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Phase type distributions

Distributions of absorption times in a Markov Process with p < c

transient states (the phases) and one absorbing state.
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Phase type distributions

Distributions of absorption times in a Markov Process with p < c
transient states (the phases) and one absorbing state.

Phase type distributions were first considered by Neuts.

M.F. Neuts. Probability distributions of Phase type. In Liber Amicorum
Prof. Emeritus H. Florin, Pages 173-206, 1975.
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Phase type distributions

Distributions of absorption times in a Markov Process with p < c
transient states (the phases) and one absorbing state.

Phase type distributions were first considered by Neuts.

M.F. Neuts. Probability distributions of Phase type. In Liber Amicorum
Prof. Emeritus H. Florin, Pages 173-206, 1975.

M.F. Neuts. Matrix Geometric Solutions in Stochastic Models, John
Hopkins University press, 1981.
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Dense, in the metric of weak convergence of distributions, in all
distributions on [0, o).
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Dense, in the metric of weak convergence of distributions, in all
distributions on [0, o).

PH distributions act as the computational vehicle for many applied
probability models since they constitute a very versatile class of
distributions defined on the non negative real line that lead to models
which are algorithmically tractable.
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Dense, in the metric of weak convergence of distributions, in all
distributions on [0, o).

PH distributions act as the computational vehicle for many applied
probability models since they constitute a very versatile class of
distributions defined on the non negative real line that lead to models
which are algorithmically tractable.

Their formulation allow us to retain the Markov structure of Stochastic
Models while being act as a reasonable approximation to a general

distribution. .
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Continuous Phase type distributions

Let {X; : t > 0} be a CTMC on the finite state space
E={1,2,...,p,p+ 1}, where the states 1,2,....,p are transient (i.e
given that we start in any one of these states, there is a non-zero
probability that we will never return to it) and the state p+1 is absorbing.
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Continuous Phase type distributions

Let {X; : t > 0} be a CTMC on the finite state space
E={1,2,...,p,p+ 1}, where the states 1,2,....,p are transient (i.e
given that we start in any one of these states, there is a non-zero
probability that we will never return to it) and the state p+1 is absorbing.
Then {X; : t > 0} has an intensity matrix of the form

S s°
/\:
0 O

where S is a p x p dimensional matrix (satisfying S; < 0 andS;; > 0, for
i # j), and t is a p-dimensional column vector satisfying Se + s° = Q?g
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Let 5; = P{Xy = i}.
Then (B4, B2, ..., Bp, Bp+1) is called the initial probability vector of
{Xt ot > 0}
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Let 5; = P{Xy = i}.

Then (B4, B2, ..., Bp, Bp+1) is called the initial probability vector of
{Xt:t>0}.

Letr=inf{t: Xi=p+1}.
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Let 5; = P{Xy = i}.

Then (B4, B2, ..., Bp, Bp+1) is called the initial probability vector of
{Xt:t>0}.

Letr=inf{t: Xi=p+1}.

Then 7 ~ PH(3, S) where 3 = (84, B2, -..., Bp)-
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Let 5; = P{Xy = i}.

Then (B4, B2, ..., Bp, Bp+1) is called the initial probability vector of
{Xt:t>0}.

Letr=inf{t: Xi=p+1}.

Then 7 ~ PH(3, S) where 3 = (84, B2, -..., Bp)-

@ P{r <x}=1-—pexp(Sx)e

@ pdf of 7 is
f(x) = Bexp(Sx)s®
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EM algorithm for parameter estimation of PH

S. Asmussen,O. Nerman and M. Olsson. Fitting phase-type

distributions via the EM algorithm. Scand. J. Statist. 1996, 23,
419-441
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EM algorithm for parameter estimation of PH

S. Asmussen,O. Nerman and M. Olsson. Fitting phase-type

distributions via the EM algorithm. Scand. J. Statist. 1996, 23,
419-441

@ Consider y1, yo,.
from PHp(3, S)

.., yu be realization of i.i.d random variables
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EM algorithm for parameter estimation of PH

