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Setup

Fluid queue: “infinite-size bucket” in which fluid level changes at a rate
cϕ(t) which depends on the state ϕ(t) of a CTMC with generator matrix
Q.
Arbitrary rates ci ; no zero rates for simplicity (in this talk); S = S+ ∪ S−.
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τ = time of first return to starting level.
Ψ(t)ij = P[τ < t, ϕ(t) = j ∈ S− | ϕ(0) = i ∈ S+].

F. Poloni (U Pisa) Lowest-trough Ψ(t) MAM10 2019 2 / 15



Algorithms for Ψ(t)
Laplace-Stieltjes transform [Ahn, Ramaswami ’04] [Bean, O’Reilly, Taylor ’08]
[Abate, Whitt ’95, ’06, ...]

Needs complex arithmetic.
Known to ‘lose’ significant digits.

Triangular arrays [Sericola, ’98], [Barbot, Sericola, Telek ’01] (variant)
Full transient analysis without complex transforms.
Almost cancellation-free; nonnegative matrices, but no probabilistic
interpretation (as far as I know).
Expensive: need to fill certain ‘triangular arrays’ of |S| × |S−|
matrices, one for each negative rate.

New algorithm in this talk
No complex transforms
Nonnegative matrices, cancellation-free: ensures forward stability.
Comes with probabilistic interpretation (lowest-trough).
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Uniformization

Uniformization: replace the CTMC with:
State transitions according to DTMC with P = I + 1

λQ.
Events with independent time increments tk+1 − tk ∼ Exp(λ).
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The matrices Ψ+
n and Ψ−n

Definition
[Ψ+

n (t)]ij = P[X (0) < X (t) < all X (tk), ϕ(t) = j ∈ S− |
ϕ(0) = i ∈ S+, n events in (0, t)]

[Ψ−n (t)]ij = P[X (t) < X (0) < all X (tk), ϕ(t) = j ∈ S− |
ϕ(0) = i ∈ S+, n events in (0, t)]
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Time rescaling
Lemma
Ψ±n (t) are the same for each t.
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Proof Prob. density of observing events at t̂1, t̂2, . . . , t̂n, conditioned on n
events in (0, t) = prob. density of observing events at t̂1

t , . . . ,
t̂n
t ,

conditioned on n events in (0, 1).
Paths with these events (and the same states) are equal up to rescaling.
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Meaning of Ψ−n

Ψ−n (t) = P[τ ∈ (tn, t)].

Hence

Ψ(t) = P[τ < t]

=
∞∑

n=0
P[n evts in (0, t)]P[τ ∈ (t1, t2), (t2, t3), . . . , (tn−1, tn) or (tn, t)]

=
∞∑

n=0
e−λt (λt)n

n! (Ψ−1 + Ψ−2 + · · ·+ Ψ−n ).

Remark The triangular arrays method also computes Ψ−1 + Ψ−2 + · · ·+ Ψ−n
and this sum.
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Proportion of paths in Ψ+
n vs. Ψ−n

Lemma
Let Ψn = Ψ+

n + Ψ−n . Then, [Ψ+
n ]ij = ci

ci +|cj | [Ψn]ij , [Ψ−n ]ij = |cj |
ci +|cj | [Ψn]ij

Proof Assume final time t = tn+1. Assume we have a path counted in
either [Ψ+

n ]ij or [Ψ−n ]ij , but we don’t know which one; fix everything apart
from lengths of first and last time increments:
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t1 − t0 ∼ Exp(λ)
t+ − t0 ∼ Exp(λ) (memoryless property).
Similarly, tn+1 − t− ∼ Exp(λ).
Now, let’s focus on vertical lengths: Xmin − X0 ∼ Exp( λci

),
Xmin − Xn+1 ∼ Exp( λ

|cj |).

P[path in Ψ+
n ] = P[Xmin − X0 longer than Xmin − Xn+1] =

λ
|cj |

λ
ci

+ λ
|cj |

=
ci

ci +|cj | (Poisson race).
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Lowest-trough recursion for Ψn
Condition on the type and position on the lowest event.

S+ → S−
1

Must be only event (n = 1), P+−.

S+ → S+
1 2344 Must be first event, P++Ψ

−
n−1.

S− → S−
1

23 4
Must be last event, Ψ−n−1P−−.

S− → S+

1

23 4
5 m-th event, Ψ+

m−1P−+Ψ
−
n−m.
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The recursion

Ψ1 = P+−,

Ψn = P++Ψ
−
n−1 +

n−1∑
m=2

Ψ+
m−1P−+Ψ

−
n−m + Ψ+

n−1P−−.

With [Ψ+
n ]ij = ci

ci +|cj | [Ψn]ij , [Ψ−n ]ij = |cj |
ci +|cj | [Ψn]ij , this allows one to

compute all Ψ±n .

Algorithm
1 Compute enough terms of this recursion.
2 Truncate sum Ψ(t) =

∑∞
n=0 e−λt (λt)n

n! (Ψ−1 + Ψ−2 + · · ·+ Ψ−n ).
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Computational aspects
The bad: need more terms as t gets higher: slower to compute ‘tails’.
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Computational aspects
The good: speed Faster than triangular arrays. With the same Ψ±n , one
can compute multiple points with negligible overhead.

Algorithm t = 0.1 t = 1.1 t = 9.9 t = 15 100 t in [0, 15]
Laplace-Stiltjes 0.06 s 0.09 s 0.07 s 0.12 s 5.49 s
Triangular arrays 0.17 s 0.39 s 3.54 s 6.11 s 6.11 s
This algorithm 0.08 s 0.09 s 0.26 s 0.64 s 0.64 s

The good: accuracy Relative errors are much smaller than with
Laplace-Stiltjes transforms; reaches full machine precision.

Algorithm t = 0.1 t = 1.1 t = 9.9
Laplace-Stiltjes 6.1× 10−11 4.2× 10−11 4.1× 10−11

Triangular arrays 6.6× 10−16 5.9× 10−16 1.2× 10−15

This algorithm (trunc. above) 6.5× 10−16 1.9× 10−16 3.8× 10−16

This algorithm (trunc. below) 2.8× 10−16 2.4× 10−16 8.4× 10−16
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The generating function Riccati equation
The recursion

Ψ1 = P+−,

Ψn = P++Ψ
−
n−1 +

n−1∑
m=2

Ψ+
m−1P−+Ψ

−
n−m + Ψ+

n−1P−−.

With [Ψ+
n ]ij = ci

ci +|cj | [Ψn]ij , [Ψ−n ]ij = |cj |
ci +|cj | [Ψn]ij , this allows one to

compute all Ψ±n .

Nice fact: the generating function Ψ̂(z) =
∑∞

i=1 Ψ
−
n zn satisfies

C−1
+ (P++ − z−1I)Ψ̂(z) + Ψ̂(z)|C−1

− |(P−− − z−1I)
+ Ψ̂(z)|C−1

− |P−+Ψ̂(z) + C−1
+ P+− = 0

which is a close relative of the Riccati equation solved in the
Laplace-Stiltjes method.
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Conclusions

What we did
New lowest-trough algorithm to compute Ψ(t) directly, without
complex transforms.
More accurate, and faster if one needs more than ≈ 5 points.
Full probabilistic interpretation.

What we still don’t know
Quantitative convergence / complexity bounds on the tails?
Other algorithms than lowest-trough? Not clear; tricky to put each
sample path in the correct ‘bin’ Ψ−n .
Fast convolution algorithms to speed up the sums? Or are these the
same complex transforms that we wanted to avoid?

Thanks for your attention!
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