One-sided Markov additive processes: fundamental matrices and the scale function

Jevgenijs Ivanovs
Aarhus University

Matrix-Analytic Methods 10,
13-15 February 2019, University of Tasmania, Hobart

(3 slides added)

Outlook

This talk is about Matrix Analytic Methods!
In the context of Markov additive processes (modulated Lévy)

- Analytic matrix functions, their roots and generalized Jordan chains
- Connections to traditional matrix-analytic models I., Latouche, and Taylor [2019]
- The basic theory (+ an application?)
-...

Lévy processes

Stationary and independent increments:

$$
X_{T+t}-X_{T} \stackrel{\mathrm{~d}}{=} X_{t}, \quad X_{T+t}-X_{T} \text { is independent of } \mathcal{F}_{T} .
$$

Lévy-Khintchine formula: no negative jumps case [!!!]

Characterization: $\mathbb{E} e^{\theta X_{t}}=e^{\psi(\theta) t}, \theta \geqslant 0$.

$$
\begin{equation*}
\psi(\theta)=\frac{1}{2} \sigma^{2} \theta^{2}+a \theta+\int_{0}^{\infty}\left(e^{\theta x}-1-\theta x 1_{\{x<1\}}\right) \nu(\mathrm{d} x), \tag{1}
\end{equation*}
$$

where $\left(\mathrm{a}, \sigma^{2}, \nu(\mathrm{~d} x)\right)$ is a so-called Lévy triplet; $\int_{0}^{1} x^{2} \nu(\mathrm{~d} x), \nu(1, \infty)<\infty$.
Every Lévy process can be seen as an independent sum of

1. drifted Brownian motion
2. compound Poisson process of big jumps
3. martingale having only small jumps
[!!!] - assumption made throughout this talk

Markov-modulated (regime-switching) Lévy process

Let $J_{t} \in E=\{1, \ldots, n\}$ be a modulating process (phase):
$X_{t} \in \mathbb{R}$ (level) evolves as a Lévy process $X_{t}^{(i)}$ while $J_{t}=i$ and jumps according to $U^{(i j)}$ at phase switching times.
All the components are independent, J is an (irreducible) Markov chain.

An alternative perspective!

Stationary and independent increments conditional on the current phase:
The process $\left(X_{T+t}-X_{T}, J_{T+t}\right)_{t \geqslant 0}$, conditionally on $\left\{J_{T}=i\right\}$, is

- independent of \mathcal{F}_{T},
- has the law of $\left(X_{t}, J_{t}\right)_{t \geqslant 0}$ given $\left\{J_{0}=i\right\}$.

Such (X, J) is called a Markov additive process.
Note: T can be a stopping time $\left(J_{T}=i\right.$ implies $\left.T<\infty\right)$
For a finite $E[!!!]:$
Markov additive process $=$ Markov-modulated Lévy process

Notation:
$\mathbb{P}\left[J_{T}\right]=\mathbb{P}\left(J_{T}=j \mid J_{0}=i\right)_{i j}$,
$\mathbb{E}\left[\ldots ; J_{T}\right]$ is $n \times n$ matrix...

First passage over negative levels

For $x \in \mathbb{R}$:

$$
\tau_{x}=\inf \left\{t \geqslant 0: X_{t}=x\right\}
$$

No negative jumps $\Rightarrow J_{\tau_{-x}}, x \geqslant 0$ is a Markov chain.

$$
\mathbb{P}\left[J_{\tau_{-x}}\right]=\mathbb{P}\left(J_{\tau_{-x}}=j \mid J_{0}=i\right)_{i j}=e^{G x},
$$

assuming $\# i$ s.t. $X^{(i)}$ is a.s. increasing [!!!]

$$
G \text { is substochastic iff } \mu=\mathbb{E}_{\pi} X_{1}>0, \quad J_{\infty} \sim \pi
$$

Intermezzo: Traditional matrix-analytic models $X_{t} \in \mathbb{Z}$

(X, J) is a Markov chain on $\mathbb{Z} \times E$ with transition rates $(I, i) \mapsto(I+m, j)$ put into $n \times n$ matrix A_{m}. Free process: no special boundary behavior! (can be imposed later).

