Construction of algorithms for discrete-time quasi-birth-and-death processes through physical interpretation

Aviva Samuelson ${ }^{1,3}$

with Matgorzata M. O'Reilly ${ }^{1,3 *}$ and Nigel G. Bean ${ }^{2,3}$
13-15 February 2019

Matrix-Analytic Methods in Stochastic Models (MAM10)

ACEMS

MATHEMATICAL AND STATISTICAL FRONTIERS

1. School of Physical Sciences, University of Tasmania.
2. School of Mathematical Sciences, University of Adelaide.
3. ARC Centre of Excellence for Mathematical and Statistical Frontiers.
*Thank you to the Australian Research Council for funding this research through Linkage Project LP140100152.

Motivation

Algorithm construction for key matrix $\boldsymbol{\Psi}(s)$ in Stochastic Fluid Models (SFMs) includes the following three parts

- Integral expression
- Iterative scheme (central to the algorithm)
- Corresponding physical interpretation

These expressions are written in terms of the fluid generator $\mathbf{Q}(s)$.
[N. Bean, M. O'Reilly and P. Taylor. Algorithms for the Laplace-Stieltjejs transforms of return times for stochastic fluid flows. Methodology and Computing in Applied Probability, 10(3):381-408, 2008.]

$\Psi(s)$ pictorial representation

In stochastic fluid models (SFMs) processes there is a quantity $\boldsymbol{\Psi}(s)$

$\mathbf{G}(z)$ pictorial representation

In quasi-birth-and-death (QBD) processes there is a quantity with a similar physical interpretation

Motivation

Here, we consider discrete-time QBDs, and

- derive summation expressions for $\mathbf{G}(s)$ with the physical interpretations similar to those of integral expressions for $\boldsymbol{\Psi}(s)$ in SFMs,
- construct corresponding iterative schemes and study them.

To do so, we use matrices $\mathbf{M}_{+}(z)$ and $\mathbf{M}_{-}(z)$, which are similar to
$\mathbf{Q}_{++}(s)$ and $\mathbf{Q}_{--}(s)$ respectively.

Definition of the SFM

An SFM, denoted $\{(\varphi(t), X(t)): t \geq 0\}$, is a process with

- phase variable $\varphi(t)$ driven by the underlying CTMC $\{\varphi(t): t \geq 0\}$ with some finite state space \mathcal{S} and generator \mathbf{T},
- a level variable $X(t) \geq 0$ such that,
- when $X(t)>0$,

$$
d X(t) / d t=c_{\varphi(t)}
$$

- and when $X(t)=0$,

$$
d X(t) / d t=c_{\varphi(t)} \cdot 1\left\{c_{\varphi(t)}>0\right\}
$$

Note: \mathcal{S} is partitioned as follows:
$\mathcal{S}_{+}=\left\{i \in \mathcal{S}: c_{i}>0\right\}, \quad \mathcal{S}_{-}=\left\{i \in \mathcal{S}: c_{i}<0\right\}, \quad \mathcal{S}_{0}=\left\{i \in \mathcal{S}: c_{i}=0\right\}$.

Fluid Generator Q(s) (SFM)

$$
\mathbf{Q}(s)=\left[\begin{array}{ll}
\mathbf{Q}_{++}(s) & \mathbf{Q}_{+-}(s) \\
\mathbf{Q}_{-+}(s) & \mathbf{Q}_{--}(s)
\end{array}\right]
$$

where

$$
\begin{aligned}
& \mathbf{Q}_{++}(s)=\mathbf{C}_{+}^{-1}\left[\mathbf{T}_{++}-s \mathbf{I}-\mathbf{T}_{+0}\left(\mathbf{T}_{00}-s \mathbf{I}\right)^{-1} \mathbf{T}_{0+}\right] \\
& \mathbf{Q}_{--}(s)=\mathbf{C}_{-}^{-1}\left[\mathbf{T}_{--}-s \mathbf{I}-\mathbf{T}_{-0}\left(\mathbf{T}_{00}-s \mathbf{I}\right)^{-1} \mathbf{T}_{0-}\right] \\
& \mathbf{Q}_{+-}(s)=\mathbf{C}_{+}^{-1}\left[\mathbf{T}_{+-}-\mathbf{T}_{+0}\left(\mathbf{T}_{00}-s \mathbf{l}\right)^{-1} \mathbf{T}_{0-}\right] \\
& \mathbf{Q}_{-+}(s)=\mathbf{C}_{-}^{-1}\left[\mathbf{T}_{-+}-\mathbf{T}_{-0}\left(\mathbf{T}_{00}-s \mathbf{l}\right)^{-1} \mathbf{T}_{0+}\right]
\end{aligned}
$$

The expression $\left[e^{\mathbf{Q}(s) y}\right]_{i j}$ records the LSTs of the distribution of time for the process to have y amount of fluid flowed into or out of the buffer and do so in phase j given the process starts in phase i and no fluid has flowed into or out of the buffer.
[N. G. Bean, M. M. O'Reilly, and P. G. Taylor. Hitting probabilities and hitting times for stochastic fluid flows.

