Models for the evolution of gene families

Jiahao Diao ${ }^{1}$
with Tristan L. Stark ${ }^{2}$, David A. Liberles ${ }^{2}$, Małgorzata M. O’Reilly ${ }^{1,3}$, Barbara R. Holland ${ }^{1}$

13-15 February 2019
The Tenth International Conference on Matrix-Analytic Methods in Stochastic Models (MAM10)

[^0]
Outline

(1) Introduction
(2) Binary matrix model
(3) Four-dimensional model
4. Future work

Motivation

- To model the evolution of gene families;
- We consider a two-dimensional model described in
[Teufel, A. I., Zhao, J., O’Reilly, M., Liu, L., \& Liberles, D. A. , 2014];
- We construct a binary matrix Markovian model to record full information;
- We construct a less complex, four-dimensional model, in which we approximate the transition rate.

Four types of events

(1) The family loses a gene.
(2) A gene gains a new function.
(3) One of the genes duplicates itself.
(4) One of the genes loses a function.

Assumption:

Functions are protected by selective pressure.

Gene structure

\square

\square

- Regions hit by null mutation are coloured red;
- Regions which are protected by selective pressure are coloured yellow.

Two-dimensional model

CTMC $\left\{X_{t}: t \geq 0\right\}$ with state space

$$
\mathcal{S}=\{(n, m): n=1,2, \ldots ; m=0,1 \ldots, n\}
$$

- n, the number of genes;
- m, the number of redundant genes.

Redundant genes are not protected by selective pressure.

Transition rates

Transition rate in two-dimensional model
(1) c, duplication rate, per copy of a gene;
(2) a, loss rate, per redundant copy of a gene;
(3) b, loss rate, per non-redundant copy of a gene;
(9) g, neofunctionalisation rate, per copy of a gene;
(3) $h(t)$, subfunctionalization rate, per copy of a gene.

Here a, b, c, g are Poisson rate and function $h(t)$ can be modelled using a gamma distribution $\Gamma(k, \theta)$, as example.

Transition types

Figure: From
[Teufel, A. I., Zhao, J., O'Reilly, M., Liu, L., \& Liberles, D. A. , 2014, Section 10]

The binary matrix model

CTMC $\left\{Y_{t}: t \geq 0\right\}$ with state space
$\mathcal{S}=\left\{\mathbf{A}=\left[A_{i, j}\right]: A_{i, j} \in\{0,1\}, i=1, \ldots, n ; j=1, \ldots, z ; n, z=1,2, \ldots\right\}$
(1) n , the number of genes in the family;
(2) z , the number of functions in the regulatory regions of the genes in the family;
(3) $A_{i, j}=1$ means that gene i has function $\mathrm{j}\left(A_{i, j}=0\right.$ if gene i does not have function j).

Example

Suppose

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

Here

- $n=3$ (we have 3 genes);
- $m=2$ (gene 2 is protected by selective pressure);
- column 3 is referred to as a pivot column.

Model setting

We assume,
(1) u_{c}, Poisson rate of losing a row in matrix \mathbf{A} [Loss of a gene];
(2) u_{f}, Poisson rate of gaining a pivot column [A gene gains a new function];
(3) u_{d}, Poisson rate of gaining a copy of a row in matrix \mathbf{A} [Gene duplication];
(9) u_{r}, Poisson rate of $1 \rightarrow 0$ in some entry $A_{i, j}$ [Loss of a function].

Four possible transition types (1)

A loses row i (family loses gene i)
(a) $(n, m) \rightarrow(n-1, m-\ell), \ell=1, \ldots, m$.

Transition type 1(a),

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right] \\
\rightarrow \mathbf{A}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] . \\
(3,2)
\end{gathered} \rightarrow(2,0)
$$

Four possible transition types (2)

$0 \rightarrow 1$ in $A_{i, z+1}$ (gene i gains function $z+1$), $\left(E_{2}\right)$
(a) $(n, m) \rightarrow(n, m-1)$;
(b) $(n, m) \rightarrow(n, m)$.

Transition type 2(b),

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right] \rightarrow \mathbf{A}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0
\end{array}\right] . \\
(3,2) \rightarrow(3,2)
\end{gathered}
$$

Four possible transition types (3)

Row i is duplicated (gene i is duplicated)
(a) $(n, m) \rightarrow(n+1, m+1)$;
(b) $(n, m) \rightarrow(n+1, m+2)$.

Transition type 3(b),

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right] \rightarrow \mathbf{A}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

$(3,2) \rightarrow(4,4)$

Four possible transition types (4)

$1 \rightarrow 0$ in $A_{i, j}$ entry (gene i loses function j), $\left(E_{4}\right)$
(a) $(n, m) \rightarrow(n, m)$;
(b) $(n, m) \rightarrow(n, m-1)$;
(c) $(n, m) \rightarrow(n-1, m-1)$;
(d) $(n, m) \rightarrow(n-1, m-2)$.

