)H(b+) is a

compact operator on `2.

Toeplitz matrices are an algebra up to compact corrections.

12

Toeplitz matrices are not an algebra

The power series in W form an algebra. However,

T (a(z)) · T (b(z)) 6= T (c(z)), c(z) = a(z)b(z).

The link between Toeplitz matrices and Laurent series is

indeed an isomorphism for bi-infinite matrices.

Theorem (Gohberg–Feldman)
Let a(z), b(z) ∈ W . Then,

T (a)T (b) = T (c)− H(a−)H(b+),

H(f) Hankel matrix. The correction H(a−)H(b+) is a

compact operator on `2.

Toeplitz matrices are an algebra up to compact corrections.
12

The Hankel correction

Since a(z), b(z) are in W , then aj , bj → 0 for j →∞, so:

• T (a), T (b) are numerically banded.

• H(a−),H(b+) have the support in the top-left corner.

Therefore, T (a) · T (b) = T (c)− H(a−)H(b+) is numerically:

= +

13

A new class of matrices

Definition
A = T (a(z)) + Ea is quasi-Toeplitz (QT), if:

• a(z) ∈ W .

• Ea is compact and satisfies ‖Ea‖∞ <∞.

We define

‖T (a) + Ea‖QT := γ‖a(z)‖W + ‖Ea‖∞, γ :=
1 +
√

5

2
.

• QT-matrices form a (computationally-friendly) algebra.

• With this norm, QT is a Banach algebra.

14

A new class of matrices

Definition
A = T (a(z)) + Ea is quasi-Toeplitz (QT), if:

• a(z) ∈ W .

• Ea is compact and satisfies ‖Ea‖∞ <∞.

We define

‖T (a) + Ea‖QT := γ‖a(z)‖W + ‖Ea‖∞, γ :=
1 +
√

5

2
.

• QT-matrices form a (computationally-friendly) algebra.

• With this norm, QT is a Banach algebra.

14

Numerical representation of a QT matrix

We can represent QT matrices with a finite number of

parameters at arbitrary accuracy.

If A = T (a) + Ea:

• T (a) can be stored by a (truncated) approximation of its

symbol, since
∑
|i |>j |ai | <∞;

• Ea ≈ UV T by means of SVD; U ,V have compact

support and σj(Ea)→ 0, since Ea is compact and so

“numerically low-rank”.

We need a decay in the entries of Ea as we move away from

(1, 1), to truncate the vectors U ,V to finite storage: is this

always guaranteed?

15

QT is an algebra

We can check that:

• A,B ∈ QT =⇒ A + B ∈ QT :

T (a) + Ea + T (b) + Eb = T (a + b) + (Ea + Eb).

• A,B ∈ QT =⇒ AB ∈ QT :

(T (a) + Ea) · (T (b) + Eb) = T (ab)+

(T (a)Eb + EaT (b) + EaEb − H(a−)H(b+))

• The inverse can be computed similarly.

16

QT is an algebra

We can check that:

• A,B ∈ QT =⇒ A + B ∈ QT :

T (a) + Ea + T (b) + Eb = T (a + b) + (Ea + Eb).

• A,B ∈ QT =⇒ AB ∈ QT :

(T (a) + Ea) · (T (b) + Eb) = T (ab)+

(T (a)Eb + EaT (b) + EaEb − H(a−)H(b+))

• The inverse can be computed similarly.

16

Solution of QBD problems

• QT is an algebra – and we have fast and accurate

implementation of all the arithmetic operations.

• We can use the well-known iterations from the finite

dimensional setting, and solve infinite-dimensional

problems! Cyclic reduction, functional iterations, . . .

• “Most” of the theory carries over.

17

Computational remarks

We can operate on quasi-Toeplitz matrices combining:

• Operations/Factorizations on power series (FFT-based);

• Toeplitz-vector multiplications (again FFT-based);

• Compression of low-rank matrices of the form

H(a−)H(b+).

For the last item, fast matvec is available, so we can run either

Lanczos or random sampling to compress the products of

Hankel matrices.

Ranks of the corrections are small in practice: 10–20 is a

typical value.

18

Computational remarks

We can operate on quasi-Toeplitz matrices combining:

• Operations/Factorizations on power series (FFT-based);

• Toeplitz-vector multiplications (again FFT-based);

• Compression of low-rank matrices of the form

H(a−)H(b+).

For the last item, fast matvec is available, so we can run either

Lanczos or random sampling to compress the products of

Hankel matrices.

Ranks of the corrections are small in practice: 10–20 is a

typical value.

18

Keeping the rank low (pictorial version)

= +

=

19

Keeping the rank low (pictorial version)

= +

=

19

An example

Consider a tandem Jackson queue1.

1Motyer, A.J. and Taylor, P.G., 2006. Decay rates for

quasi-birth-and-death processes with countably many phases and

tridiagonal block generators. Advances in applied probability, 38(2),

pp.522-544.

