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Introduction

Motivation

@ To model the evolution of gene families;

@ We consider a two-dimensional model described in
[Teufel, A. |., Zhao, J., O'Reilly, M., Liu, L., & Liberles, D. A., 2014];

@ We construct a binary matrix Markovian model to record full
information;

@ We construct a less complex, four-dimensional model, in
which we approximate the transition rate.



Introduction

Four types of events

@ The family loses a gene.
@ A gene gains a new function.
© One of the genes duplicates itself.

@ One of the genes loses a function.

Assumption:

Functions are protected by selective pressure.



Introduction

Gene structure

| |
] /.
Il Bl

Coding region Regulatory regions

@ Regions hit by null mutation are coloured red;

@ Regions which are protected by selective pressure are coloured
yellow.



Introduction

Two-dimensional model

CTMC {X; : t > 0} with state space

S={(n,m):n=1,2,...;m=0,1...,n}

@ n, the number of genes;

@ m, the number of redundant genes.

Redundant genes are not protected by selective pressure.



Introduction

Transition rates

Transition rate in two-dimensional model

© c, duplication rate, per copy of a gene;

@ 3, loss rate, per redundant copy of a gene;

© b, loss rate, per non-redundant copy of a gene;
@ g, neofunctionalisation rate, per copy of a gene;

© h(t), subfunctionalization rate, per copy of a gene.

Here a, b, ¢, g are Poisson rate and function h(t) can be modelled
using a gamma distribution '(k, 6), as example.
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Transition types

m(g+h(t))

Figure: From
[Teufel, A. I., Zhao, J., O'Reilly, M., Liu, L., & Liberles, D. A. , 2014,
Section 10]



Binary matrix model

The binary matrix model

CTMC {Y;: : t > 0} with state space

S={A=[Aj]:Aje{0,1},i=1,....mj=1,...,z;n,z=1,2,...}

@ n, the number of genes in the family;

@ 2z, the number of functions in the regulatory regions of the
genes in the family;

@ A;j =1 means that gene i has function j (A;j = 0 if gene i
does not have function j).



Binary matrix model

Example
Suppose
1 10
A=1]0 11
100
Here

e n =3 (we have 3 genes);
@ m =2 (gene 2 is protected by selective pressure);

@ column 3 is referred to as a pivot column.



Binary matrix model

Model setting

We assume,

o
2]

o

uc, Poisson rate of losing a row in matrix A [Loss of a gene];

ur, Poisson rate of gaining a pivot column [A gene gains a
new function];

ug, Poisson rate of gaining a copy of a row in matrix A [Gene
duplication];

ur, Poisson rate of 1 — 0 in some entry A; ; [Loss of a
function].



Binary matrix model

Four possible transition types (1)

A loses row i (family loses gene i)
(@) (n,m)—=(n—1,m—4),£=1,....,m.

Transition type 1(a),



Binary matrix model

Four possible transition types (2)

0 — 1in Aj .41 (gene i gains function z + 1), (E2)
(a) (n,m) — (n,m—1);
(b) (n,m) — (n, m).

Transition type 2(b),

(3,2) = (3,2)



Binary matrix model

Four possible transition types (3)

Row i is duplicated (gene i is duplicated)
(@) (n,m) — (n+1,m+1);
(b) (n,m) — (n+1,m+2).

Transition type 3(b),

110 Cis

A=(01 1| -A=
1 00 1 00
011



Binary matrix model

Four possible transition types (4)

1 — 0in A;j entry (gene i loses function j), (E4)
n,m) — (n, m);



Binary matrix model

Transition rate T, m)—(n,m)

Obtain the transition rate T(, m)—(n,m)

T(n.m)—(n,m) = P((n.m) = (1. m))A(n,m);
where P((n,m) — (n, m)) is calculated as below:
Type 2 (b):

P((n, m) — (n,m)|1—0in A,-,ZH),
Type 4 (a):

P((n,m) = (n,m) | 1 = 0in A;j).



Binary matrix model

Transition rate A(, m)

The total transition rate of leaving the current state (n, m) given
matrix A can be described as

)‘(n,m) =mX Uc+nX ur+ ug+ <1TA1 — np,-v> X Uy,

where n,;, is the number of pivot columns in matrix A.
Here we denote

@ p = P(Aij = 1), the probability of the entry A;; is equal to 1;
@ E;, weobserve 1 — 0 in Aj 41 in the CTMC {Y;:t >0},
© E4, weobserve 1 — 0in A;j in the CTMC {Y;:t > 0}.



