Construction of algorithms for discrete-time quasi-birth-and-death processes through physical interpretation

Aviva Samuelson^{1,3}

with Małgorzata M. O'Reilly 1,3* and Nigel G. Bean 2,3 $13-15 \mbox{ February 2019}$

Matrix-Analytic Methods in Stochastic Models (MAM10)

- 1. School of Physical Sciences, University of Tasmania.
- 2. School of Mathematical Sciences, University of Adelaide.
- 3. ARC Centre of Excellence for Mathematical and Statistical Frontiers.
- *Thank you to the Australian Research Council for funding this research through Linkage Project LP140100152.

Algorithm construction for key matrix $\Psi(s)$ in Stochastic Fluid Models (SFMs) includes the following three parts

- Integral expression
- Iterative scheme (central to the algorithm)
- Corresponding physical interpretation

These expressions are written in terms of the fluid generator $\mathbf{Q}(s)$.

[N. Bean, M. O'Reilly and P. Taylor. Algorithms for the Laplace-Stieltjejs transforms of return times for stochastic fluid flows. Methodology and Computing in Applied Probability, 10(3):381–408, 2008.]

$\Psi(s)$ pictorial representation

In stochastic fluid models (SFMs) processes there is a quantity $\Psi(s)$

G(z) pictorial representation

In quasi-birth-and-death (QBD) processes there is a quantity with a similar physical interpretation

Here, we consider discrete-time QBDs, and

- derive summation expressions for G(s) with the physical interpretations similar to those of integral expressions for $\Psi(s)$ in SFMs,
- construct corresponding iterative schemes and study them.

To do so, we use matrices $M_+(z)$ and $M_-(z)$, which are similar to $Q_{++}(s)$ and $Q_{--}(s)$ respectively.

Definition of the SFM

An SFM, denoted $\{(\varphi(t), X(t)) : t \ge 0\}$, is a process with

- phase variable φ(t) driven by the underlying CTMC
 {φ(t) : t ≥ 0} with some finite state space S and generator T,
- a level variable $X(t) \ge 0$ such that,
- when X(t) > 0,

$$dX(t)/dt = c_{\varphi(t)},$$

• and when
$$X(t) = 0$$
,

$$dX(t)/dt = c_{\varphi(t)} \cdot 1\{c_{\varphi(t)} > 0\}.$$

Note: S is partitioned as follows: $S_+ = \{i \in S : c_i > 0\}, \qquad S_- = \{i \in S : c_i < 0\}, \qquad S_0 = \{i \in S : c_i = 0\}.$

Fluid Generator $\mathbf{Q}(s)$ (SFM)

$$\mathbf{Q}(s) = \left[egin{array}{cc} \mathbf{Q}_{++}(s) & \mathbf{Q}_{+-}(s) \ \mathbf{Q}_{-+}(s) & \mathbf{Q}_{--}(s) \end{array}
ight],$$

where

$$\begin{aligned} \mathbf{Q}_{++}(s) &= \mathbf{C}_{+}^{-1}[\mathbf{T}_{++} - s\mathbf{I} - \mathbf{T}_{+0}(\mathbf{T}_{00} - s\mathbf{I})^{-1}\mathbf{T}_{0+}] \\ \mathbf{Q}_{--}(s) &= \mathbf{C}_{-}^{-1}[\mathbf{T}_{--} - s\mathbf{I} - \mathbf{T}_{-0}(\mathbf{T}_{00} - s\mathbf{I})^{-1}\mathbf{T}_{0-}] \\ \mathbf{Q}_{+-}(s) &= \mathbf{C}_{+}^{-1}[\mathbf{T}_{+-} - \mathbf{T}_{+0}(\mathbf{T}_{00} - s\mathbf{I})^{-1}\mathbf{T}_{0-}] \\ \mathbf{Q}_{-+}(s) &= \mathbf{C}_{-}^{-1}[\mathbf{T}_{-+} - \mathbf{T}_{-0}(\mathbf{T}_{00} - s\mathbf{I})^{-1}\mathbf{T}_{0+}]. \end{aligned}$$

The expression $[e^{\mathbf{Q}(s)y}]_{ij}$ records the LSTs of the distribution of time for the process to have y amount of fluid flowed into or out of the buffer and do so in phase j given the process starts in phase i and no fluid has flowed into or out of the buffer.