Matrix $\boldsymbol{\Psi}(s)$

Let $\theta(x)=\inf \{t>0: X(t)=x\}$ be the first passage time to level x. For $i \in \mathcal{S}_{+}, j \in \mathcal{S}_{-}$, and $s \in \mathbb{C}$, where $\mathbb{R}(s) \geq 0,[\boldsymbol{\Psi}(s)]_{i j}$ is given by the conditional expectation

$$
[\boldsymbol{\Psi}(s)]_{i j}=E\left[e^{s \theta(x)} I\{\theta(x)<\infty, \varphi(\theta(x))=j\} \mid X(0)=x, \varphi(0)=i\right]
$$

The physical interpretation of $[\boldsymbol{\Psi}(s)]_{i j}$ is the LST of the time taken for the process to hit level x for the first time and does so in phase j, given the process starts from level x whilst avoiding levels below x.

An algorithm for $\boldsymbol{\Psi}(s)$

Using $\mathbf{Q}(s)$ and physical interpretation of $\boldsymbol{\Psi}(s)$,

$$
\begin{equation*}
\boldsymbol{\Psi}_{n+1}(s)=\int_{y=0}^{\infty} e^{\mathbf{Q}_{++}(s) y}\left(\mathbf{Q}_{+-}(s)+\boldsymbol{\Psi}_{n}(s) \mathbf{Q}_{-+}(s) \boldsymbol{\Psi}_{n}(s)\right) e^{\mathbf{Q}_{--}(s) y} d y \tag{1}
\end{equation*}
$$

This can be also written as, $\boldsymbol{\Psi}_{0}(s)=\mathbf{0}$ and,

$$
\begin{equation*}
\mathbf{Q}_{++}(s) \boldsymbol{\Psi}_{n+1}(s)+\boldsymbol{\Psi}_{n+1}(s) \mathbf{Q}_{--}(s)=-\mathbf{Q}_{+-}-\boldsymbol{\Psi}_{n}(s) \mathbf{Q}_{-+}(s) \boldsymbol{\Psi}_{n}(s) \tag{2}
\end{equation*}
$$

[N. G. Bean, M. M. O'Reilly, and P. G. Taylor. Algorithms for return probabilities for stochastic fluid flows.
Stochastic Models, 21(1):149-184, 2005.]

Definition of a discrete-time QBD

QBD is a discrete-time Markov chain, denoted $\left\{X_{t}, t \in \mathbb{N}\right\}$, on a two dimensional state space $\{(n, i): n \geq 0,1<i<m\}$, where n denotes the level and i the phase in state (n, i).
One step transitions are restricted to jumps from state (n, i) to (n^{\prime}, i^{\prime}) where $n^{\prime}=n-1, n, n+1$ and i^{\prime} is any phase.
The QBD has probability transition matrix \mathbf{P} which is composed of square blocks $\mathbf{A}_{0}, \mathbf{A}_{+}, \mathbf{A}_{-}, \mathbf{B}$.

[G. Latouchee and V. Ramaswami. Introduction to matrix-analytic methods in stochastic modeling, volume 5.

Probability matrix \mathbf{P}

$$
\mathbf{P}=\left[\begin{array}{ccccc}
\mathbf{B} & \mathbf{A}_{+} & \mathbf{0} & \mathbf{0} & \cdots \\
\mathbf{A}_{-} & \mathbf{A}_{0} & \mathbf{A}_{+} & \mathbf{0} & \cdots \\
\mathbf{0} & \mathbf{A}_{-} & \mathbf{A}_{0} & \mathbf{A}_{+} & \cdots \\
\mathbf{0} & \mathbf{0} & \mathbf{A}_{-} & \mathbf{A}_{0} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

where matrices $\mathbf{B}, \mathbf{A}_{+}, \mathbf{A}_{-}, \mathbf{A}_{0}$ are square matrices of order m such that, for all $i, j \in\{1 \leq i \leq m\}$,

$$
\begin{aligned}
{[\mathbf{B}]_{i j} } & =P\left(X_{t+1}=(0, j) \mid X_{t}=(0, i)\right), \\
{\left[\mathbf{A}_{+}\right]_{i j} } & =P\left(X_{t+1}=(n+1, j) \mid X_{t}=(n, i)\right), \\
{\left[\mathbf{A}_{-}\right]_{i j} } & =P\left(X_{t+1}=(n-1, j) \mid X_{t}=(n, i)\right), \\
{\left[\mathbf{A}_{0}\right]_{i j} } & =P\left(X_{t+1}=(n, j) \mid X_{t}=(n, i)\right)
\end{aligned}
$$