Transition type 4(a),

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right] \rightarrow \mathbf{A}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] . \\
(3,2) \rightarrow(3,2)
\end{gathered}
$$

Transition rate $T_{(n, m) \rightarrow(n, m)}$

Obtain the transition rate $T_{(n, m) \rightarrow(n, m)}$,

$$
T_{(n, m) \rightarrow(n, m)}=P((n, m) \rightarrow(n, m)) \lambda_{(n, m)},
$$

where $P((n, m) \rightarrow(n, m))$ is calculated as below:
Type 2 (b):

$$
P\left((n, m) \rightarrow(n, m) \mid 1 \rightarrow 0 \text { in } A_{i, z+1}\right),
$$

Type 4 (a):

$$
P\left((n, m) \rightarrow(n, m) \mid 1 \rightarrow 0 \text { in } A_{i, j}\right) .
$$

Transition rate $\lambda_{(n, m)}$

The total transition rate of leaving the current state (n, m) given matrix A can be described as

$$
\lambda_{(n, m)}=m \times u_{c}+n \times u_{f}+u_{d}+\left(\mathbf{1}^{T} \mathbf{A} \mathbf{1}-n_{p i v}\right) \times u_{r},
$$

where $n_{\text {piv }}$ is the number of pivot columns in matrix \mathbf{A}. Here we denote
(1) $p=P\left(A_{i, j}=1\right)$, the probability of the entry $A_{i, j}$ is equal to 1 ;
(2) E_{2}, we observe $1 \rightarrow 0$ in $A_{i, z+1}$ in the CTMC $\left\{Y_{t}: t \geq 0\right\}$;
(3) E_{4}, we observe $1 \rightarrow 0$ in $A_{i, j}$ in the CTMC $\left\{Y_{t}: t \geq 0\right\}$.

Expression for $T_{(n, m) \rightarrow(n, m)}$

After the calculation, we obtain

$$
\begin{aligned}
T_{(n, m) \rightarrow(n, m)}= & {\left[P\left((n, m) \rightarrow(n, m) \mid E_{2}\right) P\left(E_{2}\right)+\right.} \\
& \left.P\left((n, m) \rightarrow(n, m) \mid E_{4}\right) P\left(E_{4}\right)\right] \lambda_{(n, m)} \\
= & {\left[\left(1-(1-p)^{n-1}-(n-1) p(1-p)^{n-2}\right)\right.} \\
& \left.\times\left(1-(1-p)^{z-1}\right)+(n-1) p(1-p)^{n-2} \times \frac{n-m}{n}\right]^{2} \\
& \times\left(\mathbf{1}^{T} \mathbf{A} \mathbf{1}-n_{\text {piv }}\right) \times u_{r}+\frac{(n-m)^{2} \times u_{f}}{n} .
\end{aligned}
$$

Remark

Calculations require the value of
(1) $n_{\text {piv }}$, given current state,
(2) p, given current state,
(3) $\mathbf{1}^{T} \mathbf{A} \mathbf{1}$, the total number of 1 s .

These can not be calculated using (n, m) only.

So the two-dimensional model $\left\{X_{t}: t \geq 0\right\}$ is not suitable.

State space

Consider a CTMC $\left\{Z_{t}: t \geq 0\right\}$ with four-dimensional state space

$$
\begin{aligned}
\mathcal{S}=\{(n, m, z, c): n & =1, \ldots ; m=\max \{0, n-z\}, \ldots, n ; \\
z & =1, \ldots ; c=z, \ldots, n \times z\} .
\end{aligned}
$$

- n , the number of genes;
- m, the number of redundant genes;
- z, the number of functions in gene family;
- $c=\mathbf{1}^{T} \mathbf{A} \mathbf{1}$ is the total number of 1 s in \mathbf{A}.

Possible transition

(1) A loses row i (family loses gene i)
(a) $(n, m, z, c) \rightarrow\left(n-1, m-\ell, z, c-\sum_{k} A_{i, k}\right)$.
(2) $0 \rightarrow 1$ in $A_{i, z+1}$ (gene i gains function $z+1$)
(a) $(n, m, z, c) \rightarrow(n, m-1, z+1, c+1)$;
(b) $(n, m, z, c) \rightarrow(n, m, z+1, c+1)$.
(3) Row i is duplicated (gene i is duplicated)
(a) $(n, m, z, c) \rightarrow\left(n+1, m+1, z, c+\sum_{k} A_{i, k}\right)$;
(b) $(n, m, z, c) \rightarrow\left(n+1, m+2, z, c+\sum_{k} A_{i, k}\right)$.
(9) $1 \rightarrow 0$ in $A_{i, j}$ entry (gene i loses function j)
(a) $(n, m, z, c) \rightarrow(n, m, z, c-1)$;
(b) $(n, m, z, c) \rightarrow(n, m-1, z, c-1)$;
(c) $(n, m, z, c) \rightarrow(n-1, m-1, z, c-1)$
(d) $(n, m, z, c) \rightarrow(n-1, m-2, z, c-1)$.