S. Asmussen,O. Nerman and M. Olsson. Fitting phase-type

distributions via the EM algorithm. Scand. J. Statist. 1996, 23,
419-441

@ Consider y1, yo,.
from PHp(3, S)

.., yu be realization of i.i.d random variables

@ Let x = (x4, X2, ..., Xy) be the complete data, § = (3, S, %),

where s® = —Se, be the parameter set and f(.) , the pdf of the PH

variate
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EM algorithm for parameter estimation of PH

S. Asmussen,O. Nerman and M. Olsson. Fitting phase-type
distributions via the EM algorithm. Scand. J. Statist. 1996, 23,
419-441
@ Consider y1, ¥», ..., ym be realization of i.i.d random variables
from PHp(3, S)
@ Let x = (x4, X2, ..., Xy) be the complete data, § = (3, S, %),
where s® = —Se, be the parameter set and f(.) , the pdf of the PH
variate

@ Likelihood function is,

p p P
Lf(9, X) — H BI_B,' H H SNI] —S,IZ H SO N, —S, 07, ‘/;”ﬂ‘sa
i=1 i=1j
J
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B;, N;, Nj and Z; are the sufficient statistics.
e B;, the number of trajectories that start in phase i, i=1,2,--- ,p.
e N;, the number of trajectories for which absorption occurs from
phasei,i=1,2,--- ,p.
o Nj, the number of transitions that occur from phase i to phase /,
1<i, j<p, i#]
e Z;, the total sojourn time in phase i for all the M trajectories

combined, fori =1,2,--- ,p.
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The maximum likelihood estimators are,

. N S
J éQ:Mandﬁ;:
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The maximum likelihood estimators are,

& Ny ., N .
S,-j:Z, s?:zfandﬁ,-:ﬁ’
Let 69 be any initial value of parameters and /; be the log-likelihood

function.
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The maximum likelihood estimators are,

~ Nij R N: " B:
S,-j:Z, s?:zfandﬁ,-:ﬁ’
Let 69 be any initial value of parameters and /; be the log-likelihood

function.

EM Algorithm works as follows

@ E-Step: Calculate h: 0 — Eg,(l/(0,x)|Y =y )
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Let 69 be any initial value of parameters and /; be the log-likelihood

function.
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The maximum likelihood estimators are,

R N; . N; s B
Sijzflil’ s?:zfandﬁ,-:ﬂ’

Let 69 be any initial value of parameters and /; be the log-likelihood
function.

EM Algorithm works as follows

@ E-Step: Calculate h: 0 — Eg,(l/(0,x)|Y =y )
@ M-Step: 6y = argmaxyh(6)

© Goto E-Step
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Estimates of Sufficient Statistics

y
Let M(y, 3, S) = [ eSUV~9s0BeSUdu. Given a sample value y from

o
PH,(3, S), we have the following estimates (conditional expectations
given y) of the sufficient statistics:

Biv.s.s) - 1T

2(.0.8) = ML)

Ni(y, 8, ) s;i?if’

Ryiy.p.5) = LS -
@
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Some Functions of PH Variates

1. FSPH Class
V. Ramaswamy, and N. C. Viswanath. "Phase Type Distributions with
Finite Support". Stochastic Models, 30:576-597, 2014.
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Some Functions of PH Variates

1. FSPH Class
V. Ramaswamy, and N. C. Viswanath. "Phase Type Distributions with
Finite Support". Stochastic Models, 30:576-597, 2014.

Definition
A random variable X has distribution FSPH; (3, S) over the interval

(a,b), a < bif it has the same distribution as the random variable
a+ Ymod(b — a), where Y ~ PH(j, S).
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Definition
A random variable X has distribution FSPH; (3, S) over the interval

(a,b), a < bif it has the same distribution as the random variable
a+ Ymod(b — a), where Y ~ PH(j, S).

Let s® = —Se
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Some Functions of PH Variates

1. FSPH Class
V. Ramaswamy, and N. C. Viswanath. "Phase Type Distributions with
Finite Support". Stochastic Models, 30:576-597, 2014.

Definition
A random variable X has distribution FSPH; (3, S) over the interval

(a,b), a < bif it has the same distribution as the random variable
a+ Ymod(b — a), where Y ~ PH(j, S).