[N. G. Bean, M. M. O'Reilly, and P. G. Taylor. Hitting probabilities and hitting times for stochastic fluid flows. Stochastic processes and their applications, 115(9):1530–1556, 2005.]

Matrix $\Psi(s)$

Let $\theta(x) = \inf\{t > 0 : X(t) = x\}$ be the first passage time to level x. For $i \in S_+$, $j \in S_-$, and $s \in \mathbb{C}$, where $\mathbb{R}(s) \ge 0$, $[\Psi(s)]_{ij}$ is given by the conditional expectation

 $[\Psi(s)]_{ij} = E[e^{s\theta(x)}I\{\theta(x) < \infty, \varphi(\theta(x)) = j\}|X(0) = x, \varphi(0) = i].$

The physical interpretation of $[\Psi(s)]_{ij}$ is the LST of the time taken for the process to hit level x for the first time and does so in phase j, given the process starts from level x whilst avoiding levels below x.

An algorithm for $\Psi(s)$

Using $\mathbf{Q}(s)$ and physical interpretation of $\Psi(s)$,

$$\Psi_{n+1}(s) = \int_{y=0}^{\infty} e^{\mathbf{Q}_{++}(s)y} (\mathbf{Q}_{+-}(s) + \Psi_n(s)\mathbf{Q}_{-+}(s)\Psi_n(s)) e^{\mathbf{Q}_{--}(s)y} dy.$$
(1)

This can be also written as, $\Psi_0(s) = \mathbf{0}$ and, $\mathbf{Q}_{++}(s)\Psi_{n+1}(s) + \Psi_{n+1}(s)\mathbf{Q}_{--}(s) = -\mathbf{Q}_{+-} - \Psi_n(s)\mathbf{Q}_{-+}(s)\Psi_n(s).$ (2)

[N. G. Bean, M. M. O'Reilly, and P. G. Taylor. Algorithms for return probabilities for stochastic fluid flows. Stochastic Models, 21(1):149–184, 2005.]

Definition of a discrete-time QBD

QBD is a discrete-time Markov chain, denoted $\{X_t, t \in \mathbb{N}\}$, on a two dimensional state space $\{(n, i) : n \ge 0, 1 < i < m\}$, where n denotes the level and i the phase in state (n, i).

One step transitions are restricted to jumps from state (n, i) to (n', i') where n' = n - 1, n, n + 1 and i' is any phase.

The QBD has probability transition matrix P which is composed of square blocks A_0 , A_+ , A_- , B_- .

[G. Latouchee and V. Ramaswami. Introduction to matrix-analytic methods in stochastic modeling, volume 5. Society for Industrial Mathematics. 1999]

Probability matrix **P**

$$\label{eq:P} \textbf{P} = \begin{bmatrix} \textbf{B} & \textbf{A}_{+} & \textbf{0} & \textbf{0} & \cdots \\ \textbf{A}_{-} & \textbf{A}_{0} & \textbf{A}_{+} & \textbf{0} & \cdots \\ \textbf{0} & \textbf{A}_{-} & \textbf{A}_{0} & \textbf{A}_{+} & \cdots \\ \textbf{0} & \textbf{0} & \textbf{A}_{-} & \textbf{A}_{0} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix},$$

where matrices $\mathbf{B}, \mathbf{A}_+, \mathbf{A}_-, \mathbf{A}_0$ are square matrices of order m such that, for all $i, j \in \{1 \le i \le m\}$,

$$\begin{aligned} [\mathbf{B}]_{ij} &= P(X_{t+1} = (0,j) \mid X_t = (0,i)), \\ [\mathbf{A}_+]_{ij} &= P(X_{t+1} = (n+1,j) \mid X_t = (n,i)), \\ [\mathbf{A}_-]_{ij} &= P(X_{t+1} = (n-1,j) \mid X_t = (n,i)), \\ [\mathbf{A}_0]_{ij} &= P(X_{t+1} = (n,j) \mid X_t = (n,i)). \end{aligned}$$