Binary matrix model

Expression for T, m)—(n,m)

After the calculation, we obtain
Tomysnm) =| P((n,m) = (n.m) | E2)P(E2)+
P((n,m) — (n,m) | E4)P (E4)])\(,,m
=[(1-(@=p) = (= 1p(1 - p)"?)

X (1= (1=p)* 1)+ (n=1)p(1—p)" 2 x

n—m}2
n

_m)2
X (lTAl—np,-v) ><u,+(n mn) Xuf,



Binary matrix model

Remark

Calculations require the value of
© npiv, given current state,
@ p, given current state,

© 17A1, the total number of 1s.

These can not be calculated using (n, m) only.

So the two-dimensional model {X; : t > 0} is not suitable.



Four-dimensional model

State space

Consider a CTMC {Z; : t > 0} with four-dimensional state space

S={(n,myz,c):n=1,...;m=max{0,n—z},...,n;

z=1,...;c=2z,...,nX z}.

@ n, the number of genes;

@ m, the number of redundant genes;

@ z, the number of functions in gene family;
@ ¢ = 17A1 is the total number of 1s in A.



Four-dimensional model

Possible transition

© A loses row i (family loses gene i)
(@) (n,m,z,c)=>(n—1,m—{t,z,c—>, Aik).
@ 0—1in A .41 (gene i gains function z + 1)
(a) (m,myz,c) > (n,m—1,z+1c+1);
(b) (n,m,z,c) = (n,m,z+1,¢c+1).
© Row i is duplicated (gene i is duplicated)
(@) (nymyz,c) = (n+1,m+1z,c+>, Aik)
(b) (n,m,z,c) = (n+1,m+2,z,c+>, Aix).
Q@ 1 —0in A;; entry (gene i loses function j)
(a )%(namazvcil);
(b) ( )H(n’mflvzvcfl);
(c) (n,m,z,c)—=>(n—1,m—1,z,c—1)
(d) ( )= (n—1,m—-2,z,c—1).



Four-dimensional model

Estimating p given (n, m, c, z)

We estimate the probability p = P(A;; = 1) using

C

nxz
Assumption

Observing A; ; = 1 is modelled using Bernoulli trials.



Four-dimensional model

Estimating np;, given (n,m,c, z)

The number of pivot columns np;, can be calculated as
z if m=0,
Npiv = .
(n—my+K ifm>0.

K =0,1,...,z— (n— m), is the number of additional pivot
columns.

Then we consider the expectation of np;, as

E(npiy) = (n — m) + E(K |A exists).



Four-dimensional model

Reordered matrix A

v zZ—V

1 0 All,v+1 A&,z 1
01 0 A’27V_~_1 A,

v .

A= 00 -« 1] A,y - A, n=v+m

00 A</+1,v+1 A/\/Jrl,z

m Do ) , , :
0 0 - O Apyyr 0 AL

@ v =n— m, is the number of non-redundant genes.



Four-dimensional model

Condition for existence of A’

Three conditions need to be considered

@ Each redundant gene has to have at least one function,
iyt At = lwithi=v+1v+2,.

@ Each function is protected by selection,
ZLIA;J >1lwithj=v+1,v+2 ...,z

© Rows ¢ =v +1,...,n correspond to redundant genes, there
exists at least one column ¢ = v + 1, ..., z with at least two
ones in it (which is not a pivot column),

iy Ay >2forsomel=v+1,...,z2



Four-dimensional model

Unconditional distribution of K

Let N; be the number of 1s in th column j. Then we have

zZ—V

P(K:k):< B >P(Nv+1:l,Nv+2:1,...,Nv+k:1,

Nv+k+1 > 27"'7NZ > 2)

P(K = k) :<Z; V> . 3

by k>2;
l+...4+l,_y_y=c—v—k

P(Nv+1 = 17 R Nv+k = 17 Nv+k+1 = Kla LR Nz = gz—v—k)



Further work

@ Complete mathematical analysis of the four-dimensional
models;

@ Simulation of the binary model to understand the performance
of the proposed models;

© Fit the parameter of the model to the real data, such as
TAED (the adaptive evolution database)
https://liberles.cst.temple.edu/TAED/index.html.
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