Skip-free downwards: $A_{m}=\mathbb{O}$ for $m=-2,-3, \ldots$

$$
J_{\tau_{-k}}, k=0,1,2, \ldots \text { is a discrete-time MC, } \quad \mathbb{P}\left[J_{\tau_{-k}}\right]=\check{G}^{k}
$$

Neuts [1989]: \check{G} is the minimal non-negative solution to

$$
\begin{equation*}
A_{-1}+A_{0} \check{G}+A_{1} \breve{G}^{2}+\ldots=\mathbb{O} \tag{2}
\end{equation*}
$$

\breve{G} is a right-root of analytic matrix-valued function (power series)

$$
\check{F}(z)=\sum_{k=0}^{\infty} A_{k-1} z^{k}, \quad|z|<1
$$

There is also the minimal non-negative left-root \check{R} : expected time in level -1 before the first return to level 0 (scaled by jump rates from initial phase)

Back to non-lattice MAPs: characterization

In analogy to Lévy processes, but in matrix form:

$$
\begin{equation*}
\mathbb{E}\left[e^{\theta X_{t}} ; J_{t}\right]=e^{t F(\theta)}, \quad F(\theta):=\Delta_{\left(\psi_{1}(\theta), \ldots, \psi_{n}(\theta)\right)}+Q \circ\left(\mathbb{E} e^{\theta U_{i j}}\right), \tag{3}
\end{equation*}
$$

where $\psi_{i}(\theta)$ is the Laplace exponent of $X^{(i)}$ with triplet $\left(a_{i}, \sigma_{i}, \nu_{i}(\mathrm{~d} x)\right)$,
Q is the transition rate matrix of J_{t},
\circ is entry-wise matrix multiplication.
$F: \mathbb{C} \mapsto \mathbb{C}^{n \times n}$ is analytic on $\{z \in \mathbb{C}: \Re(z)<0\}$.

Explicit form with $U_{i j}(\mathrm{~d} x)=\mathbb{P}\left(U_{i j} \in \mathrm{~d} x\right)$:
$F(\theta)=\frac{1}{2} \Delta_{\boldsymbol{\sigma}}^{2} \theta^{2}+\Delta_{a} \theta+\int_{0}^{\infty} \Delta_{\nu(\mathrm{d} x)}\left(e^{\theta x}-1-\theta x 1_{\{x<1\}}\right)+Q \circ \int_{0}^{\infty} U(\mathrm{~d} x) e^{\theta x}$

Characterization of G

G is the unique (in some sense) right-root of $F(\cdot)$:
$\frac{1}{2} \Delta_{\sigma}^{2} G^{2}+\Delta_{a} G+\int_{0}^{\infty} \Delta_{\nu(\mathrm{d} x)}\left(e^{G x}-\mathbb{I}-G x 1_{\{x<1\}}\right)+Q \circ \int_{0}^{\infty} U(\mathrm{~d} x) e^{G x}=\mathbb{O}$.
Note: the eigenvalues of G must be in $\{z \in \mathbb{C}: \Re(z)<0\} \cup\{0\}$.
Addressed in: Ezhov and Skorokhod [1969], Prabhu [1980], Asmussen [1995], Rogers [1994], Breuer [2008], Dieker and Mandjes [2011], D'Auria, I., Kella, and Mandjes [2010], ...

Obtained as far back as 1969 by Ezhov and Skorokhod in a general form (typo), and then rediscovered in 00s.

No jumps (Markov-modulated Brownian motion; $\sigma_{i}^{2} \neq 0$ or $a_{i}<0$):

$$
\frac{1}{2} \Delta_{\sigma}^{2} G^{2}+\Delta_{a} G+Q=\mathbb{O}
$$

compare to QBDs.

Jordan chains of analytic matrix functions

Motivation: if $G \boldsymbol{v}=\lambda \boldsymbol{v}$ then $F(\lambda) \boldsymbol{v}=\mathbf{0}$. What about the Jordan chains of G ?