Matrices $\mathbf{M}_{+}(z)$ and $\mathbf{M}_{-}(z)$

$$M_{+}(z) = (I - A_0 z)^{-1} A_{+} z$$

$$\mathbf{M}_{-}(z) = (\mathbf{I} - \mathbf{A}_{0}z)^{-1}\mathbf{A}_{-}z$$

Matrix $\mathbf{G}(z)$

Let τ be the time taken to first reach level (n-1). Then the (i,j)-th entry of the matrix $\mathbf{G}(z)$ is defined

$$[\mathbf{G}(z)]_{ij} = E[z^{\tau}I\{\tau < \infty, X_{\tau} = (n-1,j)\}|X_0 = (n,i)],$$

The physical interpretation of $[\mathbf{G}(z)]_{ij}$ is the PGF of the time taken for the process to reach level n-1 for the first time and do so in phase j, given the process starts in level n at phase i.

An algorithm for $\mathbf{G}(z)$

The summation equation with a similar physical interpretation to equation (1) for $\Psi(s)$ is

$$\mathbf{G}_{n+1}(z) = \sum_{k=1}^{\infty} \mathbf{M}_{+}(z)^{k-1} \left(\mathbf{I} + \sum_{\ell=2}^{\infty} (\mathbf{M}_{+}(z)\mathbf{G}_{n}(z)))^{\ell} \right) \mathbf{M}_{-}(z)^{k}.$$
 (3)

This can be also written as, $\mathbf{G}_0^{LT}(z) = \mathbf{0}$,

$$\mathbf{G}_{n+1}^{LT}(z) - \mathbf{M}_{+}(z)\mathbf{G}_{n+1}^{LT}(z)\mathbf{M}_{-}(z) = (\mathbf{I} - \mathbf{M}_{+}(z)\mathbf{G}_{n}^{LT}(z))^{-1} - \mathbf{M}_{+}(s)\mathbf{G}_{n}^{LT}(z).$$
(4)

15

Equivalence of (3) and (4)

Lemma

Equation

$$\mathbf{X} = \mathbf{A}\mathbf{X}\mathbf{B} + \mathbf{C},$$

for appropriately sized matrices A, B and C, has the unique solution given by

$$\mathbf{X} = \sum_{k=0}^{\infty} \mathbf{A}^k \mathbf{C} \mathbf{B}^k$$

if and only if $\rho(\mathbf{A})\rho(\mathbf{B}) < 1$, where $\rho(\cdot)$ represents the spectral radius of a given matrix.

Lemma

$$\mathbf{G}_n^{LT}(z)$$
 converges to $\mathbf{G}(z)$ as $n \to \infty$.

Proof: (Outline)

- Show that $0 \leq \mathbf{G}_n^{LT}(z) \leq \mathbf{G}_{n+1}^{LT}(z) \leq \mathbf{G}(z)$.
- Show any arbitrary sample path for G(z) must be a sample path for G_n^{LT}(z) for some n.

