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Outlook

This talk is about Matrix Analytic Methods!
In the context of Markov additive processes (modulated Lévy)

§ Analytic matrix functions, their roots and generalized Jordan chains

§ Connections to traditional matrix-analytic models
I., Latouche, and Taylor [2019]

§ The basic theory (+ an application?)

§ . . .



Lévy processes

Stationary and independent increments:

XT`t ´ XT
d
“Xt , XT`t ´ XT is independent of FT .
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Lévy-Khintchine formula: no negative jumps case [!!!]

Characterization: EeθXt “ eψpθqt , θ ě 0.

ψpθq “
1

2
σ2θ2 ` aθ `

ż 8

0

peθx ´ 1´ θx1txă1uqνpdxq, (1)

where pa, σ2, νpdxqq is a so-called Lévy triplet;
ş1

0
x2νpdxq, νp1,8q ă 8.

Every Lévy process can be seen as an independent sum of

1. drifted Brownian motion

2. compound Poisson process of big jumps

3. martingale having only small jumps

[!!!] - assumption made throughout this talk



Markov-modulated (regime-switching) Lévy process

Let Jt P E “ t1, . . . , nu be a modulating process (phase):

Xt P R (level) evolves as a Lévy process X
piq
t while Jt “ i and

jumps according to Upijq at phase switching times.
All the components are independent, J is an (irreducible) Markov chain.



An alternative perspective!

Stationary and independent increments conditional on the current phase:

The process pXT`t ´ XT , JT`tqtě0, conditionally on tJT “ iu, is

§ independent of FT ,

§ has the law of pXt , Jtqtě0 given tJ0 “ iu.

Such pX , Jq is called a Markov additive process.

Note: T can be a stopping time (JT “ i implies T ă 8)

For a finite E [!!!]:

Markov additive process “ Markov-modulated Lévy process

Notation:
PrJT s “ PpJT “ j |J0 “ iqij ,
Er. . . ; JT s is n ˆ n matrix. . .



First passage over negative levels

For x P R:
τx “ inftt ě 0 : Xt “ xu

No negative jumps ñ Jτ´x , x ě 0 is a Markov chain.

PrJτ´x s “ PpJτ´x “ j |J0 “ iqij “ eGx ,

assuming Ei s.t. X piq is a.s. increasing [!!!]

G is substochastic iff µ “ EπX1 ą 0, J8 „ π



Intermezzo: Traditional matrix-analytic models Xt P Z
pX , Jq is a Markov chain on Zˆ E with
transition rates pl , iq ÞÑ pl `m, jq put into n ˆ n matrix Am.
Free process: no special boundary behavior! (can be imposed later).

Skip-free downwards: Am “ O for m “ ´2,´3, . . .

Jτ´k
, k “ 0, 1, 2, . . . is a discrete-time MC, PrJτ´k

s “ qG k

Neuts [1989]: qG is the minimal non-negative solution to

A´1 ` A0
qG ` A1

qG 2 ` . . . “ O. (2)

qG is a right-root of analytic matrix-valued function (power series)

qF pzq “
8
ÿ

k“0

Ak´1z
k , |z | ă 1

There is also the minimal non-negative left-root qR:
expected time in level ´1 before the first return to level 0
(scaled by jump rates from initial phase)



Back to non-lattice MAPs: characterization

In analogy to Lévy processes, but in matrix form:

EreθXt ; Jts “ etFpθq, F pθq :“ ∆pψ1pθq,...,ψnpθqq ` Q ˝ pEeθUij q, (3)

where ψi pθq is the Laplace exponent of X piq with triplet pai , σi , νi pdxqq,
Q is the transition rate matrix of Jt ,
˝ is entry-wise matrix multiplication.

F : C ÞÑ Cnˆn is analytic on tz P C : <pzq ă 0u.

Explicit form with Uijpdxq “ PpUij P dxq:

F pθq “
1

2
∆2

σθ
2`∆aθ`

ż 8

0

∆νpdxq

`

eθx ´ 1´ θx1txă1u

˘

`Q˝

ż 8

0

Updxqeθx



Characterization of G

G is the unique (in some sense) right-root of F p¨q:

1

2
∆2

σG
2`∆aG`

ż 8

0

∆νpdxq

`

eGx ´ I´ Gx1txă1u

˘

`Q˝

ż 8

0

UpdxqeGx “ O.

Note: the eigenvalues of G must be in tz P C : <pzq ă 0u Y t0u.

Addressed in: Ezhov and Skorokhod [1969], Prabhu [1980], Asmussen
[1995], Rogers [1994], Breuer [2008], Dieker and Mandjes [2011],
D’Auria, I., Kella, and Mandjes [2010], . . .

Obtained as far back as 1969 by Ezhov and Skorokhod in a general form
(typo), and then rediscovered in 00s.

No jumps (Markov-modulated Brownian motion; σ2
i ‰ 0 or ai ă 0):

1

2
∆2

σG
2 `∆aG ` Q “ O,

compare to QBDs.