We say that vectors $\boldsymbol{v}_{0}, \ldots, \boldsymbol{v}_{r-1} \in \mathbb{C}^{N}$ with $\boldsymbol{v}_{0} \neq \mathbf{0}$ form a (right) Jordan chain of $F(z)$ corresponding to an eigenvalue $\lambda \in \mathbb{C}$ if

$$
\begin{equation*}
\sum_{i=0}^{j} \frac{1}{i!} F^{(i)}(\lambda) \boldsymbol{v}_{j-i}=\mathbf{0} \text { for all } j=0, \ldots, r-1 \tag{4}
\end{equation*}
$$

see Gohberg and Rodman [1981].
In particular, $F(\lambda) \boldsymbol{v}_{0}=\mathbf{0}, F(\lambda) \boldsymbol{v}_{1}+F^{\prime}(\lambda) \boldsymbol{v}_{0}=\mathbf{0}$.
Classical Jordan chain of M is obtained with $F(z)=z \mathbb{I}-M$:

$$
M \boldsymbol{v}_{0}=\lambda \boldsymbol{v}_{0}, \quad M \boldsymbol{v}_{1}=\lambda \boldsymbol{v}_{1}+\boldsymbol{v}_{0}, \ldots
$$

Spectral characterization of G

D'Auria, I., Kella, and Mandjes [2010]:

Theorem

Suppose $\Re(\lambda)<0$. Then $\boldsymbol{v}_{0}, \ldots, \boldsymbol{v}_{r-1}$ is a (classical) Jordan chain of G corresponding to an eigenvalue λ if and only if it is a (generalized) Jordan chain of $F(z)$ corresponding to λ.

Similar ideas appear in Dieker and Mandjes [2011] and Gail, Hantler, and Taylor [1996] in lattice case (minor assumption).

Remark: works very poorly numerically, but often useful in proofs (getting rid of the common assumption of distinct zeros/eigenvalues).

Local time/ occupation density

Motivation: what is the analogous interpretation of the left root R ? We need 'time at a level'...

The local time at level x (and phase j when started in phase i)

- $X^{(j)}$ has unbounded variation:

$$
L_{i j}(x, t):=\lim _{\epsilon \downarrow 0} \frac{1}{2 \epsilon} \int_{0}^{t} 1_{\left\{\left|X_{s}-x\right|<\epsilon, J_{s}=j\right\}} \mathrm{d} s .
$$

- $X_{t}^{(j)}=J_{t}^{(j)}-d_{j} t$ with $d_{j}>0$ and $J^{(j)}$ an increasing jump process:

$$
L_{i j}(x, t):=\frac{1}{d_{j}} \#\left\{s \in[0, t): X_{s}=x, J_{s}=j\right\}
$$

$L(x, t)$ increases when $X_{t}=x$, it is additive \ldots
Occupation density formula:

$$
\begin{equation*}
\int_{0}^{t} f\left(X_{s}, J_{s}\right) \mathrm{d} s=\sum_{j} \int_{\mathbb{R}} f(x, j) L_{i j}(x, t) \mathrm{d} x \text { a.s. } \tag{5}
\end{equation*}
$$

Probabilistic interpretation of the left root R

Consider a stopping time

$$
\begin{equation*}
\varsigma:=\inf \left\{t \geqslant 0: X_{t}=0, J_{t} \neq i\right\} \tag{6}
\end{equation*}
$$

and define

$$
\begin{equation*}
R_{i j}(x):=\frac{\mathbb{E} L_{i j}(-x, \varsigma)}{\mathbb{E} L_{i j}(0, \varsigma)} \tag{7}
\end{equation*}
$$

Then

$$
R(x)=e^{R x}, \quad x \geqslant 0
$$

Note: other stopping times with $X_{\varsigma}=0$ and $\mathbb{E} L_{i i}(0, \varsigma) \in(0, \infty)$ can be used as well.

Another fundamental matrix

Matrix of expected occupation times at 0

$$
H_{i j}=\mathbb{E} L_{i j}(0, \infty),
$$

which is finite and invertible, unless $\mu=0$ (X oscillates).
The latter case excluded [!!!] whenever H is present

The basic relation:

$$
G H=H R
$$

This is rather obvious in the lattice case.
Does not identify H (additional n independent linear equations needed)!
Spectral characterization of H, Albrecher and I. [2013]: For a left eigenpair $(\lambda, \boldsymbol{h})$ of G,

$$
\boldsymbol{h} H=\lim _{\epsilon \downarrow 0} \epsilon \boldsymbol{h} F(\lambda-\epsilon)^{-1} .
$$

A formula for Jordan chains exists too.