$\mathbf{M}_{+}(z)=\left(\mathbf{I}-\mathbf{A}_{0} z\right)^{-1} \mathbf{A}_{+} z$

$n-1$

$$
\mathbf{M}_{-}(z)=\left(\mathbf{I}-\mathbf{A}_{0} z\right)^{-1} \mathbf{A}_{-z}
$$

$$
n+1
$$

Matrix G(z)

Let τ be the time taken to first reach level $(n-1)$. Then the (i, j)-th entry of the matrix $\mathbf{G}(z)$ is defined

$$
[\mathbf{G}(z)]_{i j}=E\left[z^{\tau} I\left\{\tau<\infty, X_{\tau}=(n-1, j)\right\} \mid X_{0}=(n, i)\right],
$$

The physical interpretation of $[\mathbf{G}(z)]_{i j}$ is the PGF of the time taken for the process to reach level $n-1$ for the first time and do so in phase j, given the process starts in level n at phase i.

An algorithm for $\mathbf{G}(z)$

The summation equation with a similar physical interpretation to equation (1) for $\boldsymbol{\Psi}(s)$ is

$$
\begin{equation*}
\left.\mathbf{G}_{n+1}(z)=\sum_{k=1}^{\infty} \mathbf{M}_{+}(z)^{k-1}\left(\mathbf{I}+\sum_{\ell=2}^{\infty}\left(\mathbf{M}_{+}(z) \mathbf{G}_{n}(z)\right)\right)^{\ell}\right) \mathbf{M}_{-}(z)^{k} \tag{3}
\end{equation*}
$$

This can be also written as, $\mathbf{G}_{0}^{L T}(z)=\mathbf{0}$,

$$
\begin{align*}
& \mathbf{G}_{n+1}^{L T}(z)-\mathbf{M}_{+}(z) \mathbf{G}_{n+1}^{L T}(z) \mathbf{M}_{-}(z) \\
& \quad=\left(\mathbf{I}-\mathbf{M}_{+}(z) \mathbf{G}_{n}^{L T}(z)\right)^{-1}-\mathbf{M}_{+}(s) \mathbf{G}_{n}^{L T}(z) \tag{4}
\end{align*}
$$

Equivalence of (3) and (4)

Lemma

Equation

$$
\mathbf{X}=\mathbf{A X B}+\mathbf{C},
$$

for appropriately sized matrices \mathbf{A}, \mathbf{B} and \mathbf{C}, has the unique solution given by

$$
\mathbf{X}=\sum_{k=0}^{\infty} \mathbf{A}^{k} \mathbf{C B}^{k}
$$

if and only if $\rho(\mathbf{A}) \rho(\mathbf{B})<1$, where $\rho(\cdot)$ represents the spectral radius of a given matrix.

Convergence of $\mathbf{G}_{n}(z)$ to $\mathbf{G}(z)$

Lemma

$\mathbf{G}_{n}^{L T}(z)$ converges to $\mathbf{G}(z)$ as $n \rightarrow \infty$.

Proof: (Outline)

- Show that $0 \leq \mathbf{G}_{n}^{L T}(z) \leq \mathbf{G}_{n+1}^{L T}(z) \leq \mathbf{G}(z)$.
- Show any arbitrary sample path for $\mathbf{G}(z)$ must be a sample path for $\mathbf{G}_{n}^{L T}(z)$ for some n.

Algorithm

Input: $\mathbf{A}_{-}, \mathbf{A}_{0}, \mathbf{A}_{+}$
Set a real $\epsilon>0, z \in \operatorname{Re}>0$.
Set:
$\mathbf{M}_{+}(z)=\left(\mathbf{I}-\mathbf{A}_{0} z\right)^{-1} \mathbf{A}_{+} z$,
$\mathbf{M}_{-}(z)=\left(\mathbf{I}-\mathbf{A}_{0} z\right)^{-1} \mathbf{A}_{-} z$, and
$\mathbf{G}_{n}^{L T}(z)=\mathbf{0}$.
while $\left\|\mathbf{G}_{n+1}^{L T}(z)-\mathbf{G}_{n}^{L T}(z)\right\|_{\infty}>\epsilon$ do
Compute:

$$
C=\left(\left(\mathbf{I}-\mathbf{M}_{+}(z) \mathbf{G}_{n}^{L T}(z)\right)^{-1}-\mathbf{M}_{+}(z) \mathbf{G}_{n}^{L T}(z)\right) \mathbf{M}_{-}(z)
$$

