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Note from the editors
Over the years, matrix-analytic models have proved to be successful in providing performance measures for a
large number of real-world systems. In their corresponding computational methods, known as matrix-analytic
methods, algorithmic issues are investigated in detail and the probabilistic interpretation of the proposed numerical
procedures plays a major role. These methods have been developed initially in the context of queueing models and
have given rise to the theory of quasi-birth-and-death processes and of skip-free Markov chains, both belonging to
the class of structured Markov chains. More recently, matrix-analytic methods have been extended further for
stochastic fluid queues, branching processes, and Markov-modulated Brownian motion.

The Tenth International Conference on Matrix-Analytic Methods in Stochastic Models (MAM10) was held at the
University of Tasmania in Hobart from the 13th to the 15th of February 2019, continuing the established tradition
of previous fruitful MAM conferences in Flint (1995), Winnipeg (1998), Leuven (2000), Adelaide (2002), Pisa
(2005), Beijing (2008), New York (2011), Calicut (2014), and Budapest (2016).

The MAM10 conference was sponsored by the Australian Mathematical Sciences Institute (AMSI), the Australian
Mathematical Society (AustMS), the Australian Research Council Centre of Excellence for Mathematical and
Statistical Frontiers (ACEMS), as well as by Peter Taylor (Australian Laureate Fellow, at the University of
Melbourne, Director of ACEMS) and Andrew Bassom (Head of Discipline – Mathematics, University of Tasmania).

MAM conferences aim to bring together researchers working on the theoretical, algorithmic and methodological
aspects of these methods and the applications of such mathematical research across a broad spectrum of fields,
which includes computer science and engineering, telephony and communication networks, electrical and industrial
engineering, operations research, management science, financial and risk analysis, bio-statistics, and evolution.

This book forms the Proceedings of MAM10, and contains 34 abstracts, including 7 extended abstracts. Each
extended abstract was reviewed anonymously by two members of the program committee. Keynote talks were
given by Azam Asanjarani, Søren Asmussen, Jevgenijs Ivanovs, Giang Nguyen, Zbigniew Palmowski, and Phil
Pollett.

We thank our steering committee and program committee members, and all other people who helped in the
organization of the conference. We thank the University of Tasmania for hosting the conference, and our sponsors
for their financial support. We thank all the authors who contributed to the abstracts, the reviewers, and all the
participants. We thank Odyseusz Zawalski for the design of the poster, the MAM logo, and the cover of this book.
We thank Kelly Carpenter for the administrative support.

Sophie Hautphenne, Ma lgorzata O’Reilly, and Federico Poloni

6



Organising Committee:

Ma lgorzata O’Reilly, Conference Chair, University of Tasmania, Australia
Sophie Hautphenne, Program Co-Chair, The University of Melbourne, Australia
Federico Poloni, Program Co-Chair, University of Pisa, Italy
Mark Fackrell, The University of Melbourne, Australia
Barbara Holland, University of Tasmania, Australia
Michael Brideson, University of Tasmania, Australia

Steering Committee:

Attahiru S. Alfa, University of Manitoba, Canada, and University of Pretoria, South Africa
Guy Latouche, Universite Libre de Bruxelles, Belgium
Miklós Telek, Technical University of Budapest, Hungary
Peter Taylor, The University of Melbourne, Australia
Qi-Ming He, University of Waterloo, Canada
V. Ramaswami, Statmetrics, LLC, United States

Program Committee:

Søren Asmussen, Aarhus University, Denmark
Nigel Bean, The University of Adelaide, Australia
Peter Braunsteins, The University of Melbourne, Australia
Peter Buchholz, Technische Universität Dortmund, Germany
Giuliano Casale, Imperial College London, UK
Srinivas Chakravarthy, Kettering University, United States
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Matrix equations in Markov modulated Brownian motion:
theoretical properties and numerical solution