The scale function $W(x)$

I. and Palmowski [2012]:
\exists ! continuous matrix-valued function $W(x), x \geqslant 0$ s.t.

$$
\int_{0}^{\infty} e^{\theta x} W(x) \mathrm{d} x=F(\theta)^{-1}
$$

for small enough $\theta ; W(x)=\mathbb{O}$ for $x<0$.

- $W(x)$ is non-singular for $x>0$,
- $W(x)^{-1}$ is non-negative for $x>0$,
- For $a, b \geqslant 0$ with $a+b>0$

$$
\mathbb{P}\left[\tau_{-a}<\tau_{b}^{+}, J_{\tau_{-a}}\right]=W(b) W(a+b)^{-1}
$$

- Phase distribution at first hitting of a level $x \in \mathbb{R}$:

$$
\begin{equation*}
\mathbb{P}\left[J_{\tau_{x}}\right]=e^{-G x}-W(x) H^{-1} \tag{8}
\end{equation*}
$$

- . . . rich set of identities . . . it's all about local times!

Proof ideas: construction

Observe that

$$
\begin{aligned}
\mathbb{P}\left[J_{\tau_{-x}}\right] & =\mathbb{P}\left[\tau_{-x}<\tau_{y}, J_{\tau_{-x}}\right]+\mathbb{P}\left[\tau_{y}<\tau_{-x}, J_{\tau_{y}}\right] \mathbb{P}\left[J_{\tau_{-x-y}}\right], \\
\mathbb{P}\left[J_{\tau_{y}}\right] & =\mathbb{P}\left[\tau_{y}<\tau_{-x}, J_{\tau_{y}}\right]+\mathbb{P}\left[\tau_{-x}<\tau_{y}, J_{\tau_{-x}}\right] \mathbb{P}\left[J_{\tau_{x+y}}\right] .
\end{aligned}
$$

Multiply 2nd equation by $\mathbb{P}\left[J_{\tau_{-x-y}}\right]=e^{G(x+y)}$ and subtract from 1st:

$$
\begin{equation*}
e^{G x}-\mathbb{P}\left[J_{\tau_{y}}\right] e^{G(x+y)}=\mathbb{P}\left[\tau_{-x}<\tau_{y}, J_{\tau_{-x}}\right]\left(\mathbb{I}-\mathbb{P}\left[J_{\tau_{x+y}}\right] e^{G(x+y)}\right) \tag{9}
\end{equation*}
$$

The event $\left\{\tau_{-x}<\tau_{y}\right\}$ coincides with $\left\{\tau_{-x}<\tau_{y}^{+}\right\}$(no negative jumps).
Define

$$
W(x)=\left(e^{-G x}-\mathbb{P}\left[J_{\tau_{x}}\right]\right) H
$$

implying (8) and

$$
W(y)=\mathbb{P}\left[\tau_{-x}<\tau_{y}, J_{\tau_{-x}}\right] W(x+y)
$$

Proof ideas: analysis

Fundamental interpretation:

$$
\left.e^{G x} W(x)=H-e^{G x} \mathbb{P}\left[J_{\tau_{x}}\right]\right) H
$$

is the expected occupation time at 0 before τ_{-x} (additivity of local times).

Occupation density formula for certain θ :

$$
\int_{\mathbb{R}} e^{\theta x} \mathbb{E} L(x, \infty) \mathrm{d} x=\int_{0}^{\infty} \mathbb{E}\left[e^{\theta X_{t}} ; J_{t}\right] \mathrm{d} t=\int_{0}^{\infty} e^{F(\theta) t} \mathrm{~d} t=-F(\theta)^{-1}
$$

The Ihs is

$$
\int_{0}^{\infty} e^{\theta x} \mathbb{P}\left[J_{\tau_{x}}\right] H \mathrm{~d} x+\int_{-\infty}^{0} e^{\theta x} e^{-G x} H \mathrm{~d} x=\int_{0}^{\infty} e^{\theta x} \mathbb{P}\left[J_{\tau_{x}}\right] H \mathrm{~d} x-(G-\theta \mathbb{I})^{-1}
$$

Conclude: analytic continuation and cancellation of terms

Numerics

- Various iterative schemes exist for G and thus for R, Asmussen [1995], Breuer [2008]
- Spectral method performs poorly (very small n only)
- The matrix H : currently only the spectral method exists in general

MMBM case is often used in practice:

- PHase-type jumps can be incorporated (fluid embedding)
- Explosion in \# of phases! Asmussen, Laub, and Yang [2019] use >1000 phases in a life insurance application
- Explicit H and $W(x)$ (assume $\forall i: \sigma_{i}^{2}>0$):

$$
H^{-1}=-\frac{1}{2} \Delta_{\sigma}^{2}\left(G+G^{-}\right), \quad W(x)=\left(e^{-G x}-e^{G^{-} x}\right) H,
$$

where G^{-}corresponds to $(-X, J)$, see (8).

