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Outlook

This talk is about Matrix Analytic Methods!
In the context of Markov additive processes (modulated Lévy)

» Analytic matrix functions, their roots and generalized Jordan chains

» Connections to traditional matrix-analytic models
., Latouche, and Taylor [2019]

The basic theory (4 an application?)

v



Lévy processes

Stationary and independent increments:

Xrie—Xr 2 X,

X741+ — X7 is independent of Fr.
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Lévy-Khintchine formula: no negative jumps case [!!!]

Characterization: EefXt = ¥t g > (.

o0

V() = %0292 + af + L (e — 1 — Ox1(1y)v(dx), (1)

where (a,02,v(dx)) is a so-called Lévy triplet; S(l) x?v(dx),v(1,0) < ©.

Every Lévy process can be seen as an independent sum of
1. drifted Brownian motion

2. compound Poisson process of big jumps
3. martingale having only small jumps

[!] - assumption made throughout this talk



Markov-modulated (regime-switching) Lévy process

Let J; € E = {1,...,n} be a modulating process (phase):
X € R (level) evolves as a Lévy process X\ while J; = i and
jumps according to U() at phase switching times.
All the components are independent, J is an (irreducible) Markov chain.




An alternative perspective!

Stationary and independent increments conditional on the current phase:

The process (X741t — X7, J74¢)r=0, conditionally on {Jr = i}, is
» independent of Fr,
» has the law of (Xt, Jt)t=0 given {Jo = i}.

Such (X, J) is called a Markov additive process.

Note: T can be a stopping time (J7 = i implies T < o0)
For a finite E [!]:

Markov additive process =  Markov-modulated Lévy process

Notation:
PlJr] = P(Jr = jldo = i),
E[...;J7r] is n x n matrix. ..



First passage over negative levels

For x e R:
Tx = inf{t = 0: X; = x}
No negative jumps = J.__,x > 0is a Markov chain.

P[JT—x] = ]P)(J‘r,x =j|J0 = I)’J = eGX,

assuming #i s.t. XV is a.s. increasing [!]

G is substochastic iff u = EX; > 0, Jpo ~m



(X,J) is a Markov chain on Z x E with
transition rates (/,7) — (I + m,j) put into n x n matrix Ap,.

Free process: no special boundary behavior! (can be imposed later).

Skip-free downwards: A, = O for m= -2, -3, ...

Jr ok =0,1,2,... is a discrete-time MC, PlJ,_ ] = G*
Neuts [1989]: G is the minimal non-negative solution to
A1+ AG +AG2+...=0.

G is a right-root of analytic matrix-valued function (power series)

0
F(z) = Z A12", |z| <1
k=0

There is also the minimal non-negative left-root R:
expected time in level —1 before the first return to level 0
(scaled by jump rates from initial phase)

Intermezzo: Traditional matrix-analytic models X; € Z



Back to non-lattice MAPs: characterization

In analogy to Lévy processes, but in matrix form:
E[e”; ] = O, F(0) := Ay o)....0000) T Q0 (E”%),  (3)
where v;(6) is the Laplace exponent of X() with triplet (a;, o;, v;(dx)),

Q is the transition rate matrix of J;,
o is entry-wise matrix multiplication.

F:Cw~ C™"is analytic on {z € C: R(z) < 0}.

Explicit form with Ujj(dx) = P(Uj € dx):

1 o0 Q0
- §A§,92+A39+J Dyax (e —1- 9x1{x<1})+QoJ U(dx)e®
0 0

F()



Characterization of G

G is the unique (in some sense) right-root of F(-):

§A§62+AHG+L Dpan (e —T— GXl{X<”>+QOL U(dx)e® = 0.
Note: the eigenvalues of G must be in {z e C: R(z) < 0} u {0}.
Addressed in: Ezhov and Skorokhod [1969], Prabhu [1980], Asmussen
[1995], Rogers [1994], Breuer [2008], Dieker and Mandjes [2011],
D'Auria, I., Kella, and Mandjes [2010], ...

Obtained as far back as 1969 by Ezhov and Skorokhod in a general form
(typo), and then rediscovered in 00s.

No jumps (Markov-modulated Brownian motion; 02 # 0 or a; < 0):
122
5A,,G +A,G+Q =0,

compare to QBDs.