Lets® = —Se
o f(x) = pBeS-a{(] - e5t-)~1g0 g < x < b ﬂQ
@ Dense in the set of all distributions with support (a, b). q"}ééf”
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2. LogPH Variate

A. Ghosh, R Jana, V Ramaswami, J Rowland, N. K. Shankaranarayanan.
Modeling and characterization of large-scale Wi-Fi traffic in public hot-spots.
In: Proc. IEEE INFOCOM 2011, Sharighai, China, 2921-2929

Definition

The LogPH distribution, LogPH(3, S), is defined as the distribution of the
random variable Y = eX where X has a PH distribution with parameters

(8,5)
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A. Ghosh, R Jana, V Ramaswami, J Rowland, N. K. Shankaranarayanan.
Modeling and characterization of large-scale Wi-Fi traffic in public hot-spots.
In: Proc. IEEE INFOCOM 2011, Sharighai, China, 2921-2929

Definition

The LogPH distribution, LogPH(3, S), is defined as the distribution of the
random variable Y = eX where X has a PH distribution with parameters
(8,9)

Its density function is

fr(y) = %ﬁes"’gyﬁ’, y>1
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2. LogPH Variate
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Modeling and characterization of large-scale Wi-Fi traffic in public hot-spots.
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Definition

The LogPH distribution, LogPH(3, S), is defined as the distribution of the
random variable Y = eX where X has a PH distribution with parameters
(8,9)

Its density function is
fr(y) = %ﬁes"’gyﬁ’, y>1

Dense in the set of all distribution functions defined on [1, ).
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2. LogPH Variate

A. Ghosh, R Jana, V Ramaswami, J Rowland, N. K. Shankaranarayanan.
Modeling and characterization of large-scale Wi-Fi traffic in public hot-spots.
In: Proc. IEEE INFOCOM 2011, Sharighai, China, 2921-2929

Definition

The LogPH distribution, LogPH(3, S), is defined as the distribution of the
random variable Y = eX where X has a PH distribution with parameters

(8,5)

Its density function is
fr(y) = %ﬁes"’QVS", y>1

Dense in the set of all distribution functions defined on [1, o0).

Has many successful uses in the context of queuing and reliability and is| m

y
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used to model insurance data.
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@ Both FSPH and logPH random variates are functions of PH

variates.
@ Both are dense and have many applications

@ The analysis and estimation of functions of PH variates are also

important.
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Cases Considered

We consider three types of functions.
@ The function g(X), of the PH variate X, is differentiable for all
X = x and either the derivative at x is strictly positive or negative
Example: LogPH Variate
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Cases Considered

We consider three types of functions.

@ The function g(X), of the PH variate X, is differentiable for all
X = x and either the derivative at x is strictly positive or negative
Example: LogPH Variate

@ The derivative of g is continuous and non zero for all but finite
number of values of x and hence for every real number y, there
exists n = n(y) inverses .

Example: | X — k|, where k € R™
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Cases Considered

We consider three types of functions.

@ The function g(X), of the PH variate X, is differentiable for all
X = x and either the derivative at x is strictly positive or negative
Example: LogPH Variate

@ The derivative of g is continuous and non zero for all but finite
number of values of x and hence for every real number y, there
exists n = n(y) inverses .

Example: | X — k|, where k € R™

@ Y =g(X) and g is invertible only in a finite interval and at each

point y the function is having countable number of inverses ﬂg
W)
Example: FSPH variate, sin(X) -

.

Pavithra Celeste R and T.G.Deepak (lIST) February 13-15, 2019 13/46



@ Let X ~ PHy(83, S)
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@ Let X ~ PHy(83, S)

@ Let the function Y = g(X) be differentiable for all X = x and the
derivative g’ at x is either strictly positive or negative.
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@ Let X ~ PHy(83, S)

@ Let the function Y = g(X) be differentiable for all X = x and the
derivative g’ at x is either strictly positive or negative.

@ g will be invertible
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@ Let X ~ PH,(5,S)

@ Let the function Y = g(X) be differentiable for all X = x and the
derivative g’ at x is either strictly positive or negative.