Jordan chains of analytic matrix functions

Motivation: if Gv “ λv then F pλqv “ 0.
What about the Jordan chains of G?

We say that vectors v 0, . . . , v r´1 P CN with v 0 ‰ 0 form a (right)
Jordan chain of F pzq corresponding to an eigenvalue λ P C if

j
ÿ

i“0

1

i !
F piqpλqv j´i “ 0 for all j “ 0, . . . , r ´ 1, (4)

see Gohberg and Rodman [1981].
In particular, F pλqv 0 “ 0,F pλqv 1 ` F 1pλqv 0 “ 0.

Classical Jordan chain of M is obtained with F pzq “ zI´M:

Mv 0 “ λv 0, Mv 1 “ λv 1 ` v 0, . . .



Spectral characterization of G

D’Auria, I., Kella, and Mandjes [2010]:

Theorem
Suppose <pλq ă 0. Then v 0, . . . , v r´1 is a (classical) Jordan chain of G
corresponding to an eigenvalue λ if and only if it is a (generalized)
Jordan chain of F pzq corresponding to λ.

Similar ideas appear in Dieker and Mandjes [2011] and Gail, Hantler, and
Taylor [1996] in lattice case (minor assumption).

Remark: works very poorly numerically, but often useful in proofs
(getting rid of the common assumption of distinct zeros/eigenvalues).



Local time/ occupation density

Motivation: what is the analogous interpretation of the left root R?
We need ’time at a level’. . .

The local time at level x (and phase j when started in phase i)

§ X pjq has unbounded variation:

Lijpx , tq :“ lim
εÓ0

1

2ε

ż t

0

1t|Xs´x|ăε,Js“juds.

§ X
pjq
t “ J

pjq
t ´ dj t with dj ą 0 and Jpjq an increasing jump process:

Lijpx , tq :“
1

dj
#ts P r0, tq : Xs “ x , Js “ ju

Lpx , tq increases when Xt “ x , it is additive ...
Occupation density formula:

ż t

0

f pXs , Jsqds “
ÿ

j

ż

R
f px , jqLijpx , tqdx a.s., (5)



Probabilistic interpretation of the left root R

Consider a stopping time

ς :“ inftt ě 0 : Xt “ 0, Jt ‰ iu (6)

and define

Rijpxq :“
ELijp´x , ςq
ELii p0, ςq

. (7)

Then
Rpxq “ eRx , x ě 0.

Note: other stopping times with Xς “ 0 and ELii p0, ςq P p0,8q can be

used as well.



Another fundamental matrix

Matrix of expected occupation times at 0

Hij “ ELijp0,8q,

which is finite and invertible, unless µ “ 0 (X oscillates).
The latter case excluded [!!!] whenever H is present

The basic relation:
GH “ HR

This is rather obvious in the lattice case.
Does not identify H (additional n independent linear equations needed)!

Spectral characterization of H, Albrecher and I. [2013]:
For a left eigenpair pλ,hq of G ,

hH “ lim
εÓ0

εhF pλ´ εq´1.

A formula for Jordan chains exists too.



The scale function W pxq

I. and Palmowski [2012]:
D! continuous matrix-valued function W pxq, x ě 0 s.t.

ż 8

0

eθxW pxqdx “ F pθq´1

for small enough θ; W pxq “ O for x ă 0.

§ W pxq is non-singular for x ą 0,

§ W pxq´1 is non-negative for x ą 0,

§ For a, b ě 0 with a` b ą 0

Prτ´a ă τ`b , Jτ´a s “W pbqW pa` bq´1

§ Phase distribution at first hitting of a level x P R:

PrJτx s “ e´Gx ´W pxqH´1 (8)

§ . . . rich set of identities . . . it’s all about local times!



Proof ideas: construction

Observe that

PrJτ´x s “ Prτ´x ă τy , Jτ´x s ` Prτy ă τ´x , Jτy sPrJτ´x´y s,

PrJτy s “ Prτy ă τ´x , Jτy s ` Prτ´x ă τy , Jτ´x sPrJτx`y s.

Multiply 2nd equation by PrJτ´x´y s “ eGpx`yq and subtract from 1st:

eGx ´ PrJτy seGpx`yq “ Prτ´x ă τy , Jτ´x spI´ PrJτx`y se
Gpx`yqq. (9)

The event tτ´x ă τyu coincides with tτ´x ă τ`y u (no negative jumps).

Define
W pxq “ pe´Gx ´ PrJτx sqH

implying (8) and

W pyq “ Prτ´x ă τy , Jτ´x sW px ` yq.



Proof ideas: analysis

Fundamental interpretation:

eGxW pxq “ H ´ eGxPrJτx sqH

is the expected occupation time at 0 before τ´x

(additivity of local times).

Occupation density formula for certain θ:

ż

R
eθxELpx ,8qdx “

ż 8

0

EreθXt ; Jtsdt “

ż 8

0

eFpθqtdt “ ´F pθq´1.