Jordan chains of analytic matrix functions

Motivation: if Gv = Av then F(A)v = 0.
What about the Jordan chains of G?

We say that vectors v, ..., v, 1 € CN with vy # 0 form a (right)
Jordan chain of F(z) corresponding to an eigenvalue X € C if

/1
Z— AMvj_j=0forallj=0,...,r—1,
I

see Gohberg and Rodman [1981].
In particular, F(A\)vg =0, F(A\)vy + F'(A)vy = 0.

Classical Jordan chain of M is obtained with F(z) = zI — M:

Mvgy = Avg, Mvy = Avy + vq,. ..



Spectral characterization of G

D'Auria, 1., Kella, and Mandjes [2010]:

Theorem

Suppose R(A) < 0. Then vy, ...,v,_1 is a (classical) Jordan chain of G
corresponding to an eigenvalue X if and only if it is a (generalized)
Jordan chain of F(z) corresponding to .

Similar ideas appear in Dieker and Mandjes [2011] and Gail, Hantler, and
Taylor [1996] in lattice case (minor assumption).

Remark: works very poorly numerically, but often useful in proofs
(getting rid of the common assumption of distinct zeros/eigenvalues).



Local time/ occupation density

Motivation: what is the analogous interpretation of the left root R?
We need 'time at a level'. ..

The local time at level x (and phase j when started in phase /)
» XU) has unbounded variation:

1
Lij(x,t) := 'E'lng % L Lixo—xi<e,u=jyds.

> Xt(j) = Jt(j) — djt with d; > 0 and JU) an increasing jump process:

Li(x,b) = %#{s e[0,8): Xe = x, Js = j}
J

L(x, t) increases when X; = x, it is additive ...
Occupation density formula:

L f(Xs, Je)ds = ;J}R f(x,j)Lj(x, t)dx a.s., (5)



Probabilistic interpretation of the left root R

Consider a stopping time

c:=inf{t=0:X;,=0,J; # i}
and define EL;( )
Ritx) = ELiCX:9).
j(X) EL,‘,’(O,§)
Then
R(X) = eRX7 X =z O

Note: other stopping times with X, = 0 and EL;(0,¢) € (0,0) can be

used as well.



Another fundamental matrix

Matrix of expected occupation times at 0
H,'J' = ELU(O, OO),

which is finite and invertible, unless = 0 (X oscillates).
The latter case excluded [!!!] whenever H is present

The basic relation:
GH = HR

This is rather obvious in the lattice case.
Does not identify H (additional n independent linear equations needed)!

Spectral characterization of H, Albrecher and I. [2013]:
For a left eigenpair (A, h) of G,

hH = |i?01 ehF(\—¢e)7L.

A formula for Jordan chains exists too.



The scale function W (x)

I. and Palmowski [2012]:
3! continuous matrix-valued function W(x),x > 0 s.t.

fo ™ W (x)dx = F(6) ™
0

for small enough 6; W(x) = O for x < 0.

» W(x) is non-singular for x > 0,
» W(x)~! is non-negative for x > 0,
» Fora,b>0witha+b>0

Plr. <7, J- ] =W(b)W(a+b)!
» Phase distribution at first hitting of a level x € R:
P[] =e & -~ W(x)H? (8)

» ...rich set of identities ...it's all about local times!



Proof ideas: construction

Observe that

Pl ]=Plrx <7y, Jr ] +Plry <7, I |P[Jr_,_ ],
Pt ] =Plry <7 x,Jr, ] + Plr_x <1y, Jr_ JP[Jr,, ]

y

Multiply 2nd equation by P[J, ] = e®**¥) and subtract from Ist:

T_x—y

e — P[4, 1e°C) = P[r_, <7, J; ]J(I-P[J

e, ]SO (9)
The event {7_, < 7,} coincides with {T_, < 7,7} (no negative jumps).

Define
W(x) = (e~ —P[J,])H

implying (8) and

W(y) =Plr—x <1y, Jr_JW(x+y).



Proof ideas: analysis

Fundamental interpretation:
e W(x) = H—e®P[J. |)H

is the expected occupation time at 0 before 7_
(additivity of local times).

Occupation density formula for certain 6:
0 0
J e”EL(x,0)dx = f E[e?*; J,]dt = J eF@tqr = —F(h)~1.
R 0 0

The lhs is

o0 0 o0
J e P[J, |Hdx + f e e Hdx = J e”P[J, JHdx — (G — 61)~!