@ g will be invertible

@ nobservations yy, yo, ..., ¥ from

Y=0"031),9"002),...,9 " (¥n), will be observations from
g~ '(Y) = X, a PH variate
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@ Let X ~ PH,(5,S)

@ Let the function Y = g(X) be differentiable for all X = x and the
derivative g’ at x is either strictly positive or negative.

@ g will be invertible

@ nobservations yy, yo, ..., ¥ from
Y=09"'%),97"()),....97 " (¥n), will be observations from
9~ '(Y) = X, a PH variate

@ Estimate the parameters of Y using that of X
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Let Y = g(X), X ~ PHp(53, S) where, the derivative of g is continuous
and non zero for all but finite number of values of x . Then for every y
@ there exist a positive integer n = n(y) and real numbers

X1, Xo,...,Xpsuch that, g[x] =y, g'[x] #0, k=1,2,...,n(y).
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Let Y = g(X), X ~ PHp(53, S) where, the derivative of g is continuous
and non zero for all but finite number of values of x . Then for every y
@ there exist a positive integer n = n(y) and real numbers
X1, Xo,...,Xpsuch that, g[x] =y, g'[x] #0, k=1,2,...,n(y).
@ there does not exist any x such that g(x) = y or g'(x) = 0in
which case we write n(y) =0
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Let Y = g(X), X ~ PHp(53, S) where, the derivative of g is continuous
and non zero for all but finite number of values of x . Then for every y
@ there exist a positive integer n = n(y) and real numbers
X1, Xo,...,Xpsuch that, g[x] =y, g'[x] #0, k=1,2,...,n(y).
@ there does not exist any x such that g(x) = y or g'(x) = 0in

which case we write n(y) =0

pdf of Y is,

n
ho)— ) eI g (x(y)| ! n>0
0 n=0 m
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Given a sample y1, yo, ..., yu from Y, we get sample points

X11(y1)7"' 7X1I71(y1)a" . 7XM1(yM)7" '7XMnM(yM) from X such that
axy(yi) =y, i=1,2,....M 1=1,2,... n;where n; = n(y;).

\,
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Given a sample yq, yo, . ..

X11(1)s s Xtn (V4)s -+

Q(Xil(}’i)) =Yi, I = 1a27"'>

B\i(y7ﬁa S) =

Zi(y,8,S) =
Ni(y>ﬂa S) =

, ym from Y, we get sample points

X1 (Ym)s - - - s Xmny, (¥m) from X such that

M [=1,2,...,n where n; = n(y;).

P(X( ) =ilg(X) =y)
1BIeTe k(}’)

Zlg )
Mi(xk(y), B, S)
Z\Q Xk ()™ 1 kh(y)
Z|g Ck))I ,6eka)(y)
ny / _1 SiMii(xk(y), B, S)
19 (xk(y))| =
; " h(y) %@
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® Y=g(X), X~ PHp(3,S)
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® Y=g(X), X~ PHp(3,S)

@ g is invertible in an interval of length k
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@ Y=9g(X), X~ PHyS,S)
@ g is invertible in an interval of length k

@ at each point y, g has a countable number of inverses, h(y) + I(n)
where /(n) = kn — m, h(y) is the inverse in the interval of length k
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@ Y=9g(X), X~ PHyS,S)
@ g is invertible in an interval of length k

@ at each point y, g has a countable number of inverses, h(y) + I(n)
where /(n) = kn — m, h(y) is the inverse in the interval of length k

@ pdf of Yis

fly) = > pBeStWHhn=mgOip'(y))
n=0
= S M (1 %) TSIH ()

