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Some algebraic definitions

I Take L ⊆ Matn(R) to be a linear subspace of matrices

i.e. A,B ∈ L =⇒ A + λB ∈ L

I L is an ‘algebra’ if it is closed under a ‘product’ (binary operation):

(i.) Matrix algebra: AB ∈ L
(ii.) Lie algebra: [A,B] := AB − BA ∈ L
(ii.) Jordan algebra: {A,B} := AB + BA ∈ L

(Were ‘AB’ is the usual matrix product we all know and love!)
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Continuous time Markov chains for DNA evolution

I Generator matrix Q → P = eQt , transition matrix

I Exemplar DNA (A,G,C,T) models:

‘Strand symmetric’ ‘HKY’
(Casanellas, Sullivant, 2005) (Hasegawa, Kishino, Yano, 1985)

A G C T

A ∗ α β γ
G δ ∗ ε κ
C κ ε ∗ δ
T γ β α ∗




A G C T

A ∗ καG αC αT

G καA ∗ αC αT

C αA αG ∗ καT

T αA αG καC ∗


I Strand symmetric: rate(A→ G ) = rate(T → C )

I HKY: κ is the ‘transition/transversion’ ratio (AG/CT )
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Multiplicative closure for CTMCs

I Transition matrices are multiplicative: (P1,P2)→ P1P2

But what about a particular model?

I If P1 = eQt1 and P2 = eQt2 then P1P2 = eQ(t1+t2)

i.e. same transition rates, longer time

I If the transition rates change:

Commuting case: Q1Q2 = Q2Q1,

P1P2 = eQ1t1eQ2t2 = eQ1t1+Q2t2

General case:

P1P2 = eQ1t1eQ2t2 = eQ1t1+Q2t2+(infinite series of corrections)

= eQ1t1+Q2t2+ 1
2
t1t2[Q1,Q2]+...

where [Q1,Q2] = Q1Q2 − Q2Q1 measures non-commutivity.
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Some models are multiplicative closed, some are not

I Necessary and sufficient condition for closure (roughly): generators
span a Lie algebra L : Q1 + λQ2 and [Q1,Q2] ∈ L

I Strand-symm model is closed because the products Q1Q2 ∈ L:

Q1Q2,Q2Q1 ∈ L (and linearity) =⇒ [Q1,Q2] = Q1Q2 − Q2Q1 ∈ L

So some models form matrix algebras and we observe:

matrix algebra =⇒ Lie algebra ⇐⇒ mult. closed

I HKY is not closed because it is non-linear:

Q =


∗ καG αC αT

καA ∗ αC αT

αA αG ∗ καT

αA αG καC ∗

 =⇒ Q12Q13 = Q43Q42, etc.
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Structure of models that form matrix algebras

I A model where the generators span a matrix algebra is always closed:

eQ = I + (Q + Q2/2 + . . .) = I + Q̂

=⇒ eQ1eQ2 = (I + Q̂1)(I + Q̂2) = I +
(
Q̂1 + Q̂2 + Q̂1Q̂2

)
i.e. closure under sums and products is sufficient (although the latter
is not necessary. . . )

I Easy to infer the structure of the transition matrices:

M = I + L

i.e. “transition matrix = I+ generator”

I Examples include most of the known multiplicatively closed DNA
models we know of (e.g. group-based)
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Multiplicatively closure is not required for “M = I + L”

I e.g., symmetric generators do not form a Lie algebra:

(Q1Q2)T = QT
2 QT

1 = Q2Q1 6= Q1Q2 and [Q1,Q2]T = −[Q1,Q2]

However,
(Q2)T = Q2, (Q3)T = Q3 . . .

so
eQ = I + Q̂, with Q̂T = Q̂

I Generalizes to HKY and even the general time-reversible model:

i.e. time reversible generators produce time reversible transition
matrices
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Not all multiplicatively closed models satisfy “M = I + L”

I Toy model L:

Q =

 ∗ α + β 2β
0 0 0

2α α + β ∗


Intentionally designed so [Q1,Q2] ∈ L but Q1Q2 /∈ L
=⇒ M 6= I + L

I This Lie algebra is “algebraic” =⇒ M has an algebraic description:

eQ ∼ P =

∗ a z
0 1 0
y a ∗

 , with y + z − a(a− 1)(a− 2) = 0

I In general these non-linear constraints are difficult to find and they
are not always algebraic. (de Graff, Adriaan, 2017)
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Conditions for “M = I + L”

I Require linearity plus closure under powers.

I Jordan algebra J : linearity and {A,B} = AB + BA ∈ J .

Equivalent to closure under powers: A2 = 1
2 (AA + AA) and

(A + B)2 = A2 + (AB + BA) + B2

I Symmetric case:

(Q1Q2 +Q2Q1)T = QT
2 QT

1 +QT
1 QT

2 = Q2Q1 +Q1Q2 = Q1Q2 +Q2Q1

I If we demand both the Lie and Jordan conditions, we obtain precisely
a the matrix algebra case:

AB =
1

2
[A,B] +

1

2
{A,B}

i.e. Closed and “M = I + L” ⇐⇒ matrix algebra of generators
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The end

I Efficient computations of matrix exponentials?

e.g. decompose relevant algebra into irreducible components

I Direct parametrisation of transition matrices?

i.e. bypass matrix exponentials altogether

I Insights into why certain results are provable for some models but not
others? e.g. the equal-input model
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