Soohan Ahn
Department of Statistics, The University of Seoul

163 Seoulsiripdaero, Dongdaemun-gu, Seoul
02504, South Korea.
sahn@uos.ac.kr

Beatrice Meini
Dipartimento di Matematica, Università di Pisa

Largo B. Pontecorvo 5, 56127 Pisa, Italy
beatrice.meini@unipi.it

ABSTRACT
A Markov modulated Brownian motion(MMBM) is a sub-
stantial generalization of the classical Brownian Motion and
is obtained by allowing the Brownian parameters to be mod-
ulated by an underlying Markov chain of environments [2].
As with Brownian Motion, the stationary analysis of the
MMBM becomes easy once the distributions of the first pas-
sage time between levels are determined. However, in the
MMBM those distributions cannot be obtained explicitly,
and we need efficient numerical methods to compute them.
In particular, in [2], the computation of the distribution is
ultimately reduced to solving a quadratic matrix equation
(QME). In relation to this, Ahn and Ramaswami [1] derived a
nonsymmetric algebraic Riccati equation(NARE) and proved
that the distributions can be obtained by using the minimal
nonnegative solution of the equation.

The contribution of this talk is twofold. From one hand
we provide an algebraic connection between the QME and
the NARE, more specifically we show that the NARE can be
obtained by means of a linearization of a quadratic matrix
polynomial associated with the QME. On the other hand,
we discuss the doubling algorithms such as the structure-
preserving doubling algorithm(SDA, [3]) and alternating-
directional doubling algorithm(ADDA, [5]) which are used
for finding the minimal nonnegative solution of the NARE.
These algorithms are quadratically convergent except for the
null-recurrent case of the MMBM. To improve the speed
of convergence of the doubling algorithms, we introduce a
shifted NARE by applying the shift technique, which was
investigated by Guo, Iannazzo, and Meini [4]. We observe
that the convergence of the doubling algorithms is accelerated
and also quadratic even in the null-recurrent case when
they are applied to the shifted NARE, as claimed by Guo,
Iannazzo, and Meini. Numerical examples show that the
algorithm applying ADDA to the shifted NARE is superior
to the other doubling algorithms in comparison. This also
holds when compared to Nguyen and Poloni’s quadratically
convergent algorithm [6] that is based on the quadratic matrix

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MAM10 2019, Hobart, Australia c© 2019 Copyright held by the owner/author(s).

equation obtained by Asmussen.

Keywords : Markov modulated Brownian motion, first pas-
sage time distribution, doubling algorithm, quadratic conver-
gence, shifted nonsymmetric algebraic Riccati equation.
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ABSTRACT
Introduction. The patient admission scheduling (PAS)
problem is a class of scheduling problems that must be han-
dled by the managers of the hospital admission systems. The
problem arises when patients arriving at the hospital need
to be allocated to beds in an optimal manner, subject to the
availability of beds and the needs of patients.

The PAS problem in a dynamic context, as analysed in
Ceschia and Schaerf [2] and Lusby et al. [6], considers a
scenario in which random arrivals and unknown departures
of patients are gradually revealed over the planning horizon.
The problem was formulated as an integer programming
model, and various procedures for computing the optimal
solution were proposed. Ceschia and Schaerf [2] developed a
metaheuristic algorithm based on simulated annealing and
neighborhood search. Lusby et al. [6] developed an adaptive
large neighbourhood search procedure to solve the problem.

Although the arrivals and departures of patients are in
general random, the models in [2, 6] assumed deterministic
inputs such as a fixed length of stay for each patient, and a
fixed number of arrivals at the start of each day. Here, we
build on the analysis in Lusby et al. [6], and develop a model
for the PAS problem in a dynamic context, which captures
the random dynamics of the flow of the patients.

Our aim here is to develop an improved mathematical
model to solve the PAS problem in a dynamic environment

∗Australian Research Council Centre of Excellence for Math-
ematical and Statistical Frontiers.
†We would like to thank the Australian Research Council for
funding this research through Linkage Project LP140100152.
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with random arrivals and departures. At the start of each
day we record new information about the registered patients,
newly arrived patients and future arrivals (including emer-
gency patients and scheduled arrivals), and then determine
an optimal assignment of patients to beds. Our goal is to
provide a decision support tool for the patient scheduling
process to be used by hospital administrators and planners.

