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Introduction

Consider a level independent quasi-birth-death process (QBD)
with time-varying periodic rates, and N phases in each level.
The infinitesimal generator for such a system is given by

A(t) =

 A00(t) A1(t) · ·
A−1(t) A0(t) A1(t) ·

· . . . . . . . . .


where the blocks Ai(t) are N × N matrices whose components
are periodic functions representing transition rates.
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When the system is ergodic, there is an asymptotic periodic
solution to the system of differential equations

∂

∂t
pn(t) = pn−1(t)A1(t) + pn(t)A0(t) + pn+1(t)A−1(t)

for n > 0 and boundary condition

∂

∂t
p0(t) = p0(t)A00(t) + p1(t)A−1(t)

The vectors pn(t) are of length N.
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The generating function for the asymptotic periodic
probabilities, Pz(t) =

∑∞
n=0 pn(t)zn, is given by

Pz(t) =∫ t

t−1
p0(u)

(
A00(u)− A0(u)− z−1A−1(u)

)
Φz(u, t)du

× (I− Φz(t − 1, t))−1

where Φz(s, t) is the generating function for the corresponding
unbounded process, that is, the random walk process. For this
generating function, the coefficients on zn are matrices. The
(i , j)th component of the coefficient on zn is the probability of a
transition from phase i to phase j and up n levels.
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Introduction

Φz(s, t) solves the differential equation

∂

∂t
Φz(s, t) = Φz(s, t)A(z, t)

where

A(z, t) = zA1(t) + A0(t) + z−1A−1(t).

If we were working with a constant rate process, Φz(s, t) would
be the matrix exponential eA(z)(t−s).
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Theorem
The determinant of (I − Φz(t − 1, t)) does not depend on t, that
is,

det (I − Φz(0,1)) = det (I − Φz(t − 1, t)) , ∀t .
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Proof: The random walk probability generating function
satisfies the equation Φz(s, t) = Φz(s,w)Φz(w , t).
Also, by periodicity, we have that Φz(s, t) = Φz(s − n, t − n),
n ∈ Z.
In particular, Φz(t − 1, s)Φz(s, t) = Φz(t − 1, t) and
Φz(s, t)Φz(t − 1, s) = Φz(s − 1, t − 1)Φz(t − 1, s) =
Φz(s − 1, s).
These facts together with the Sylvester Identity:

det (I − AB) = det (I − BA)

prove that the determinant of (I − Φz(t − 1, t)) does not depend
on t .
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Introduction

In general, an explicit formula for Φz(s, t) is not known.

In this talk, we consider two cases where such a formula is
available and explore the combinatorial interpretation of the
resulting expressions.

In particular, we study a single-server pre-emptive priority
queue in which the Eulerian numbers appear and a QBD with
Erlang arrivals in which roots of unity play a role.
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Example: Priority Queue

Two Priority Queue with Finite Buffer for Class-2
Customers

The level, X (t) = 0,1,2, . . ., is the number of class-1
customers.
The phase, J(t) = 0,1, . . . ,N − 1, is the number of class-2
customers. It is limited by the size of the buffer.
Arrival rates of customers of class-i is λi(t).
Departure rates of customers of class-i is µi(t).
We also consider the corresponding random walk process.



Eulerian Numbers and Asymptotics

Example: Priority Queue

Two Priority Queue with Finite Buffer for Class-2
Customers

The level, X (t) = 0,1,2, . . ., is the number of class-1
customers.
The phase, J(t) = 0,1, . . . ,N − 1, is the number of class-2
customers. It is limited by the size of the buffer.
Arrival rates of customers of class-i is λi(t).
Departure rates of customers of class-i is µi(t).
We also consider the corresponding random walk process.



Eulerian Numbers and Asymptotics

Example: Priority Queue

Two Priority Queue with Finite Buffer for Class-2
Customers

The level, X (t) = 0,1,2, . . ., is the number of class-1
customers.
The phase, J(t) = 0,1, . . . ,N − 1, is the number of class-2
customers. It is limited by the size of the buffer.
Arrival rates of customers of class-i is λi(t).
Departure rates of customers of class-i is µi(t).
We also consider the corresponding random walk process.



Eulerian Numbers and Asymptotics

Example: Priority Queue

Two Priority Queue with Finite Buffer for Class-2
Customers

The level, X (t) = 0,1,2, . . ., is the number of class-1
customers.
The phase, J(t) = 0,1, . . . ,N − 1, is the number of class-2
customers. It is limited by the size of the buffer.
Arrival rates of customers of class-i is λi(t).
Departure rates of customers of class-i is µi(t).
We also consider the corresponding random walk process.



