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Motivation

Algorithm construction for key matrix Ψ(s) in Stochastic Fluid
Models (SFMs) includes the following three parts

Integral expression

Iterative scheme (central to the algorithm)

Corresponding physical interpretation

These expressions are written in terms of the fluid generator Q(s).

[N. Bean, M. O’Reilly and P. Taylor. Algorithms for the Laplace-Stieltjejs transforms of return times for stochastic

fluid flows. Methodology and Computing in Applied Probability, 10(3):381–408, 2008.]
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Ψ(s) pictorial representation

In stochastic fluid models (SFMs) processes there is a quantity
Ψ(s)
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G(z) pictorial representation

In quasi-birth-and-death (QBD) processes there is a quantity with
a similar physical interpretation
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Motivation

Here, we consider discrete-time QBDs, and

derive summation expressions for G(s) with the physical
interpretations similar to those of integral expressions for Ψ(s)
in SFMs,

construct corresponding iterative schemes and study them.

To do so, we use matrices M+(z) and M−(z), which are similar to
Q++(s) and Q−−(s) respectively.
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Definition of the SFM

An SFM, denoted {(ϕ(t),X (t)) : t ≥ 0}, is a process with

phase variable ϕ(t) driven by the underlying CTMC
{ϕ(t) : t ≥ 0} with some finite state space S and generator T,

a level variable X (t) ≥ 0 such that,

when X (t) > 0,
dX (t)/dt = cϕ(t),

and when X (t) = 0,

dX (t)/dt = cϕ(t) · 1{cϕ(t) > 0}.

Note: S is partitioned as follows:
S+ = {i ∈ S : ci > 0}, S− = {i ∈ S : ci < 0}, S0 = {i ∈ S : ci = 0}.
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Fluid Generator Q(s) (SFM)

Q(s) =

[
Q++(s) Q+−(s)
Q−+(s) Q−−(s)

]
,

where

Q++(s) = C−1
+ [T++ − sI− T+0(T00 − sI)−1T0+]

Q−−(s) = C−1
− [T−− − sI− T−0(T00 − sI)−1T0−]

Q+−(s) = C−1
+ [T+− − T+0(T00 − sI)−1T0−]

Q−+(s) = C−1
− [T−+ − T−0(T00 − sI)−1T0+].

The expression [eQ(s)y ]ij records the LSTs of the distribution of
time for the process to have y amount of fluid flowed into or out of
the buffer and do so in phase j given the process starts in phase i
and no fluid has flowed into or out of the buffer.

[ N. G. Bean, M. M. O‘Reilly, and P. G. Taylor. Hitting probabilities and hitting times for stochastic fluid flows.

Stochastic processes and their applications, 115(9):1530–1556, 2005.] 8



Matrix Ψ(s)

Let θ(x) = inf{t > 0 : X (t) = x} be the first passage time to
level x . For i ∈ S+, j ∈ S−, and s ∈ C, where R(s) ≥ 0, [Ψ(s)]ij is
given by the conditional expectation

[Ψ(s)]ij = E [esθ(x)I{θ(x) <∞, ϕ(θ(x)) = j}|X (0) = x , ϕ(0) = i ].

0

y

X

The physical interpretation of [Ψ(s)]ij is the LST of the time taken
for the process to hit level x for the first time and does so in
phase j , given the process starts from level x whilst avoiding levels
below x .
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An algorithm for Ψ(s)

Using Q(s) and physical interpretation of Ψ(s),

Ψn+1(s) =

∫ ∞
y=0

eQ++(s)y (Q+−(s) + Ψn(s)Q−+(s)Ψn(s))eQ−−(s)ydy .

(1)

y

0

Stage 1
i1

i
[eQ++(s)]ii1

Stage 3
i2

j

[eQ−−(s)]i2j

Stage 2

or

[Q+−(s) + [Ψn(s)Q−+(s)Ψn(s)]i1i2

i1 → i2

∈ Φn ∈ Φn

i1 i2

This can be also written as, Ψ0(s) = 0 and,

Q++(s)Ψn+1(s)+Ψn+1(s)Q−−(s) = −Q+−−Ψn(s)Q−+(s)Ψn(s). (2)

[N. G. Bean, M. M. O‘Reilly, and P. G. Taylor. Algorithms for return probabilities for stochastic fluid flows.

Stochastic Models, 21(1):149–184, 2005.] 10



Definition of a discrete-time QBD

QBD is a discrete-time Markov chain, denoted {Xt , t ∈ N}, on a
two dimensional state space {(n, i) : n ≥ 0, 1 < i < m}, where n
denotes the level and i the phase in state (n, i).

One step transitions are restricted to jumps from state (n, i) to
(n′, i ′) where n′ = n − 1, n, n + 1 and i ′ is any phase.

The QBD has probability transition matrix P which is composed of
square blocks A0, A+, A−, B.

i

j

k
n − 1

n + 1

n
`

[A0]i`[A+]ij

[A−]ik

j

i `
0

1
[B]i`[A+]ij

[G. Latouchee and V. Ramaswami. Introduction to matrix-analytic methods in stochastic modeling, volume 5.

Society for Industrial Mathematics. 1999] 11



Probability matrix P

P =


B A+ 0 0 · · ·

A− A0 A+ 0 · · ·
0 A− A0 A+ · · ·
0 0 A− A0 · · ·
...