%Q
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Define

ag(nly) = P(X=h(y)+I(n)]Y =y)
3eS(h(y)—m) ghnS g0

- e

B
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Define

ag(nly) = P(X=h(y)+I(n)]Y =y)
3eS(h(y)—m) ghnS g0

- o W)
Put a(y) = eShy)—m) (] — gSk)~1g0
b( ) BeS(h y)— m)(li eSk)—1
h (v)
pa(y)

and c(y) =

\,
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Define

g(nly) = P(X=h(y)+I(n)]Y=y)
eS(h(y)—m) ghnSg0 |
- £ 7 1A (y)]
¥)
Put a(y) = eS(h)—m)(] — gSk)~150

bly) = BeSH)-m (] — g5k

and ofy) = rg;(y))\
then, Bi(y.5,.8) = c(y)Biai(y)
Zi(y.5,8) = c(y)M;(y.5,9)
N(y,ﬂ, 8) = cy)sibi(y)
Nj(y.5,8) = c(y)SiM;(y,5,S) P
where M*(y, 3,S) = io M(h(y) + kn—m, 3, S) @@
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Let X ~ PHp(B,S) and Y = sin(X).

o
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Let X ~ PHp(3,S) and Y = sin(X). Then the pdf of Y'is

1 - [5(, ezfrs)q (efrsfsinq(y)sJr

ess'”_1(Y)>] s0 O<y<Ai

1

A

[e(ﬁsin*(y))s " efsin*(y)s} S0 —1<y<0

0 otherwise
(SN
D
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Define, E;=[00 ...

and

C:

(S %3
0 S
0 O
0 O

0
0
S
0

n © o o

0/0...

Pavithra Celeste R and T.G.Deepak (lIST)
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Estimates of the sufficient statistics are

. _2)-1/2 »
Bi(y.5,8) = U,c}(/},;ﬁief(/—e%s)_1 [(eSS'” W4

eﬂSszinq(y)) ooyt + ™S (eﬂ'3+sin_1(y)s+

e Sinq(y)s) 1—1<y<0} s?
< 1 — y2)-1/2 B -
My = U= f{y§ B(1— &Sy~ | (&5 ')+

. 71 . 71
gmS—Ssin (y)) Toyet + e <e7r8+5|n L

—sin~(y)S 0
e S WS 4y, 0| &t

\,
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N 1 - y2)-1/2 o
20r.5.8) = UL ([0 o) ten gy

E1 (/ . eZ7rC)71 e(frfsin—1(J’))CEér:| ) 10<y<1 +
i
E1 (I _ e27rC)—1 e(r—sinq(y))CEg_{_

=1
Ev(l - ezwc)—1 g(2m+sin (y))CEzT} ) 1 _1<y<0}

R (1—y?) 12 21C\—1 4sin~'(y)C =T
Ni(y.8,8) = S,-,-i){[a(/—e )~Tesin ' CET L

f(
E1 (/ eZﬂ'C) e(7r sin™ ( ))CEél'i| ) 10<y<1 +
ji
E, (/ 27rC) e(7rfsin’1 (y))CEg_’_

E1 (/ . eQWC)—1 e(27r+sin*1(y))CEg}ji 1_4 <y<0} ‘m}q&

Vi
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Fisher Information

@ Fisher Information Matrix(FIM) describes the amount of
information that the data provide about unknown parameters
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Fisher Information

@ Fisher Information Matrix(FIM) describes the amount of
information that the data provide about unknown parameters

@ Measures the overall sensitivity of the log-likelihood functions to
changes of parameters

@ Used for the testing of hypothesis and in the construction of

confidence regions for the unknown parameters

ﬂQ

@

\,

Pavithra Celeste R and T.G.Deepak (lIST) February 13-15, 2019 23 /46



Fisher Information

@ Let L be the likelihood function and 6 be the parameter vector. The

U= gg is called the score statistic.
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U= gg is called the score statistic.

@ Score statistic is used for inference about parameter values in

generalized linear models.
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Fisher Information

@ Let L be the likelihood function and 6 be the parameter vector. The

U= gg is called the score statistic.

@ Score statistic is used for inference about parameter values in

generalized linear models.
@ We have, E(U) =0.

@ Variance of U, i.e., E(U?) is called the Fisher Information.
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Fisher Information

@ Let L be the likelihood function and 6 be the parameter vector. The

U= gg is called the score statistic.

