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Patient Admission Scheduling (PAS) PAS problem

Patient admission scheduling (PAS) problem

The PAS problem arises when patients arrive at the hospital.

Patients need to be allocated to beds in an optimal manner.

We need to take into account the availability of beds and the
needs of patients.

We consider this problem in a dynamic environment. That is, at
the start of each day we record information about:

- Registered patients (Known to the system),

- Newly arrived (Emergency and planned patients),

- Future arrivals (Planned patients).

The goal is to determine optimal assignment of patients to rooms
in order to minimise costs.
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Patient Admission Scheduling (PAS) Patient flow in hospitals

Patient flow in hospitals
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Patient Admission Scheduling (PAS) Data for Benchmarking

50 instances were generated for each scenario by Ceschia et al.
(2012).

Available at https://bitbucket.org/satt/pasu-instances.

Data was also used by Lusby et al. (2016).
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Patient Admission Scheduling (PAS) Data structure

Departments:
- Specialisms (Cardiology, Dermatology, . . . )
- Set of rooms

Rooms:
- Beds
- Features and Equipments: Oxygen, Telemetry, Infusion Pump, . . .

Patients:
- Fixed arrival and departure dates
- Requested treatments (related to specialisms)
- Needed and preferred room features
- Preferences on room capacity

Planning Horizon:
- Fixed number of days

6



Mathematical formulation Notations

Some of the notations we use are as follows;
Notation Description

σ An assignment

xp,r,d (σ) ∈ {0, 1}, is equal to 1 if a patient p is assigned to a room r on day d,
0 otherwise.

yp,d (σ) ∈ {0, 1}, is equal to 1 if a patient p is admitted the hospital on day d,
0 otherwise.

tp,r,r∗,d (σ) ∈ {0, 1}, is equal to 1 if a patient p is transferred from room r

to room r∗ on day d, 0 otherwise.

Qr,d (σ) ∈ {0, 1}, is equal to 1 if there is a gender conflict event observed in room r

on day d, 0 otherwise.

Yr,d (σ) Random variable records the number of patients in room

r on day d.
dp(σ) The admission date of a patient p.
`p(σ) The length of stay of a patient p.
Am,d (σ) The event that all males have left the room before day d.
Af ,d (σ) The event that all females have left the room before day d.
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Mathematical formulation Our Mathematical Model

We build our mathematical model on the model in Lusby et al.
(2016).

Similarly to Lusby et al., we use Integer Programming.

Our contribution is a stochastic model which includes

- Random arrivals,

- Random departures,

- Stochastic objective function.
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Mathematical formulation Our Mathematical Model

Objective function, component 1

The expected cost of assigning patients to rooms is given by∑
p∈P

∑
d∈D

∑
r∈R

cp,r × xp,r ,d (σ)× Pr (Lp ≥ d − dp(σ)). (1)

Cp,r is the cost of assigning patient p to a room r .
Lp is the random variable records the length of stay of p till
discharge.

dp(σ) is the admission day.
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Mathematical formulation Our Mathematical Model

Objective function, component 2

The expected cost of all transfers is given by∑
p∈P

∑
d∈D

∑
r∈R

c(T )
p,r ,r∗ × tp,r ,r∗,d (σ)× Pr (Lp ≥ d − dp(σ)). (2)

c(T )
p,r ,r∗ is the cost of transferring patient p from room r to room r∗ on

day d .
c(T )

p,r ,r∗ = 0, when r = r∗.
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Mathematical formulation Our Mathematical Model

Objective function, component 3

The total expected penalty for all gender violations is given by∑
d∈D

∑
r∈R

c(G)
r ,d × Pr (Qr ,d (σ)). (3)

c(G)
r ,d is the penalty for gender violation for room r on day d .

Qr ,d (σ) is an event that records gender conflict in room r on day d .
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Mathematical formulation Our Mathematical Model

continued

We calculate Pr (Qr ,d (σ)) as follows;

1− Pr (Qr ,d (σ)) = Pr (Am,d (σ)) + Pr (Af ,d (σ))
−Pr (Am,d (σ) ∩ Af ,d (σ))

=
∏
Mr,d

xp,r ,d (σ)Pr (Lp < d − dp(σ))

+
∏
Fr,d

xp,r ,d (σ)Pr (Lp < d − dp(σ))

−
∏

Mr,d∪Fr,d

xp,r ,d (σ)Pr (Lp < d − dp(σ)).

(4)

Fr ,d is the set of all female patients assigned to room r on day d .

Mr ,d is the set of all male patients assigned to room r on day d .
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Mathematical formulation Our Mathematical Model

Objective function, component 4

The total expected penalty for overcrowding is given by

∑
d∈D

∑
r∈R

c(O)
r ,d ×

(max{0, E(Yr ,d (σ))− κr}
κ̂r − κr

)
. (5)

c(O)
r ,d is the penalty for overcrowding in room r on day d .

Yr ,d (σ) is a random variable recording the number of patients in
room r on day d , given assignment σ.

κr is the capacity of room r .

κ̂r is the maximum room capacity of room r , (κ̂r > κr ).