Eulerian Numbers and Asymptotics

Example: Priority Queue

Two Priority Queue with Finite Buffer for Class-2
Customers

The level, X (t) = 0,1,2, . . ., is the number of class-1
customers.
The phase, J(t) = 0,1, . . . ,N − 1, is the number of class-2
customers. It is limited by the size of the buffer.
Arrival rates of customers of class-i is λi(t).
Departure rates of customers of class-i is µi(t).
We also consider the corresponding random walk process.



Eulerian Numbers and Asymptotics

Example: Priority Queue

Let ak (s, t) give the probability of k class-2 arrivals during the
time-interval [s, t), so that

ak (s, t) =

(∫ t
s λ2(u)du

)k

k !
e−

∫ t
s λ2(u)du.
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Example: Priority Queue

Define the random walk generating function for a particle
moving to the right at rate λ1(t) and to the left at rate µ1(t) as

βz(s, t)

= exp
{∫ t

s
λ1(u)du(z − 1)

}
× exp

{∫ t

s
µ1(u)du(z−1 − 1)

}
= exp

{∫ t

s
λ1(u)du(z − 1) +

∫ t

s
µ1(u)du(z−1 − 1)

}
=

∞∑
n=−∞

Pr{X (t) = n + k |X (s) = k}zn.
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Example: Priority Queue

Then Φz(s, t) is given by

Φz = βz



a0 a1 a2 . . . . . . aN−1 a>N−1

0 a0 a1
. . . . . . aN−2 a>N−2

0 0
. . . . . . . . .

...
...

0 0 0 a0 . . . aN−i a>N−i

0 0 0 0
. . . . . .

...

0 0 0 0 0 a0 a>0

0 0 0 0 0 0 1


where the dependence on s and t is suppressed in the notation.
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Example: Priority Queue

We are also interested in an explicit expression for
(I − Φz(t − 1, t))−1. This too is available for the pre-emptive
priority queue with finite buffer for class-2 customers.

We consider transition rates which are periodic with period 1.

Note that for such transition rates, the integral of the rate from
t − 1 to t is equal to the average value of the rate, so, for
example,

∫ t
t−1 λ1(u)du = λ̄1.

We may express (I − Φz(t − 1, t))−1 in terms of these average
rates.
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Example: Priority Queue

Remark:

Note that it is not true for general quasi-birth-death processes
with time-varying periodic rates that (I − Φz(t − 1, t))−1 does
not depend on t ; however, it is true that the determinant of
(I − Φz(t − 1, t))−1 does not depend on t .
Recall that

(I − Φz(t − 1, t))−1 =
∞∑

n=0

Φn
z(t − 1, t) =

∞∑
n=0

Φz(t − 1, t + n − 1).
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Example: Priority Queue

For the Poisson probabilities giving the probability of k class-2
arrivals during an interval of length n, we have

ak (t − 1, t + n − 1) =

(∫ t+n−1
t−1 λ2(u)du

)k

k !
e−

∫ t+n−1
t−1 λ2(u)du

=
λ̄k

2nk

k !
e−λ̄2n.

For the random walk generating functions for class-1
customers,

βz(t − 1, t + n − 1) =
(

eλ̄1(z−1)+µ̄1(z−1−1)
)n
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Example: Priority Queue

The (j , j + k) component of the matrix generating function
(I − Φz)−1 is given by

[(I − Φz)−1]j,j+k =
∞∑

n=1

λ̄k
2nk

k !
e−λ̄2nβn

z (0,1)

=
λ̄k

2
k !

∞∑
n=1

nk e−λ̄2nβn
z (0,1).

Define φ(z) as the product of the random walk generating
function βz(s, t) and the probability no class 2 customers arrive,
e−

∫ t
s λ2(u)du, so

φ(z) = βze−
∫
λ2(u)du
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Example: Priority Queue

The Carlitz identity for the Eulerian polynomials is
∞∑

n=0

(n + 1)k tn =
Sk (t)

(1− t)k+1

where Sk (t) is the k th Eulerian polynomial.
The k th Eulerian polynomial provides a generating function for
the number of permutations of length k with a given number of
descents.
Applying this identity, we have

[(I − Φz)−1]j,j+k

=
λ̄k

2
k !