@ Score statistic is used for inference about parameter values in

generalized linear models.
@ We have, E(U) =0.
@ Variance of U, i.e., E(U?) is called the Fisher Information.
@ The inverse of the Fisher information matrix gives the covariance

o

@)

matrix for the estimates of the parameters.
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Fisher Information

The expected FIM = E[aLg’e)ﬂ OL(O; X)] 5[62L<e;x>]

o007 20 00T

o

)
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Fisher Information

AL(6:X) OL(0;X 9L(O:X
The expected FIM = E [ 250200 — g (200 |
D. Oakes. Direct calculation of the information matrix via the EM. J. R.

Statis. Soc.: Series B (Statistical Methodology). 1999, 61(2), 479-482.

o2L(6;y) {azo(é/e)+a2o(é/9)}

002 N 062 9000
where Q(4/6) = Ey (/f(é? X)/Y) ;

0=0

%Q
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M. Bladt, L. J. Esparza and B. F. Nielsen. Fisher information and
statistical inference for phase-type distributions. J. Appl. Prob. Spec.
2011, 48A, 277-293.

D

0

Pavithra Celeste R and T.G.Deepak (lIST) MAM 10 February 13-15, 2019 26/ 46



M. Bladt, L. J. Esparza and B. F. Nielsen. Fisher information and
statistical inference for phase-type distributions. J. Appl. Prob. Spec.
2011, 48A, 277-293.

Let, 0 = (617/827'"/Bp—1as1078127"'81p7 8217327823"‘S2p7
---3p1,3p2 . 3p7p717sg)

be the parameter vector of order p — 1 + p2.
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M. Bladt, L. J. Esparza and B. F. Nielsen. Fisher information and
statistical inference for phase-type distributions. J. Appl. Prob. Spec.
2011, 48A, 277-293.
Let, 0 = (517/827'"/Bp—1as1078127"'81p7 8217327823"‘S2p7
c Sp1 ) Sp2 T Sp,pf1 ) Sg)
be the parameter vector of order p — 1 + p2.
Take Bp=1- Y7 gjand §j = - P, §; — <.

fséi
Q(9/9) Zlog @)ZB +Zzzlog§ N,
i= 1]]72,/( 1
p p n K P n o
>3 8z +ZZIog(t,-)N ZZSOZ\#\S (Y
i=1 j=1j#i k=1 i=1 k=1 i=1 k=1 )
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0(0/9) = Og(BI)UI/BI + log (1 - Zﬁ/) Up(1 - ZBI) +

i=1 i=1

i=1 i=1

PP
ZZIog Si) V,,S,,+ZTV,,+ZIog(s° YW;s?
=

M eTeSykSO
U =
,; f(yk)
M S
Be }’ke’-
W, =
,; f(yk)
=50, S—s0  Vy=Sil(1/f(y0))(e] My, . S)e). @D

J#i
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Fori,j=1,2,---p—1, the (i,j)" element is

aU; 90U,
o8, 0B

g

®
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Fori,j=1,2,---p—1, the (i,j)" element is

aU; 90U,
o8, 0B

-p, the (ip — 1 +j, m)!" element is

form=1,2,---p—1andij=1,2--

Um0, U oUp .. .
— if i ———ifi=
95, a5, 7 os0 ' T

o
L
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Fori,j=1,2,---p—1, the (i,j)" element is

oU; Uy,
a8, 9B

form=1,2,---p—1andi,j=1,2---p,the (ip—1+j, m element is

OUn OUp .., . 0Un 0Up

if i ]

- CLm O g,
08, ~ 08 95" os0 " !

the (m, ip — 1 + j) element is given by

oVy  OViiy. . Wi Vi .

Dm0 T 9Bm T 9

®

0
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fori,jmn=12-..

ovy Vi ... .
aSmn_ﬁsmn Ifl#.hm#n?
oW, ovi ... .
_ fi=
asmn asmn L) j’m#nu
Pavithra Celeste R and T.G.Deepak (lIST) MAM 10

-p,the (ip—1+j,mp—

ovy

8%
oW,

8sm

Vi

0s
oV

0
m

1+ n)!" element is

ifij,m

fl—j, =n.
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Computation

For the computation of the above derivatives, put,
Ri(u) = pBe%e
and

Q(u) = ele’sd.
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Computation

For the computation of the above derivatives, put,
Ri(u) = pee

and

Then we have
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Computation

For the computation of the above derivatives, put,

R(u) = pee

and
Q(u) = ele’s®
Then we have
- Qi) Ri(yi)
VR MR
We need to compute 5%, 9% of ge> %@
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Computation of M

We have,
y
M(y,3,S) = [ eSU—¥s%3eSUau.

o

o
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Computation of M

We have,

M(y,B,S) = f eSU-Us03eSUqu.