...
...

...
. . .

 ,
where matrices B,A+,A−,A0 are square matrices of order m such
that, for all i , j ∈ {1 ≤ i ≤ m},

[B]ij = P(Xt+1 = (0, j) | Xt = (0, i)),

[A+]ij = P(Xt+1 = (n + 1, j) | Xt = (n, i)),

[A−]ij = P(Xt+1 = (n − 1, j) | Xt = (n, i)),

[A0]ij = P(Xt+1 = (n, j) | Xt = (n, i)).
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Matrices M+(z) and M−(z)

M+(z) = (I− A0z)−1A+z

i

j

k `

n − 1

n + 1

n · · ·

M−(z) = (I− A0z)−1A−z

ji

k
n − 1

n + 1

n
`· · ·
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Matrix G(z)

Let τ be the time taken to first reach level (n − 1). Then the
(i , j)-th entry of the matrix G(z) is defined

[G(z)]ij = E [zτ I{τ <∞,Xτ = (n − 1, j)}|X0 = (n, i)],

1
0

k

X

The physical interpretation of [G(z)]ij is the PGF of the time taken
for the process to reach level n − 1 for the first time and do so in
phase j , given the process starts in level n at phase i .
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An algorithm for G(z)

The summation equation with a similar physical interpretation to
equation (1) for Ψ(s) is

Gn+1(z) =
∞∑
k=1

M+(z)k−1

(
I +

∞∑
`=2

(M+(z)Gn(z)))`

)
M−(z)k . (3)

k
k − 1

1
0

Stage 1
i1

i

[M+(z)k−1]ii1

Stage 3

i2

j
[M−(z)k−1]i2j

Stage 2

or

[M−(z) +
∑∞

`=2(M+(z)Gn(z)))`M−(z)]i1 i2

i1

i2

i1

i2

This can be also written as, GLT
0 (z) = 0,

GLT
n+1(z)−M+(z)GLT

n+1(z)M−(z)

= (I−M+(z)GLT
n (z))−1 −M+(s)GLT

n (z). (4)
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Equivalence of (3) and (4)

Lemma

Equation

X = AXB + C,

for appropriately sized matrices A, B and C, has the unique
solution given by

X =
∞∑
k=0

AkCBk

if and only if ρ(A)ρ(B) < 1, where ρ(·) represents the spectral
radius of a given matrix.

[P. Lancaster. Explicit solutions of linear matrix equations. Stochastic Models, 21(1):149–184, 2005.]
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Convergence of Gn(z) to G(z)

Lemma

GLT
n (z) converges to G(z) as n→∞.

Proof: (Outline)

Show that 0 ≤ GLT
n (z) ≤ GLT

n+1(z) ≤ G(z).

Show any arbitrary sample path for G(z) must be a sample
path for GLT

n (z) for some n.
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Algorithm

Input: A−, A0, A+

Set a real ε > 0, z ∈ Re > 0.
Set:
M+(z) = (I− A0z)−1A+z ,
M−(z) = (I− A0z)−1A−z , and
GLT

n (z) = 0.
while ||GLT

n+1(z)− GLT
n (z)||∞ > ε do

Compute:
C = ((I−M+(z)GLT

n (z))−1 −M+(z)GLT
n (z))M−(z)

Solve:
X −M+(z)XM−(z) = C
Set:
GLT

n (z) = X
end while
Output: G(z) ≈ GLT

n (z)
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Numerical example

Consider a QBD with P comprised of matrices

A+ =


0.0151 0.3021 0 0 0 0

0 0.0151 0.3021 0 0 0
0 0 0.0151 0 0 0
0 0 0 0.0151 0.3021 0
0 0 0 0 0.0151 0
0 0 0 0 0 0.0151

 ,

A0 =


0.6344 0.0302 0 0 0 0
0.0302 0.6042 0.0302 0 0 0

0 0.0302 0 0.0302 0 0
0 0 0.0302 0.6042 0.0302 0
0 0 0 0.0302 0 0.0302
0 0 0 0 0.0302 0.0302

 ,

and

A− =


0.0181 0 0 0 0 0

0 0.0181 0 0 0 0
0 0 0.0181 0.9063 0 0
0 0 0 0.0181 0 0
0 0 0 0 0.0181 0.9063

0.9063 0 0 0 0 0.0181

 .
[N. Bean, G. Latouche, and P. Taylor. Physical interpretations for quasi-birth-and-death process algorithms.

Accepted, 2018. ]
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Numerical example

Desired precision: ε = 10−12

Output:

G =


0.7831 0.0149 0.0016 0.1084 0.0015 0.0905
0.6538 0.0492 0.0030 0.1889 0.0018 0.1033
0.0533 0.0016 0.0183 0.9180 0.0002 0.0087
0.7426 0.0015 0.0016 0.1270 0.0022 0.1252
0.0650 0.0001 0.0000 0.0040 0.0182 0.9126
0.9489 0.0002 0.0000 0.0017 0.0006 0.0485

 ,

LT algorithm iterations: 60
Logarithmic reduction algorithm iterations: 7

LT algorithm average time: 0.015 seconds
Logarithmic reduction algorithm average time: 0.004 seconds
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Future Work

Apply a similar idea to construct other algorithms and study
them.

Increase the complexity of the n-th iteration of Gn(z) and
observe the outcomes.
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Thank you for listening!
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