Terminating process/ Killing

Simple but extremely powerful idea: add an absorbing state ∂ to E and declare X_{t} killed when $J_{t} \in \partial$. Blumenthal and Getoor [1968]: " ∂ can be thought of as a 'cemetery' or 'heaven' depending on one's point of view".

- MAP property is preserved: all the above material is still true!
- $F^{\boldsymbol{q}}(\theta)=F(\theta)-\Delta_{\boldsymbol{q}}$, where \boldsymbol{q} is a vector of killing rates $q_{i} \geqslant 0$ in phase i
- $G^{\boldsymbol{q}}$ is the right root of $F^{\boldsymbol{q}}(\cdot)$; killing state ignored in all the matrices

$$
\exp \left(G^{\boldsymbol{q}} x\right)=\mathbb{P}^{\boldsymbol{q}}\left[J_{\tau_{-x}}\right]=\mathbb{E}\left[\exp \left(-\sum q_{i} \int_{0}^{\tau_{-x}} 1_{\left\{J_{t} \in i\right\}} \mathrm{d} t\right) ; J_{\tau_{-x}}\right] .
$$

- The life-time has PH distribution (dependent on X).
- Any MAP on an independent PH time horizon can be seen as a killed MAP on a larger E

Application: Poissonian observation of a risk process

Based on Albrecher and I. [2013]

- Risk reserve process $\left(-X_{t}, J_{t}\right)$ with $-X_{t} \rightarrow \infty$,
- Poissonian observer arriving at rate q_{i} in phase i,
- Ruin occurs if X is seen below 0 ,
- $\phi(u)$ is a vector of survival probabilities for initial capital $u \geqslant 0$.

Identities:

$$
\phi(0)=M^{-1} \mathbf{1}, \quad G M-M G^{q}=H \Delta_{\boldsymbol{q}},
$$

assuming that $\operatorname{det} F(z)$ and $\operatorname{det} F^{\boldsymbol{q}}(z)$ have distinct zeros with $\Re(z)<0$.

$$
\begin{aligned}
\phi(u) & =V^{-1}(u) \phi(0) \\
& =\left(\mathbb{I}-\int_{0}^{u} W(x) \Delta_{\boldsymbol{q}} e^{G^{\boldsymbol{q}} x} \mathrm{~d} x\right) e^{G^{\boldsymbol{q}} u} M^{-1} \mathbf{1}
\end{aligned}
$$

Applicaton: numerical example

Markov-modulated Cramér-Lundberg model: premium rates 1,1; claim sizes $\operatorname{Exp}(1)$; claims arrival rates $1,1 / 2$; phase transition rates 1,1 . Observation rates $q_{1}=0.4, q_{2}=0.2$.

Applicaton: numerical example

Spectral method:
$G=\left(\begin{array}{cc}-1.39 & 1.39 \\ 1.16 & -1.16\end{array}\right), G^{\boldsymbol{q}}=\left(\begin{array}{cc}-1.99 & 1.20 \\ 1.09 & -1.45\end{array}\right)$ and $H=\left(\begin{array}{ll}2.63 & 1.47 \\ 1.47 & 2.44\end{array}\right)$
Survival probavilities:

$$
M=\left(\begin{array}{ll}
1.58 & 0.58 \\
0.53 & 1.54
\end{array}\right), \quad \phi(0)=M^{-1} \mathbf{1}=\binom{0.45}{0.49}
$$

Applicaton: numerical example

The probability of reaching level u before ruin: $V_{11}(u)+V_{12}(u)$ Monte Carlo simulation estimate based on 10,000 runs, Horizontal line: $\phi_{1}(0)=0.45$ (limiting value).

Numerical stability is an issue here!