Now using theo properties of integration of matrices,

M(y.B,S) = E;e®E], where E;=[00 ...0/0 ... 0] and

'S %8 0 0]

0 S 00
C= .

0 0 SO0

0 0 0 S

)
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Computation of M

We have,

M(y.B,S) = f eSU-Us03eSUqu.

Now using theo properties of integration of matrices,
M(y,3,S) = E;e®YE], where E;=[00 ... 0/0 ... 0] and

s %8 0 0]
0 S 0O
C=
0 0 SO0
0 0 0 S
v oe%y
For the computation of 577, we need 90 e‘,‘%&
L)
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By uniformization,

oesv ZbaKf 60
r

eSU(K —
00m 00m 60,,7 (K1)

where, ¢ = Max{-S;:1 <i<p}and K= 1S+ Forr>1,

r—1

oK™ _ 10K 1
ot = 2 K a3, K

and
oK 108 1 Oc

m  CO0m ?aems
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By uniformization,

ue*(K — )

oes oK™  dc
90m Zb’aem aem

where, ¢ = Max{-S;:1 <i<p}and K= 1S+ Forr>1,

OK™ [ 0K o
ot = 2= K 3, <

and
oK 108 1 Oc

m  Ccm 200y
Assume that the maximum of the diagonal of —S is appeared in row. I

S
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oe
aS;

and
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9s?
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|

if
if

0
1

MAM 10

i#lLj#i
i=1j#i
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@c{O#i¢u¢i

9Sj | 1 if i=1jAi
and
oc | 0 if i#l
9s? 1 0f i=1
Fori#j
0 if i#r
(88) =0 —1 if i=rj#s
8S’/ (r,s) 7

1 f i=rj=s

ity
and <aso>(i,/') B { 0 otherwise. @éy
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ot(y)

= (el —ep)eVs°

9Bm

ofly) oe Sy 0s°

95, ﬁ(as,,s“* 95,

of(y) Sy 0e¥
= peYe — s

8% P m+ 5 8%

B

K,,
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In this case, the FIM of Y = g(X) will be same as the FIM of g~ '(Y),
which is a PH variate.
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In this case, the FIM of Y = g(X) will be same as the FIM of g~ '(Y),

which is a PH variate.
If y1,¥o,...,¥m e a sample from Y, then take the inverse of each
observation and compute the FIM of the PH variate using the sample

g '), '0R), -9 (ym)-

( %Q‘
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Let y1, ¥o,..., ¥y be a sample from Y. Then,

My, T ASXk (V1) 0
, el e>xWi)g
U = X P
j ;;lg( k(Y™ ")
M Ny Sx ( )
ﬁe kWi
W, = X !
i ;; ’g k yl | h(y/)
p P
Tio= =) Si-s
j=1
j#i
M Ny / —1
X,
and V; = ZZ'Q(;WG}M(XM}’/),&S)GL
=1 k=1 () \‘%&
VA
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We have, M*(y, 3,S) = > M(h(y) + kn—m, 5, S)
n=0
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We have, M*(y, 5, S) = Z M(h(y) + kn—m, 3, S)
Which can be computed as
M*(y, B, S) = E1eCh)=m)(] — e%)~TE].

( %Q
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We have, M*(y, 3, S) = Z M(h(y) + kn — m, 3, S)

Which can be computed as

M*(y, 8, S) = E;eCth)=m)(| — eCK)=1ET.