Input: A₋, A₀, A₊
Set a real
$$\epsilon > 0, z \in Re > 0$$
.
Set:
 $M_{+}(z) = (I - A_{0}z)^{-1}A_{+}z,$
 $M_{-}(z) = (I - A_{0}z)^{-1}A_{-}z,$ and
 $G_{n}^{LT}(z) = 0.$
while $||G_{n+1}^{LT}(z) - G_{n}^{LT}(z)||_{\infty} > \epsilon$ do
Compute:
 $C = ((I - M_{+}(z)G_{n}^{LT}(z))^{-1} - M_{+}(z)G_{n}^{LT}(z))M_{-}(z)$
Solve:
 $X - M_{+}(z)XM_{-}(z) = C$
Set:
 $G_{n}^{LT}(z) = X$
end while
Output: $G(z) \approx G_{n}^{LT}(z)$

Numerical example

and

Consider a QBD with ${\bf P}$ comprised of matrices

$\mathbf{A}_{+} =$	г0.0151	0.3021	0	0	0	ך 0	
	0	0.0151	0.3021	0	0	0	
	0	0	0.0151	0	0	0	
	0	0	0	0.0151	0.3021	0	,
	0	0	0	0	0.0151	0	
	Lο	0	0	0	0	0.0151	
$\mathbf{A}_0 =$	г0.6344	0.0302	0	0	0	0 т	
	0.0302	0.6042	0.0302	0	0	0	
	0	0.0302	0	0.0302	0	0	
	0	0	0.0302	0.6042	0.0302	0	,
	0	0	0	0.0302	0	0.0302	
	Lο	0	0	0	0.0302	0.0302	
$\mathbf{A}_{-} =$	Г0.0181	0	0	0	0	ך 0	
	0	0.0181	0	0	0	0	
	0	0	0.0181	0.9063	0	0	
	0	0	0	0.0181	0	0	•
	0	0	0	0	0.0181	0.9063	
	L0.9063	0	0	0	0	0.0181	

[N. Bean, G. Latouche, and P. Taylor. Physical interpretations for quasi-birth-and-death process algorithms. Accepted, 2018.]

Numerical example

Desired precision: $\epsilon = 10^{-12}$

Output:

G =	Г0.7831	0.0149	0.0016	0.1084	0.0015	0.0905ך	
	0.6538	0.0492	0.0030	0.1889	0.0018	0.1033	
	0.0533	0.0016	0.0183	0.9180	0.0002	0.0087	
	0.7426	0.0015	0.0016	0.1270	0.0022	0.1252	,
	0.0650	0.0001	0.0000	0.0040	0.0182	0.9126	
	L0.9489	0.0002	0.0000	0.0017	0.0006	0.0485	

LT algorithm iterations: 60 Logarithmic reduction algorithm iterations: 7

LT algorithm average time: 0.015 seconds Logarithmic reduction algorithm average time: 0.004 seconds • Apply a similar idea to construct other algorithms and study them.

• Increase the complexity of the *n*-th iteration of **G**_n(z) and observe the outcomes.

Thank you for listening!

References

[N. G. Bean, M. M. O'Reilly, and P. G. Taylor. Algorithms for return probabilities for stochastic fluid flows. Stochastic Models, 21(1):149–184, 2005.]

[N. G. Bean, M. M. O'Reilly, and P. G. Taylor. Hitting probabilities and hitting times for stochastic fluid flows. Stochastic processes and their applications, 115(9):1530–1556, 2005.]

[N. Bean, M. O'Reilly and P. Taylor. Algorithms for the Laplace-Stieltjejs transforms of return times for stochastic fluid flows. Methodology and Computing in Applied Probability, 10(3):381–408, 2008.]

[N. Bean, G. Latouche, and P. Taylor. Physical interpretations for quasi-birth-and-death process algorithms. *Accepted*, 2018.]

[P. Lancaster. Explicit solutions of linear matrix equations. Stochastic Models, 21(1):149–184, 2005.]

[G. Latouche and V. Ramaswami. Introduction to Matrix Analytic Methods in Stochastic Modeling. ASA-SIAM Series on Statistics and Applied Probability. Society for Industrial and Applied Mathematics, 1999]

Pictures by Sophie Fazackerley