∞∑
n=1

nk e−λ̄2nβn
z (0,1)

=
λ̄k

2
k !

φ(z)Sk (φ(z))

(1− φ(z))k+1 .



Eulerian Numbers and Asymptotics

Example: Priority Queue

The Carlitz identity for the Eulerian polynomials is
∞∑

n=0

(n + 1)k tn =
Sk (t)

(1− t)k+1

where Sk (t) is the k th Eulerian polynomial.
The k th Eulerian polynomial provides a generating function for
the number of permutations of length k with a given number of
descents.
Applying this identity, we have

[(I − Φz)−1]j,j+k

=
λ̄k

2
k !

∞∑
n=1

nk e−λ̄2nβn
z (0,1)

=
λ̄k

2
k !

φ(z)Sk (φ(z))

(1− φ(z))k+1 .



Eulerian Numbers and Asymptotics

Example: Priority Queue

The Carlitz identity for the Eulerian polynomials is
∞∑

n=0

(n + 1)k tn =
Sk (t)

(1− t)k+1

where Sk (t) is the k th Eulerian polynomial.
The k th Eulerian polynomial provides a generating function for
the number of permutations of length k with a given number of
descents.
Applying this identity, we have

[(I − Φz)−1]j,j+k

=
λ̄k

2
k !

∞∑
n=1

nk e−λ̄2nβn
z (0,1)

=
λ̄k

2
k !

φ(z)Sk (φ(z))

(1− φ(z))k+1 .



Eulerian Numbers and Asymptotics

Example: Priority Queue

The matrix (I − Φ)−1 is an upper triangular matrix given below.
The entries in the right-most column are given by[
(I − Φ)−1]

i,N = 1
1−βz

−
∑N−1

j=1
[
(I − Φ)−1]

i,j .

(I − Φ)−1 =

1
1−φ(z)

λ̄2φ(z)

1!(1−φ(z))2
λ̄2

2φ(z)(1+φ(z))

2!(1−φ(z))3 . . .
λ̄

N−1
2 φ(z)SN−1(φ(z))

(N−1)!(1−φ(z))N
1

1−βz
−

∑N−1
j=0

λ̄
j
2φ(z)Sj (φ(z))

j!(1−φ(z))j+1

0
. . .

. . .
. . .

.

.

.
.
.
.

0 0 1
1−φ(z)

. . .
λ̄

N−i
2 φ(z)SN−i (φ(z))

(N−i)!(1−φ(z))N−i+1
1

1−βz
−

∑N−i
j=0

λ̄
j
2Sj (φ(z))

j!(1−φ(z))j+1

0 0 0
. . .

. . .
.
.
.

0 0 0 0 1
1−φ(z)

1
1−βz

− 1
1−φ(z)

0 0 0 0 0 1
1−βz



.
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Example: Priority Queue

We can make a combinatorial argument for the form of this
generating function. (based on combinatorial proof by
Petersen)
First note that

∞∑
n=0

(n + 1)k tn

is the generating function for the number of ways to put k
distinct items into n + 1 boxes.
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Example: Priority Queue

For any particular configuration of balls in boxes, there is a
natural way to associate the configuration to a permutation of k .

We list the content of the boxes from left to right, and within
each box, we list the contents in ascending order.

We represent the boxes with a vertical bar to represent the
division between boxes.

We call the arrangement between bars and numbers a barred
permutation.
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Example: Priority Queue

For example, if there are seven balls, one placement of the
balls into five boxes is given by the following barred permutation

1|5|237||46.

Here, the first box contains ball 1, the second box contains ball
5, the third box contains balls 2,3 and 7, the fourth box is empty
and the fifth box contains balls 4 and 6.
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Example: Priority Queue

Note that counting k balls in n + 1 boxes amounts to counting
barred permutations with n bars.
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Example: Priority Queue

Let us fix a permutation w in Sk and count all of the barred
permutations whose underlying permutation is w . There must
be at least one bar in every descent position, but other gaps
can have any number of bars including zero. That is, the weight
of a gap is

1 + t + t2 + · · · =
1

1− t
if there is no descent and

t + t2 + t3 + · · · =
t

1− t

if there is a descent.
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Example: Priority Queue

For example, with the permutation 1523746

1 5 ↘ 2 3 7 ↘ 4 6
1

1−t ·
1

1−t ·
t

1−t ·
1

1−t ·
1

1−t ·
t

1−t ·
1

1−t ·
1

1−t = t2

(1−t)8

In general, the generating function corresponding to the
permutation w will be given by

tdesw

(1− t)k+1 .