Also, M*(y, 3, S) =

(1—eSK) " M(h(y)—m, B, S)+(I—eS) T M(k, 8, S)(I— e5k)~ 1 eS(hy)-m)

;&Q

k,,
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" K (y)|eTeSthm—m) (| — gSk)~1g0

o |h ,
i Z f(y)

/=1
5 )
p "~
Ti= - Z Sj—§
j=1, j#i
s N~ WM (.8, S)e
S )

D
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Put

Ri(u) = peS(1—e%) e
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Put

Ri(u) = peS(1—e%) e

and
Q,'(U) — eTeSU(,_ eSk)—1 0
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Put
and

Hence we get,
U = Z }/)| Q/ ) - m)

W, = Z o ’R, (h(y;) — m)

®

0
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Put
and

Hence we get,
U = Z }/)| Q/ ) - m)

W, = Z o ’R, (h(y;) — m)

—

and
=MW e ot)-m) KCy-1 T
v, — £, eCth)—m) (] _ Ele;
Iy /z_; f(yl) 1€ ( € ) Ze @
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Forge {1,2,...,p—1+p?},

U

90q — (f(y1))? 90q 90q

/%) ORi(h(y) —m) ~ \9f(y)
= L ) PP (i) m) )
vy _ LK (y) O oClh(y)-m)y (| _ ghCy~1

90q = (f)? {f(y/)E1 [8%( S A

_m O of(y) _
C(h(y)—m) _ kC Te C(h(y)—m)
e a(9(7(1 e™)” ]Ez e+ ——= g E,e

(/- ekC)*1E2Te,~}

\,
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Differentiating the pdf, we get,

or T oS(h(y)=m) (| _ gSky—1g0
35 = Wl |ege (1-e%)
e[T)eS(h(y)—m)(/ _ gShy- So}
of O (oSthy)-m)y (] _ gSky—1g0
S5 = WO g (e M- o) s
)
S(h(y)—m) _ eSKy1g0
se 88,,“ 5 S}
d of H S(h(y)—m) (| _ gSky—1 0 gS(hty)-m)
and -5 = [H(y)||se (I—e™)"eq + 55 (e )
g q

(I— eSk)—1SO +ﬁeS(h(y)_m)i0(l— eSk)—150] _

\,
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Thus for evaluating the above derivatives we need the terms

8%}_(/— eS¥)~" and a%g(’ — eSO 1,

””2@
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Thus for evaluating the above derivatives we need the terms

g (1— 597" and a%g(l — e5K)~1. By uniformization,

.~ nkS
az (1= = a;e
q — Ya
- ZZb,,,k +Za—9ane” — ).
n=1 r=1

®
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Thus for evaluating the above derivatives we need the terms

g (1— 597" and a%g(l — e5K)~1. By uniformization,

o (/_ )71 B o0 aenkS
904 — 00q
DI +Za—0ane” —1).
n=1r=1
Hence,
TR K™ 0c s SK\—2( 1 _
aeq(/ e ) - nz;rz_:brkn 890,6 (l e ) (K /)‘

\,
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FSPH

10000 observations are taken from the beta B(0.5,5) distribution.
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FSPH

10000 observations are taken from the beta B(0.5,5) distribution. Fit
this data with a FSPH;(«, T) variate of order 2 and the approximate
ML estimates are

~ | 05531 0.4469 |
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FSPH

10000 observations are taken from the beta B(0.5,5) distribution. Fit
this data with a FSPH;(«, T) variate of order 2 and the approximate

ML estimates are

~ | 05531 0.4469 |

and

96181 1.0762
12.6514 —66.7070 |
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0.3 0.4 0.5 0.6 0.7 0.8
x

Figure : B(0.5, 5) fitted with FSPH;(«, T) of order 2.
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Table : Correlations for B(0.5, 5) fitted with FSPH;.

Parameter &1 f Tio Tor t
a1 1.0000 -0.1879 0.3353 0.5468 -0.1594

4 -0.1879 1.0000 0.9344 -0.9101 -0.5402

Ti;» 03353 0.9344 1.0000 0.3193 0.1711

T>1 05468 -0.9101 0.3193 1.0000 0.9228

TA2 -0.1594 -0.5402 0.1711 0.9228 1.0000
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