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Phylogenetics: the aim

In phylogenetics, we are interested in mapping evolutionary history. For
example, we may be interested in finding out how long ago there lived the
common ancestor of horses and zebras.
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What is a phylogenetic tree?

Phylogenetic trees are diagrams which map evolutionary history.
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A (very brief) biological overview

Proteins do things in cells: they are borne from DNA and they enact
DNA’s instructions

Proteins are chains of amino acids, there are twenty unique amino
acids present in proteins

The twenty amino acids present in proteins are often represented by
single letters: A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y,
V
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Evolution of proteins

Over time, changes in proteins can be observed.

Of these changes, one field of study is to observe when one amino acid is
replaced by another in a protein.
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Rates of change between amino acids

Rates of change between amino acids are observed and measured

Empirical amino acid substitution matrices are 20 × 20 matrices whose
entries represent the observed rate of change between two amino acids

The PAM1 matrix, Dayhoff et al. (1978).
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A characteristic of amino acids

We are interested in a binary characteraristic of amino acids:
aminoacyl-tRNA synthase (aaRS) class.

Class I: R, C, Q, E, I, L, M, W, Y, V
Class II: A, N, D, G, H, K, F, P, S, T
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We assume that in early life forms, selecting the correct amino acid in
building a protein was a crude process that became more refined as time
progressed.

ABCDEFG

ACE

AE

A E C

BDFG

B

DFG

F

DG

D G

We are hypothesising that the first split was aaRS classes I and II.
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Building Markov matrices from phylogenetic
trees

For each tree node, we assign a rate as a free parameter. The rate of
change between two taxa is defined to be the rate associated to most recent
common ancestor.
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Example of going from a tree to a matrix

α

β

δ

A B C

γ

D E



A B C D E

A ∗ δ β α α
B δ ∗ β α α
C β β ∗ α α
D α α α ∗ γ
E α α α γ ∗



Note for a tree of n taxa, the corresponding rate matrix will have n − 1
parameters.
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Using rate matrices borne from trees

We build a 20 taxa tree whose leaves are amino acids.

From this tree, we build a rate matrix using the aforementioned method: it
will have 19 free parameters.

Fit this matrix to an empirical amino acid substitution rate matrix: measure
goodness of fit.
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What types of trees we tested

aaRS trees: trees whose first split is aaRS class

random trees: randomly generated 20 taxa trees

ten-ten trees: randomly generated 20 taxa trees with the constraint of
the first split having ten taxa on each side
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A special tree to test
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What runs we did

For each type of tree (aaRS, random, ten-ten), generate n = 100, 000 of
them.

For each tree, generate the rate matrix and fit it to an empirical amino acid
substitution model.

Record goodness of fit score.

Output for each type of tree is 100,000 goodness of fit scores.
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Results!

(Using the LG empirical amino acid substitution matrix Le and Gascuel
(2008).)
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Wrapping up

Random trees fit the same as ten-ten trees so it would appear that tree
shape is having not impact

aaRS trees fit better than random trees

The pseq tree fit really quite well

The results support the hypothesis that aaRS class had an impact on
the rates of change of amino acids

Julia A Shore, Barbara R Holland, Jeremy G Sumner, Kay Nieselt, Alex Popinga and Peter R WillsMaking Markov matrices from phylogenetic treesFebruary 13, 2019 17 / 19



Wrapping up

Random trees fit the same as ten-ten trees so it would appear that tree
shape is having not impact

aaRS trees fit better than random trees

The pseq tree fit really quite well

The results support the hypothesis that aaRS class had an impact on
the rates of change of amino acids

Julia A Shore, Barbara R Holland, Jeremy G Sumner, Kay Nieselt, Alex Popinga and Peter R WillsMaking Markov matrices from phylogenetic treesFebruary 13, 2019 17 / 19



Wrapping up

Random trees fit the same as ten-ten trees so it would appear that tree
shape is having not impact

aaRS trees fit better than random trees

The pseq tree fit really quite well

The results support the hypothesis that aaRS class had an impact on
the rates of change of amino acids

Julia A Shore, Barbara R Holland, Jeremy G Sumner, Kay Nieselt, Alex Popinga and Peter R WillsMaking Markov matrices from phylogenetic treesFebruary 13, 2019 17 / 19



Wrapping up

Random trees fit the same as ten-ten trees so it would appear that tree
shape is having not impact

aaRS trees fit better than random trees

The pseq tree fit really quite well

The results support the hypothesis that aaRS class had an impact on
the rates of change of amino acids

Julia A Shore, Barbara R Holland, Jeremy G Sumner, Kay Nieselt, Alex Popinga and Peter R WillsMaking Markov matrices from phylogenetic treesFebruary 13, 2019 17 / 19



Wrapping up

Random trees fit the same as ten-ten trees so it would appear that tree
shape is having not impact

aaRS trees fit better than random trees

The pseq tree fit really quite well

The results support the hypothesis that aaRS class had an impact on
the rates of change of amino acids

Julia A Shore, Barbara R Holland, Jeremy G Sumner, Kay Nieselt, Alex Popinga and Peter R WillsMaking Markov matrices from phylogenetic treesFebruary 13, 2019 17 / 19



Thanks for listening!
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