Therefore the generating function putting k labelled balls into n
labelled boxes is

∞∑
n=0

(n + 1)k tn =
∑

w∈Sk

tdesw

(1− t)k+1 =
Sk (t)

(1− t)k+1



Eulerian Numbers and Asymptotics

Example: Priority Queue

In our context, we are not interested in balls and boxes, but
rather in arrivals of class-2 customers and days (or more
generally periods).
So in the expression

∞∑
n=0

(n + 1)k tn =
Sk (t)

(1− t)k+1

The k balls are k class-2 customers. We replace tn with φn(z)
which will give the progress of class-1 customers over n days.
We divide by k ! because the class-2 customers are
interchangeable.
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Example: Priority Queue

We can use this result to obtain asymptotic estimates for the
probability distribution at time t within the period for the
pre-emptive priority queue with finite buffer.

For an ergodic QBD with time-varying periodic rates, we will
obtain periodic estimates.
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Example: Priority Queue

Arrival and Service Rates

λ1(t) = 4 + 3 cos(2πt), λ2(t) = 3 + 2.5 cos(2πt)

µ1(t) = 5 + 4 sin(2πt), µ2(t) = 6 + 2 sin(2πt)
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Asymptotic Behavior

Rescaled Probability of No Class-2 Customers

for Varying Numbers of Class-1 Customers
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Asymptotic Behavior

The expression

Pz(t) =

∫ t

t−1
p0(u)

(
A00(u)− A0(u)− z−1A−1(u)

)
Φz(u, t)du

× (I− Φz(t − 1, t))−1

yields an array of generating functions: one for each level in the
buffer.
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Asymptotic Behavior

The generating function for the probability that there are j
class-1 customers given that that are k class-2 customers is
the k th component of this array of generating functions.
The form of the generating function (for k < N) is

k∑
`=0

f`(t , z)

(1− φ(z))`+1

We can approximate this with [Theorem IV.10 Sedgewick and
Flajolet]

k∑
`=0

c`+1f`(t , r1)

(1− z
r1

)`+1

so

[z j ]
k∑
`=0

c`+1f`(t , r1)

(1− z
r1

)`+1 =
k∑
`=0

c`+1f`(t , r1)

(
j + `

j

)
r−j
1
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Example: K−Erlang Arrivals

Example: K−Erlang Arrivals and Exponential
Service

For a random walk with K−Erlang arrivals and exponential
departures, the matrices A1(t), A0(t) and A−1(t) are given by

A1(t) =


· · · · · ν(t)
· · · · · · · ·
...

...
...

...
· · · · · · · ·


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Example: K−Erlang Arrivals

A0(t) =


−ν(t)− µ(t) · · ·

ν(t) −ν(t)− µ(t) · ·

· . . . . . . ·
· · ν(t) −ν(t)− µ(t)


and

A−1(t) =

 µ(t) · ·

· . . . ·
· · µ(t)

 .
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Example: K−Erlang Arrivals

Define
Az(t) = A1(t)z + A0(t) + A−1(t)z−1.

Then the eigenvalues of Az(t) are given by

ε`(t) = ω−`K ν(t)z1/K − µ(t)− ν(t) + µ(t)z−1

for ` = 0,1, . . . ,K − 1 with

ωK = e−
2πi
K = cos

(
2π
K

)
− i sin

(
2π
K

)
.
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Example: K−Erlang Arrivals

The diagonalization of the matrix Az(t) is

Az(t) = HD(t)H−1.

The eigenvectors do not depend on t . This makes the matrix
function Φz(s, t) particularly easy to compute. It is given in
terms of the exponential of the integrals of the diagonals so we
have

Φz(s, t)

= H


e
∫ t

s ε0(u)du 0 · · · 0

0 e
∫ t

s ε1(u)du 0
...

...
. . . . . .

...
0 · · · 0 e

∫ t
s εK−1(u)du

H−1.
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Example: K−Erlang Arrivals

Note that Φz(s, r)Φz(r , t) = Φz(s, t), that is

Φz(s, r)Φz(r , t)

= H


e
∫ r

s ε0(u)du 0 · · · 0

0 e
∫ r

s ε1(u)du 0
...

...
. . . . . .

