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Outline

Motivation:

min  SCV(X)=1/N
XePH(N)

but

min  SCV(X) < 1/N.
XEME(N)

How to utilize it for efficient inverse Laplace transformation?

Outline

@ Inverse Laplace transformation

@ The Abate-Whitt framework

Integral interpretation of the Abate-Whitt framework
@ Concentrated matrix exponential distributions

@ Numerical comparisons of ILT methods
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Inverse Laplace transformation

Laplace transformation

Laplace transform is defined as

B (s) = /t T emsth(t)dr. (1)

=0

The inverse transform problem is to find an approximate value of h
at point T (i.e., h(T)) based on the complex function h*(s).
Assumptions

o [Z,e *h(t)dt is finite for Re(s) > 0,

o h(t) is real — h*(5) = h*(s) and h*(3) + h*(s) = 2Re(h*(s)).
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Inverse Laplace transformation

Inverse Laplace transformation

There are several approaches for numerical inverse Laplace
transformation (NILT).

The method based on matrix exponential distributions falls into the
Abate-Whitt framework.

The Abate-Whitt framework contains NILT procedures by

o Euler,
o Gaver-Stehfest,
o ...

J. Abate., W. Whitt, A unified framework for numerically inverting
Laplace transforms. INFORMS Journal on Computing, 18(4):408—421,
2006.
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Inverse Laplace transformation

Basic definition

The idea is to approximate h by a finite linear combination of the
transform values via

h(T) ~ ho(T) :quf‘h(é’_() T >0, (2)
k=1

where the nodes [, and weights 7, are (potentially) complex
numbers, which depend on n, but not on the transform h*(.) or the
time argument T.
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Inverse Laplace transformation

Gaver-Stehfest method

Only for even n.

For1 < k<n

ﬂk =k |n(2),

min(k,n/2) /241 i i
J n/2\ (2/\( J

e =In(2)(-1)"/2k 3 .( )()( —')’
jmi(ertyyzy (NS AT K

where | x| is the greatest integer less than or equal to x.
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Inverse Laplace transformation

Euler method

Only for odd n.

For1 < k<n
By = (n— 123|n(10) ik — 1),
me = 100D/ (—1)kg,
where
1
51 = 5
G=1, 2<k<(n+1)/2
1
&n = 5(n—1)/2

Ent = En—ip12” 7D/ ((n _kl)/2> for 1< k<(n—-1)/2.
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Inverse Laplace transformation

Location of nodes

Location of 5 nodes on the complex plane for the Gaver (n = 10)
and Euler (n = 11) methods.
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Integral interpretation of the Abate—Whitt framework

Integral interpretation

For Re(Bk) > 0, Vk, we reformulate the Abate-Whitt framework as
1 o B 1 o B,
h(T) = —= =) =—= h(t)dt
(M= 7 2omn (7) = 7 2 m [T 0

- / h(e)Fa(t)dt,
0

where
n 1 k fﬁ—kt n k — Bt
fr(t) = 72%9 T f (t):ZUke -
k=1 k=1

If £,"(t) was the Dirac impulse function at point 1 then the Laplace
inversion would be perfect.
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Integral interpretation of the Abate—Whitt framework

Properties of f7(t)

But £"(t) differs from the Dirac impulse function depending on the
order of the approximation (n) and the applied inverse
transformation method (weights 7y, nodes [y).

Gaver (n = 10), Euler (n =11)  Gaver (n = 22), Euler (n = 23)
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Integral interpretation of the Abate—Whitt framework

Scaling

— '

0

Scaling T =1 — 10: £!'(t) and f4'(t) with the Euler method
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Integral interpretation of the Abate—Whitt framework

Consequence of scaling

— exact
— Euler

—— Gaver

h(t) = | t] for Gaver (n = 14), Euler (n = 15)

Integration with f7(t) averages out fix size steps for large T values
for all Abate-Whitt framework methods!
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Integral interpretation of the Abate—Whitt framework

Oscillations

The NILT of the unit step function at 1, h*(s) = eT_s with Gaver
and Euler methods

VA — o

— Euler r — Euler

— Gaver — Gaver

v \]V
Gaver (n = 10), Euler (n =11)  Gaver (n = 54), Euler (n = 55)

Oscillations near the jump. The amplitude does not decrease for
higher n.
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Concentrated matrix exponential distributions

Concentrated matrix exponential (CME) distributions

We aim to find a good candidate £"(t) = >_7_, mke 7t to
approximate 01(t). If 7(t) >0, t > 0, then it is the probability
density function of a matrix exponential distribution.

The quality of the approximation to d1(t) is measured by the
squared coefficient of variance:

mgom»

>
m

SCV —

_17

where m; = [0 t'f(t)d¢t.

(We may assume normalization so that mg = m; = 1.)
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Concentrated matrix exponential distributions

Concentrated matrix exponential distributions

With improved numerical methods and different representations, we
have obtained high order low scv matrix exponential distributions of

the form
n (n—1)/2
ane”gkt =ce M H cos?(wt — ¢;) > 0
k=1 i=0

for up to n = 1000 (odd n), with

sev(fi") < 3

See the talk by Miklés Telek.
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Concentrated matrix exponential distributions

Concentrated matrix exponential distributions

f,"(t) for n = 4 for CME method:

201
— CME
15F
1.0F
0.5F
A
0.5 1.0 15 2.0

G. Horvath!, |. Horvath?, S. Almousa®, M. Telek!:2 Inverse Laplace transformation by CME distributions



Concentrated matrix exponential distributions

Matrix exponential distributions with low scv

f"(t) for n =10 (n = 11 for Euler):
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Numerical comparisons

NILT results - step function

NILT of the step function for n = 20:

\

P
\/\/

— exact
— CME
— Euler

— Gaver

\]V

CME method is overshoot and undershoot free: the approximations
always stay between inf(h(t)) and sup(h(t)). This property is due
to £"(t) > 0.
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Numerical comparisons

NILT results - step function

NILT of the step function for n = 50 and n = 100:

— exact
— CME
— Euler
—— Gaver
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Numerical comparisons

NILT results - exponential function

NILT of the exponential function for n = 10:
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Numerical comparisons

NILT results - shifted exponential function

h(t) = 1(t > 1)el~t

G. Horvath!, |. Horvath?, S. Almousa®, M. Telek!:2 Inverse Laplace transformation by CME distributions



Numerical comparisons

NILT results - square wave function
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Numerical comparisons

NILT results - square wave function

NILT of the square wave function for n = 500:

nnnnnannnnnann
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Numerical comparisons

Properties of the CME method

Improvements provided by the CME method compared to classical

methods:
@ no oscillations near jumps
@ overshoot and undershoot free
@ more accurate when the order is increased
@ machine precision is sufficient for all calculations

Issue:

@ no explicit expression for nodes and coefficients (5, and 7y);
they are best pre-calculated.
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Numerical comparisons

Properties of the CME method

Improvements provided by the CME method compared to classical

methods:
@ no oscillations near jumps
@ overshoot and undershoot free
@ more accurate when the order is increased
@ machine precision is sufficient for all calculations

Issue:

@ no explicit expression for nodes and coefficients (5, and 7y);
they are best pre-calculated. Available online.
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Numerical comparisons

Homepage

Homepage for the results:

The homepage includes:

list of features

theoretical background

°
°

@ citations
@ online javascript app
°

downloadable packages (currently available for Mathematica,
Matlab and IPython)
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http://inverselaplace.org/
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