Solve:

$$
X-\mathbf{M}_{+}(z) X \mathbf{M}_{-}(z)=C
$$

Set:

$$
\mathbf{G}_{n}^{L T}(z)=X
$$

end while
Output: $\mathbf{G}(z) \approx \mathbf{G}_{n}^{L T}(z)$

Numerical example

Consider a QBD with \mathbf{P} comprised of matrices

$$
\begin{aligned}
& \mathbf{A}_{+}=\left[\begin{array}{cccccc}
0.0151 & 0.3021 & 0 & 0 & 0 & 0 \\
0 & 0.0151 & 0.3021 & 0 & 0 & 0 \\
0 & 0 & 0.0151 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.0151 & 0.3021 & 0 \\
0 & 0 & 0 & 0 & 0.0151 & 0 \\
0 & 0 & 0 & 0 & 0 & 0.0151
\end{array}\right], \\
& \mathbf{A}_{0}=\left[\begin{array}{cccccc}
0.6344 & 0.0302 & 0 & 0 & 0 & 0 \\
0.0302 & 0.6042 & 0.0302 & 0 & 0 & 0 \\
0 & 0.0302 & 0 & 0.0302 & 0 & 0 \\
0 & 0 & 0.0302 & 0.6042 & 0.0302 & 0 \\
0 & 0 & 0 & 0.0302 & 0 & 0.0302 \\
0 & 0 & 0 & 0 & 0.0302 & 0.0302
\end{array}\right],
\end{aligned}
$$

and

$$
\mathbf{A}_{-}=\left[\begin{array}{cccccc}
0.0181 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.0181 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.0181 & 0.9063 & 0 & 0 \\
0 & 0 & 0 & 0.0181 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.0181 & 0.9063 \\
0.9063 & 0 & 0 & 0 & 0 & 0.0181
\end{array}\right] .
$$

[N. Bean, G. Latouche, and P. Taylor. Physical interpretations for quasi-birth-and-death process algorithms.

Numerical example

Desired precision: $\epsilon=10^{-12}$

Output:

$$
\mathbf{G}=\left[\begin{array}{llllll}
0.7831 & 0.0149 & 0.0016 & 0.1084 & 0.0015 & 0.0905 \\
0.6538 & 0.0492 & 0.0030 & 0.1889 & 0.0018 & 0.1033 \\
0.0533 & 0.0016 & 0.0183 & 0.9180 & 0.0002 & 0.0087 \\
0.7426 & 0.0015 & 0.0016 & 0.1270 & 0.0022 & 0.1252 \\
0.0650 & 0.0001 & 0.0000 & 0.0040 & 0.0182 & 0.9126 \\
0.9489 & 0.0002 & 0.0000 & 0.0017 & 0.0006 & 0.0485
\end{array}\right],
$$

LT algorithm iterations: 60
Logarithmic reduction algorithm iterations: 7

LT algorithm average time: 0.015 seconds
Logarithmic reduction algorithm average time: 0.004 seconds

Future Work

- Apply a similar idea to construct other algorithms and study them.
- Increase the complexity of the n-th iteration of $\mathbf{G}_{n}(z)$ and observe the outcomes.

Thank you for listening!

References

[N. G. Bean, M. M. O'Reilly, and P. G. Taylor. Algorithms for return probabilities for stochastic fluid flows. Stochastic Models, 21(1):149-184, 2005.]
[N. G. Bean, M. M. O'Reilly, and P. G. Taylor. Hitting probabilities and hitting times for stochastic fluid flows. Stochastic processes and their applications, 115(9):1530-1556, 2005.]
[N. Bean, M. O'Reilly and P. Taylor. Algorithms for the Laplace-Stieltjejs transforms of return times for stochastic fluid flows. Methodology and Computing in Applied Probability, 10(3):381-408, 2008.]
[N. Bean, G. Latouche, and P. Taylor. Physical interpretations for quasi-birth-and-death process algorithms. Accepted, 2018.]
[P. Lancaster. Explicit solutions of linear matrix equations. Stochastic Models, 21(1):149-184, 2005.]
[G. Latouche and V. Ramaswami. Introduction to Matrix Analytic Methods in Stochastic Modeling. ASA-SIAM Series on Statistics and Applied Probability. Society for Industrial and Applied Mathematics, 1999]

Pictures by Sophie Fazackerley