κ̂r − κr is a threshold.
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Mathematical formulation Our Mathematical Model

continued

(E(Yr ,d (σ))− κr ) is the expected excess in room r on day d . We
then have

E(Yr ,d (σ)) = E

∑
p∈P

Zp,r ,d (σ)


=

∑
p∈P

E
(
Zp,r ,d (σ)

)
=

∑
p∈P

Pr
(
Zp,r ,d (σ) = 1

)
=

∑
p∈P

xp,r ,d (σ)Pr (Lp ≥ d − dp(σ)). (6)

Zp,r ,d (σ) =

{
1 if patient p is in room r on day d
0 otherwise,
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Mathematical formulation Our Mathematical Model

Objective function, component 5

The total expected penalty for admission delay is given by

∑
p∈P

c(De)
p,d ×

∑
d∈D

(
d − dplan

p

dmax
p − dplan

p

)
× yp,d (σ). (7)

c(De)
p,d is the penalty for admission delay on day d .

d − dplan
p is the admission delay for patient p on day d .

yp,d (σ) =
{

1 if patient p is admitted on day d
0 otherwise,

dmax
p − dplan

p is the maximum delay.
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Mathematical formulation Our Mathematical Model

Hard constraints

Room capacity (κ̂r ): the number of patients assigned to a room
must be less than the maximum room capacity.∑

p∈P

xp,r ,d (σ) ≤ κ̂r , ∀r ∈ R,∀d ∈ D. (8)

The Patient age (Ap): has to be within the minimum, and
maximum age limit policy of the ward.

xp,r ,d (σ) ≤ Ap ∀p ∈ P,∀r ∈Wi ,∀d ∈ D. (9)
a(Wi ) ≤ Ap ∀p ∈ P,∀r ∈Wi ,∀d ∈ D. (10)
A(Wi ) ≥ Ap ∀p ∈ P,∀r ∈Wi ,∀d ∈ D. (11)

a(Wi ) minimum, and A(Wi ) maximum age limit in ward Wi .
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Mathematical formulation Our Mathematical Model

Hard constraints

Patient admission (yp,d (σ)): a patient must be admitted on day d
to be assigned to a room.∑

d∈Dp

yp,d (σ) = 1, ∀p ∈ P. (12)

Patients should stay in the room (r ) the following (`p − 1) nights∑
r∈R

xp,r ,d (σ) ≥ yp,d̄ (σ),∀p ∈ P, d̄p ∈ Dp,d = d̄p, . . . , d̄p + `p − 1. (13)
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Mathematical formulation Our Mathematical Model

Soft constraints

Room gender: calculates the presence of female patients
(fr ,d (σ)), male patients (mr ,d (σ)), or both (br ,d (σ)) in a room r on
day d .

fr ,d (σ) ≥ xp,r ,d (σ), ∀p ∈ F , ∀r ∈ R ∩ RSG,∀d ∈ D. (14)

fr ,d (σ) =
{

1 if there is at least one female in room r on day d ,
0 otherwise.

mr ,d (σ) ≥ xp,r ,d (σ), ∀p ∈M,∀r ∈ R ∩ RSG, ∀d ∈ D. (15)

mr ,d (σ) =
{

1 if there is at least one male in room r on day d ,
0 otherwise.
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Mathematical formulation Our Mathematical Model

Soft constraints

Room gender (continued)

br ,d (σ) ≥ mr ,d + fr ,d (σ)− 1, ∀r ∈ RSG, ∀d ∈ D. (16)

br ,d (σ) =
{

1 if both genders are present in room r on day d ,
0 otherwise.

Transfer: captures the number of transfer from room r to room r∗.

tp,r ,r∗,d (σ) ≥ xp,r ,d (σ)− xp,r ,d−1(σ)− yp,d (σ), (17)
∀p ∈ P,∀r ∈ R,d = 2, . . . ,D.
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Modelling random arrivals and departures

Random departures

Lp is a random variable that records the LoS of the type-p patient,

Takes values `p = 0,1, . . . , `max
p , for some positive integer `max

p ,

We consider a discrete-time Markov chain distribution.

State space V = {0,1, . . . , `max
p }, where `max

p is an absorbing
state, and one-step transition probability matrix P given by

P∗ =

[
P p
0 1

]

(Example: Coxian phase type distribution)
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Modelling random arrivals and departures

for some matrix P = [Pij ]i,j=0,1,...,`max
p −1 and (column) vector

p = [pi`max
p

]j=0,1,...,`max
p −1, and the initial distribution (row) vector

τ = [τi ]i=0,1,...,`max
p −1.

We then assume that the random variable Lp follows discrete
phase-type distribution with parameters τ and P, which models
time till absorption in the above chain,

Lp ∼ PH(τ,P),

which gives, for `p = 0,1, . . . , `max
p ,

Pr (Lp = `p) = τP`pp, (18)
Pr (Lp ≤ `p) = 1− τP`p1,
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Modelling random arrivals and departures

Random arrivals

We use similar technique to Kumar et al. (2018) to include the
random arrivals,

We simulate random arrivals (from a suitable distribution) multiple
times, resulting in a number of possible solutions.

We then compare the different solutions by running simulations
over some long time period, and then choose the preferred solution.
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Solution approach

Method

We use simulation to generate random inputs for our model.

Apply Meta heuristic algorithms, such as

Greedy search

Adaptive neighbourhood search and

Simulated annealing

to solve the stochastic integer program.

Compare our results with Lusby et al. (2016).
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Conclusion

Current and future work

Code for numerical examples based on the model in Lusby et al.
(2016).

Code for numerical examples based our mathematical model.

Use solution based on the model in Lusby et al. (2016) as the
initial solution to our mathematical model.

Comparison of the results.
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Conclusion
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