0 —00 0

Conclude: analytic continuation and cancellation of terms



Numerics

» Various iterative schemes exist for G and thus for R, Asmussen
[1995], Breuer [2008]

» Spectral method performs poorly (very small n only)
» The matrix H: currently only the spectral method exists in general

MMBM case is often used in practice:
» PHase-type jumps can be incorporated (fluid embedding)

» Explosion in # of phases! Asmussen, Laub, and Yang [2019] use
> 1000 phases in a life insurance application

» Explicit H and W(x) (assume Vi : o7 > 0):

H™! = —%Af,(G +G7), W(x) = (e~ — e ")H,

where G~ corresponds to (—X, J), see (8).



Terminating process/ Killing

Simple but extremely powerful idea:
add an absorbing state ¢ to E and declare X; killed when J; € 0.
Blumenthal and Getoor [1968]: "0 can be thought of as a 'cemetery’ or 'heaven’

depending on one's point of view”.

» MAP property is preserved: all the above material is still true!

» F9(0) = F(8) — Aq, where q is a vector of killing rates g; > 0 in
phase i

» GY is the right root of F9(-); killing state ignored in all the matrices

exp(GIx) =PI[J;_ ] = [eXp ( >lai JT 1{Jtei}dt) ;J”] -

» The life-time has PH distribution (dependent on X).

» Any MAP on an independent PH time horizon can be seen as a
killed MAP on a larger E



Application: Poissonian observation of a risk process

Based on Albrecher and I. [2013]

» Risk reserve process (—X;, J;) with —X; — o0,
» Poissonian observer arriving at rate g; in phase /,
» Ruin occurs if X is seen below 0,

» ¢(u) is a vector of survival probabilities for initial capital u > 0.

Identities:
¢(0) = M1, GM — MG = HA,,
assuming that det F(z) and det F9(z) have distinct zeros with $(z) < 0.
p(u) = V7 (u)$(0)
u
— (1 —f W(X)AqeG“de> eCUM~11
0



Applicaton: numerical example

Markov-modulated Cramér—Lundberg model:
premium rates 1,1; claim sizes Exp(1); claims arrival rates 1,1/2; phase
transition rates 1,1. Observation rates g; = 0.4, g>, = 0.2.




Applicaton: numerical example

Spectral method:

_(-139 139 _, (-199 1.20 (263 147
6= ( 1.16 —1.16) 6% = ( 1.09 —1.45) and H = (1.47 2.44)

Survival probavilities:

_ (158 0.58 o

M = <o.53 1.54>’ #(0) = M1 = (0.49)
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Survival functions ¢;(u)



Applicaton: numerical example

The probability of reaching level u before ruin: Vii(u) + Vio(u)
Monte Carlo simulation estimate based on 10,000 runs,
Horizontal line: ¢1(0) = 0.45 (limiting value).

10
09
08}
07}
06

05}

0 2 4 6 8 10
Numerical stability is an issue here!



Application Il: Last exit from R,

Based on I. [2017]

The last exit time from R (not a stopping time):
T =sup{t =0:X; > 0}.

Assuming 1 = E;X; < 0 we have

E [exp <_Z qIJ 1{Jt=i}dt> ;J7':| = _,quAH
0

where r > 0 is identified by Rr =0 and 7wr = 1.

For example, E;[7; J;] is expressed through

0
—aH<q»q)/aq‘ - J tEL(0, dt)
q=0 0

Simple explanation when XU is b.v.



Concluding remarks

» One-sided MAPs appear naturally in a variety of settings
(Markovian environment, PH jumps/inter arrivals/time horizons)

» Close links to traditional matrix-analytic methods

» Matrix-analytic methods + fluctuations of Lévy processes
» Extremely useful: additive perspective and the local times
» The basic objects: G, R, H and W (x)

» These are all functions of the killing rates g € R’}
(extendable to C": work in progress with V. Rivero)

» Numerics: Mathematica package (2013) at
https://sites.google.com/site/jevgenijsivanovs/files

» Future: focus on MMBM and implement scalable algorithms
(with S. Asmussen and P. Laub)

» plenty of other things known . ..

» ...and even more to be discovered!


https://sites.google.com/site/jevgenijsivanovs/files

Thank You!
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