...
0 · · · 0 e

∫ r
s εK−1(u)du


× H−1H×

e
∫ t

r ε0(u)du 0 · · · 0

0 e
∫ t

r ε1(u)du 0
...

...
. . . . . .

...
0 · · · 0 e

∫ t
r εK−1(u)du

H−1

= Φz(s, t)
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The normalized eigenvector corresponding to the `th
eigenvalue, ε`(t) = ω−`K ν(t)z1/K − µ(t)− ν(t) + µ(t)z−1, is

v` =
1√
K


ω0`

K z
K−1

K

ω1`
K z

K−2
K

...
ω

(K−2)`
K z

1
K

ω
(K−1)`
K z0

 .
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Example: K−Erlang Arrivals

Define B as a diagonal matrix with diagonal:[
z

K−1
K z

K−2
K · · · z0

]
.

Let H be the matrix whose columns are the normalized
eigenvectors. We can write H in terms of a matrix of roots of
unity and the diagonal matrix B. Let

Ω =


ω0

K ω0
K · · · ω0

K
ω0

K ω1
K · · · ωK−1

K
...

. . . . . .
...

ω0
K ωK−1

K · · · ω
(K−1)2

K

 ,
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then
H =

1√
K

BΩ,

and H−1 is then given by

H−1 =
1√
K

ΩB−1

where Ω is the complex conjugate of the matrix Ω.
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For general K , an explicit formula for the (m, j) component of
Φz(s, t) is

[Φz(s, t)]m,j

=
z

j−m
K e

∫ t
s (−µ(u)−ν(u)+µ(u)z−1)du

K

K−1∑
`=0

e
∫ t

s ω
`
K ν(u)z1/K duω

`(j−m)
K

= e−
∫ t

s (ν(u)+µ(u)−µ(u)z−1)du
∞∑

n=1

(∫ t
s ν(u)du

)Kn−j+m

(Kn − j + m)!
zn
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The (m, j) component depends on j −m, the distance from the
diagonal and not on j and m separately. Φz(s, t) is a Toeplitz
matrix.
The structure of the Φz(t − 1, t) matrix makes it particularly
simple to compute the matrix (I − Φz(t − 1, t))−1:

(I − Φz(t − 1, t))−1 = Hdiag
[

1
1− eεi

]
H−1.

This result readily yields formulas suitable for asymptotic
analysis, that is, asymptotic in the level of the process.
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The asymptotic solution will be of the form

1
K

∫ t

t−1
p0(u)µ(u)(1− r−1)Br Ωdiag

[
eεi (u,t)

1− eεi

]
duΩ̄B−1

r

Taking the limit as z → r where r is the real root of the
determinant of I − Φ(t − 1, t) that is greater than one, we have

1
1− z

r

(
r − 1

ν̄r (K +1)/K − K µ̄

)∫ t

t−1
p0(u)µ(u)e

∫ t
u (ν(s)r1/K−ν(s)−µ(s)+µ(s)r−1)dsdu

×



1 r1/K · · · r (K−1)/K

r−1/K
. . . r1/K · · · r (K−2)/K

...
. . . · · ·

...
... · · ·

. . .
...

r (1−K )/K · · · r−1/K 1


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Let q(t) =
∑K−1

j=0 r−j/K p0,j(t) and c = r−1
ν̄r (K +1)/K−K µ̄ , then

pm,j(t) ≈ cr−m+j/K
∫ t

t−1
q(u)µ(t)e

∫ t
u (ν(s)r1/K−ν(s)−µ(s)+µ(s)r−1)dsdu

or
pm,j(t) ≈ cr−m+j/K f (t),

where f (t) is the integral in the expression above.
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Ratio of level 5 to level 6, level 6 to level 7, . . ., level 8 to level 9
for phase 4 when K = 4 for the rates given below. For this
example, r = 16, r1/K = 2.

pm,j(t) ≈ cr−m+j/K
∫ t

t−1
q(u)µ(u)e

∫ t
u (ν(x)r1/K−ν(x)−µ(x)+µ(x)r−1)dxdu

µ(t) = 4.8 + 3.6 sin(2πt), ν(t) = 4.5 + 1.8 cos(2πt)
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Summary

For some QBDs with time-varying rates, exact formulas up
to an integral equation are available.
The formula can be interpreted in the context of the
problem being analyzed.
Even though the formula can be written out and explained,
it is likely to be a very poor method for calculation.
Asymptotic methods are available.
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Thank you!
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