20

Explicit solution

We can compute the steady state vector π using CR:

Problem Time (s) Residue ‖·‖∞ Band Support Rank

1 2.61 2.02 · 10−13 561 541 8

2 2.91 9.09 · 10−13 561 555 8

3 0.28 2.02 · 10−13 143 89 8

4 2.32 1.77 · 10−13 463 481 9

5 0.47 1.93 · 10−13 233 148 9

6 7.96 1.16 · 10−12 455 462 10
...

...
...

...
...

...

The residue is ‖πTP − πT‖∞, and each problem corresponds

to different rates and parameters. Ranks and support refer to

the corrections in G ,R , and the band to their Toeplitz part.

21

Handling restarts

We can consider an extension of the QBD setting. In 1D:

• It is possible to move from state i to i − 1 and i + 1

• At any moment, it is possible that a “reset event” fires,

and we go back to state 1 with probability ρ.

Recall that the probability transition matrix has the form

P =

1− ρ1 ρ1
ρ + ρ−1 ρ0 ρ1

ρ ρ−1 ρ0 ρ1
...

. . .
. . .

. . .

 ,
Simililarly, in the 2D setting, we can allow to go back to state

1 from any other phase in all the levels.

22

Some interesting facts

• Matrices of this kind have the form A = A0 + evT , with

A0 QT, e the vector of all ones, and v ∈ `1. In the

previous case, v = ρe1.

• The arithmetic can be extended. For instance,

(A + ev t
A)(B + evT

B) = AB + AevT
B + e(B + vT

A B),

and Ae = ewT + C , with C compact and (numerically)

finite support.

• The same algorithms can be used in this extended setting.

23

Conclusions and future outlook

• Computing with infinite matrices might be easy, if you

have the right structure. We can compute several

quantities without truncating to finite sections.

• Finite case handled as well.

• A MATLAB toolbox is available2 for you to try: feedback

is very welcome:

http://github.com/numpi/cqt-toolbox/

2Bini, D. A., Massei, S., & Robol, L. “Quasi-Toeplitz matrix arithmetic:

a MATLAB toolbox”. to appear in Num. Algo, 2019

24

Thank you for your attention!

25

Keeping the rank bounded

When we perform arithmetic operations, the rank of the

correction increases in the representation. This can be kept

low by recompression.

Assume Ea = UaV
T
a , Ua,Va with k columns.

• [QU ,RU] = qr(Ua), and [QV ,RV] = qr(Va).

• [U1,Σ1,V1] ≈ svd(RUR
T
V) (truncated SVD).

• Ea ≈ QUU1

√
Σ1 · (QVV1

√
Σ1).

The new representation has k ′ < k columns.

The cost of the compression is O(nk2 + k3) flops, where n is

the support of Ea.

26

Keeping the rank bounded

When we perform arithmetic operations, the rank of the

correction increases in the representation. This can be kept

low by recompression.

Assume Ea = UaV
T
a , Ua,Va with k columns.

• [QU ,RU] = qr(Ua), and [QV ,RV] = qr(Va).

• [U1,Σ1,V1] ≈ svd(RUR
T
V) (truncated SVD).

• Ea ≈ QUU1

√
Σ1 · (QVV1

√
Σ1).

The new representation has k ′ < k columns.

The cost of the compression is O(nk2 + k3) flops, where n is

the support of Ea.

26

Keeping the rank bounded

When we perform arithmetic operations, the rank of the

correction increases in the representation. This can be kept

low by recompression.

Assume Ea = UaV
T
a , Ua,Va with k columns.

• [QU ,RU] = qr(Ua), and [QV ,RV] = qr(Va).

• [U1,Σ1,V1] ≈ svd(RUR
T
V) (truncated SVD).

• Ea ≈ QUU1

√
Σ1 · (QVV1

√
Σ1).

The new representation has k ′ < k columns.

The cost of the compression is O(nk2 + k3) flops, where n is

the support of Ea.

26

Keeping the rank bounded

When we perform arithmetic operations, the rank of the

correction increases in the representation. This can be kept

low by recompression.

Assume Ea = UaV
T
a , Ua,Va with k columns.

• [QU ,RU] = qr(Ua), and [QV ,RV] = qr(Va).

• [U1,Σ1,V1] ≈ svd(RUR
T
V) (truncated SVD).

• Ea ≈ QUU1

√
Σ1 · (QVV1

√
Σ1).

The new representation has k ′ < k columns.

The cost of the compression is O(nk2 + k3) flops, where n is

the support of Ea.

26

Keeping the rank bounded

When we perform arithmetic operations, the rank of the

correction increases in the representation. This can be kept

low by recompression.

Assume Ea = UaV
T
a , Ua,Va with k columns.

• [QU ,RU] = qr(Ua), and [QV ,RV] = qr(Va).

• [U1,Σ1,V1] ≈ svd(RUR
T
V) (truncated SVD).

• Ea ≈ QUU1

√
Σ1 · (QVV1

√
Σ1).

The new representation has k ′ < k columns.

The cost of the compression is O(nk2 + k3) flops, where n is

the support of Ea.

26