The lhs is

ż 8

0

eθxPrJτx sHdx `

ż 0

´8

eθxe´GxHdx “

ż 8

0

eθxPrJτx sHdx ´ pG ´ θIq´1

Conclude: analytic continuation and cancellation of terms



Numerics

§ Various iterative schemes exist for G and thus for R, Asmussen
[1995], Breuer [2008]

§ Spectral method performs poorly (very small n only)

§ The matrix H: currently only the spectral method exists in general

MMBM case is often used in practice:

§ PHase-type jumps can be incorporated (fluid embedding)

§ Explosion in # of phases! Asmussen, Laub, and Yang [2019] use
ą 1000 phases in a life insurance application

§ Explicit H and W pxq (assume @i : σ2
i ą 0):

H´1 “ ´
1

2
∆2

σpG ` G´q, W pxq “ pe´Gx ´ eG
´xqH,

where G´ corresponds to p´X , Jq, see (8).



Terminating process/ Killing

Simple but extremely powerful idea:
add an absorbing state B to E and declare Xt killed when Jt P B.
Blumenthal and Getoor [1968]: ”B can be thought of as a ’cemetery’ or ’heaven’

depending on one’s point of view”.

§ MAP property is preserved: all the above material is still true!

§ F qpθq “ F pθq ´∆q , where q is a vector of killing rates qi ě 0 in
phase i

§ Gq is the right root of F qp¨q; killing state ignored in all the matrices

exppGqxq “ PqrJτ´x s “ E
„

exp

ˆ

´
ÿ

qi

ż τ´x

0

1tJtPiudt
˙

; Jτ´x



.

§ The life-time has PH distribution (dependent on X ).

§ Any MAP on an independent PH time horizon can be seen as a
killed MAP on a larger E



Application: Poissonian observation of a risk process

Based on Albrecher and I. [2013]

§ Risk reserve process p´Xt , Jtq with ´Xt Ñ8,

§ Poissonian observer arriving at rate qi in phase i ,

§ Ruin occurs if X is seen below 0,

§ φpuq is a vector of survival probabilities for initial capital u ě 0.

Identities:
φp0q “ M´11, GM ´MGq “ H∆q ,

assuming that detF pzq and detF qpzq have distinct zeros with <pzq ă 0.

φpuq “ V´1puqφp0q

“

ˆ

I´
ż u

0

W pxq∆qe
Gqxdx

˙

eG
quM´11



Applicaton: numerical example

Markov-modulated Cramér–Lundberg model:
premium rates 1,1; claim sizes Exp(1); claims arrival rates 1, 1{2; phase
transition rates 1,1. Observation rates q1 “ 0.4, q2 “ 0.2.



Applicaton: numerical example

Spectral method:

G “

ˆ

´1.39 1.39
1.16 ´1.16

˙

,Gq “

ˆ

´1.99 1.20
1.09 ´1.45

˙

and H “

ˆ

2.63 1.47
1.47 2.44

˙

Survival probavilities:

M “

ˆ

1.58 0.58
0.53 1.54

˙

, φp0q “ M´11 “

ˆ

0.45
0.49

˙
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Applicaton: numerical example

The probability of reaching level u before ruin: V11puq ` V12puq
Monte Carlo simulation estimate based on 10,000 runs,
Horizontal line: φ1p0q “ 0.45 (limiting value).
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Numerical stability is an issue here!



Application II: Last exit from R`
Based on I. [2017]

The last exit time from R` (not a stopping time):

τ “ suptt ě 0 : Xt ě 0u.

Assuming µ “ EπX1 ă 0 we have

E
„

exp

ˆ

´
ÿ

qi

ż τ

0

1tJt“iudt

˙

; Jτ



“ ´µHq∆r ,

where r ą 0 is identified by Rr “ 0 and πr “ 1.

For example, Ei rτ ; Jτ s is expressed through

´ BHpq,qq{Bq
ˇ

ˇ

ˇ

q“0
“

ż 8

0

tELp0,dtq

Simple explanation when X pjq is b.v.



Concluding remarks

§ One-sided MAPs appear naturally in a variety of settings
(Markovian environment, PH jumps/inter arrivals/time horizons)

§ Close links to traditional matrix-analytic methods

§ Matrix-analytic methods ` fluctuations of Lévy processes

§ Extremely useful: additive perspective and the local times

§ The basic objects: G ,R,H and W pxq

§ These are all functions of the killing rates q P Rn
`

(extendable to Cn: work in progress with V. Rivero)

§ Numerics: Mathematica package (2013) at
https://sites.google.com/site/jevgenijsivanovs/files

§ Future: focus on MMBM and implement scalable algorithms
(with S. Asmussen and P. Laub)

§ plenty of other things known . . .

§ . . . and even more to be discovered!

https://sites.google.com/site/jevgenijsivanovs/files


Thank You!
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