Estimating p given (n, m, c, z)

We estimate the probability $p=P\left(A_{i, j}=1\right)$ using

$$
p=\frac{c}{n \times z} .
$$

Assumption

Observing $A_{i, j}=1$ is modelled using Bernoulli trials.

Estimating $n_{\text {piv }}$ given (n, m, c, z)

The number of pivot columns $n_{\text {piv }}$ can be calculated as

$$
n_{\text {piv }}= \begin{cases}z & \text { if } m=0 \\ (n-m)+K & \text { if } m \geq 0\end{cases}
$$

$K=0,1, \ldots, z-(n-m)$, is the number of additional pivot columns.

Then we consider the expectation of $n_{\text {piv }}$ as

$$
\mathbb{E}\left(n_{\text {piv }}\right)=(n-m)+\mathbb{E}(K \mid \mathbf{A} \text { exists }) .
$$

Reordered matrix A

$$
\begin{aligned}
\mathbf{A}^{\prime}= & \left.v\left\{\begin{array}{cccc|ccc}
\overbrace{1}^{1} & 0 & \cdots & 0 & \overbrace{A_{1, v+1}^{\prime}} & \cdots & A_{1, z}^{\prime} \\
0 & 1 & \cdots & 0 & A_{2, v+1}^{\prime} & \cdots & A_{2, z}^{\prime} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & 1 & A_{v, v+1}^{\prime} & \cdots & A_{v, z}^{\prime} \\
\hline 0 & 0 & \cdots & 0 & A_{v+1, v+1}^{\prime} & \cdots & A_{v+1, z}^{\prime} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & 0 & A_{n, v+1}^{\prime} & \cdots & A_{n, z}^{\prime}
\end{array}\right]\right\} n=v+m
\end{aligned}
$$

- $v=n-m$, is the number of non-redundant genes.

Condition for existence of \mathbf{A}^{\prime}

Three conditions need to be considered
(1) Each redundant gene has to have at least one function, $\sum_{j=v+1}^{z} A_{i, j}^{\prime} \geq 1$ with $i=v+1, v+2, \ldots, n$.
(2) Each function is protected by selection, $\sum_{i=1}^{n} A_{i, j}^{\prime} \geq 1$ with $j=v+1, v+2, \ldots, z$.
(3) Rows $\ell=v+1, \ldots, n$ correspond to redundant genes, there exists at least one column $\ell=v+1, \ldots, z$ with at least two ones in it (which is not a pivot column),
$\sum_{i=1}^{n} A_{i, \ell}^{\prime} \geq 2$ for some $\ell=v+1, \ldots, z$.

Unconditional distribution of K

Let N_{j} be the number of 1 s in th column j . Then we have

$$
\begin{gathered}
P(K=k)=\binom{z-v}{k} P\left(N_{v+1}=1, N_{v+2}=1, \ldots, N_{v+k}=1,\right. \\
\left.N_{v+k+1} \geq 2, \ldots, N_{z} \geq 2\right) .
\end{gathered}
$$

It leads to

$$
\begin{aligned}
P(K=k)= & \binom{z-v}{k} \sum_{\substack{\ell_{1}, \ldots, \ell_{z-v-k} \geq 2 ; \\
\ell_{1}+\ldots+\ell_{z-v-k}=c-v-k}} \\
& P\left(N_{v+1}=1, \ldots, N_{v+k}=1, N_{v+k+1}=\ell_{1}, \ldots, N_{z}=\ell_{z-v-k}\right)
\end{aligned}
$$

Further work

(1) Complete mathematical analysis of the four-dimensional models;
(2) Simulation of the binary model to understand the performance of the proposed models;
(3) Fit the parameter of the model to the real data, such as TAED (the adaptive evolution database) https://liberles.cst.temple.edu/TAED/index.html.

References

囲 Stark, T. L., Liberles, D. A., Holland, B. R., \& O'Reilly, M. M. (2017)

Analysis of a mechanistic Markov model for gene duplicates evolving under subfunctionalization.
BMC evolutionary biology, 17(1), 38.
Reufel, A. I., Zhao, J., O'Reilly, M., Liu, L., \& Liberles, D. A. , (2014)

On mechanistic modeling of gene content evolution:
birth-death models and mechanisms of gene birth and gene retention.
Computation, 2(3), pp. 112-130.
閪 Feller, W., (2008)
An introduction to probability theory and its applications (Vol.
2).

John Wiley \& Sons.

Acknowledgement

Australian Government

Australian Research Council

This research was supported by the Australian Government through the Australian Research Council's Discovery Projects funding scheme (project DP180100352)

Thank you!

[^0]: ${ }^{1}$ School of Natural Sciences, University of Tasmania.
 ${ }^{2}$ Department of Biology, Temple University.
 ${ }^{3}$ ARC Centre of Excellence for Mathematical and Statistical Frontiers