Application II: Last exit from \mathbb{R}_{+}

Based on I. [2017]
The last exit time from \mathbb{R}_{+}(not a stopping time):

$$
\tau=\sup \left\{t \geqslant 0: X_{t} \geqslant 0\right\}
$$

Assuming $\mu=\mathbb{E}_{\pi} X_{1}<0$ we have

$$
\mathbb{E}\left[\exp \left(-\sum q_{i} \int_{0}^{\tau} 1_{\left\{J_{t}=i\right\}} \mathrm{d} t\right) ; J_{\tau}\right]=-\mu H^{q} \Delta_{\mathbf{r}},
$$

where $\boldsymbol{r}>\mathbf{0}$ is identified by $\boldsymbol{R} \boldsymbol{r}=\mathbf{0}$ and $\boldsymbol{\pi} \boldsymbol{r}=1$.

For example, $\mathbb{E}_{i}\left[\tau ; J_{\tau}\right]$ is expressed through

$$
-\partial H^{(q, q)} /\left.\partial q\right|_{q=0}=\int_{0}^{\infty} t \mathbb{E} L(0, \mathrm{~d} t)
$$

Simple explanation when $X^{(j)}$ is b.v.

Concluding remarks

- One-sided MAPs appear naturally in a variety of settings (Markovian environment, PH jumps/inter arrivals/time horizons)
- Close links to traditional matrix-analytic methods
- Matrix-analytic methods + fluctuations of Lévy processes
- Extremely useful: additive perspective and the local times
- The basic objects: G, R, H and $W(x)$
- These are all functions of the killing rates $\boldsymbol{q} \in \mathbb{R}_{+}^{n}$ (extendable to \mathbb{C}^{n} : work in progress with V. Rivero)
- Numerics: Mathematica package (2013) at https://sites.google.com/site/jevgenijsivanovs/files
- Future: focus on MMBM and implement scalable algorithms (with S. Asmussen and P. Laub)
- plenty of other things known...
- ... and even more to be discovered!

Thank You!

H Albrecher and J Ivanovs. A risk model with an observer in a Markov environment. Risks, 1(3):148-161, 2013.
S Asmussen, P Laub, and H Yang. Phase-type models in life insurance: Fitting and valuation of equity-linked benefits. Risks (submitted), 2019.
S Asmussen. Stationary distributions for fluid flow models with or without Brownian noise. Communications in Statistics. Stochastic Models, 11(1):21-49, 1995.
R. M. Blumenthal and R. K. Getoor. Markov processes and potential theory. Pure and Applied Mathematics, Vol. 29. Academic Press, New York-London, 1968.
L Breuer. First passage times for Markov additive processes with positive jumps of phase type. J. Appl. Probab., 45(3):779-799, 2008.
B D'Auria, J Ivanovs, O Kella, and M Mandjes. First passage of a Markov additive process and generalized Jordan chains. J. Appl. Probab., 47(4):1048-1057, 2010.
AB Dieker and M Mandjes. Extremes of Markov-additive processes with one-sided jumps, with queueing applications. Methodol. Comput. Appl. Probab., 13(2): 221-267, 2011.
II Ezhov and AV Skorokhod. Markov processes with homogeneous second component II. Theory of Probability \& Its Applications, 14(4):652-667, 1969.

HR Gail, SL Hantler, and BA Taylor. Spectral analysis of $M / G / 1$ and $G / M / 1$ type Markov chains. Adv. in Appl. Probab., 28(1):114-165, 1996.
I Gohberg and L Rodman. Analytic matrix functions with prescribed local data. J. Analyse Math., 40:90-128, 1981.
J Ivanovs and Z Palmowski. Occupation densities in solving exit problems for Markov additive processes and their reflections. Stochastic Process. Appl., 122(9): 3342-3360, 2012.
J Ivanovs. Splitting and time reversal for Markov additive processes. Stochastic Process. Appl., 127(8):2699-2724, 2017.

J Ivanovs, G Latouche, and G Taylor. One-sided Markov additive processes with lattice and non-lattice increments. 2019. (in preparation).

MF Neuts. Structured Stochastic Matrices of M/G/1 Type and their Applications. Marcel Dekker, New York, 1989.

NU Prabhu. Stochastic storage processes: queues, insurance risk, dams, and data communication, volume 15. Springer Science \& Business Media, 1980.
LCG Rogers. Fluid models in queueing theory and Wiener-Hopf factorization of Markov chains. The Annals of Applied Probability, (1):390-413, 1994.