Notation. We use similar notation to Demeester et al. [3]
and Turhan and Bilgen [8] for the parameters and variables
of our model, with some minor changes.

• Patients are classified into three groups, admitted pa-
tients, planned patients, and emergency patients. Ad-
mitted patients are patients that are successfully ad-
mitted to the hospital, and allocated to a bed. Planned
patients have not been admitted to the hospital as
yet, but have pre-determined admission dates, denoted
by dplanp . Emergency patients are patients whose ad-
mission date is equal to their registration date, that
is, dplanp = dregp , since their admission cannot be post-
poned and is unplanned.

• Patients are denoted by p, with p ∈ P, where P is
the set of all patients. Also let M ⊂ P be the set
of all male patients, and F ⊂ P be the set of all
female patients. Patients have the following properties:
admission date and a discharge date, age and gender,
required treatment, and room preference.

• Days are denoted by d, with d ∈ D, where D =
{0, 1, . . . , D} is the set of all days in the planning period
of the time horizon. Further, let dp ∈ Dp be the admis-
sion day of patient p, where Dp = {dplanp , · · · , dmaxp } ⊆
D is the set of acceptable days for patient p to be
admitted to the hospital.

• The length of stay (LoS) of patient p is denoted by
Lp. This is a random variable recording the number
of days patient p will stay in the hospital till he/she
gets discharged. We assume Lp takes values `p =
0, 1, . . . , `maxp , for some positive integer `maxp .

• A hospital consists of different wards. Typically, each
ward is specialized in treating one kind of pathology
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such as cardiovascular diseases, oncology, or derma-
tology, which is considered as the major specialism of
the ward as in Demeester et al. [3]. Wards can also
perform other treatments as minor specialisms. Wards
are denoted by Wi, i = 1, . . . ,W , where W is the total
number of wards in the hospital. Wards can support
one or more specialisms Su, u = 1, . . . , S, where S is
the total number of specialisms. We write

Su ∼ Wi (1)

when specialism Su is available in ward Wi, and

S(p) = Su (2)

when patient p requires specialism Su. Patients ad-
mitted to ward Wi may have to be in a particular age
range, between some minimum a(Wi) and maximum
A(Wi).

• Rooms are denoted by r, with r ∈ R = {1, . . . , R},
where R is the total number of rooms in the hospital.
We write

r ∈ Wi (3)

when room r is in ward Wi ⊂ R. A room can be
described by its age policy, gender policy and by its
special features, such as the presence of oxygen, ni-
trogen, telemetry or television. A room may support
one or more different specialisms Su, depending on the
room features. Rooms have a specified gender policy,
which is one of the following; male only M , female
only F , depends on the gender of the first patient SG
(same-gender policy), or all genders are allowed N . It
is preferable to not assign male and female patients
to the same room at the same time. We denote by
RM ,RF ,RSG,RN ⊂ R the sets of all rooms with
policies M,F, SG,N , respectively.

• The capacity of room r is denoted by κr. This is the
total number of beds in room r.

• Assignment σ is the collection of decisions xp,r,d(σ) and
yp,d(σ) defined as,

xp,r,d(σ) =





1 if patient p is assigned
to room r on day d

0 otherwise,
(4)

yp,d(σ) =





1 if patient p is
admitted on day d

0 otherwise,
(5)

and note that yp,d(σ) = 1{d = dp(σ)}, where 1{.} is
an indicator function.

• In order to calculate the violation of gender policy, we
define the presence of male, female and both patients
in room r on day d as follows,

mr,d(σ) =





1 if there is at least one male
patient in room r on day d,

0 otherwise,
(6)

fr,d(σ) =





1 if there is at least one female
patient in room r on day d,

0 otherwise,
(7)

br,d(σ) =





1 if both genders are present
in room r on day d,

0 otherwise.
(8)

• Given patient p, the required features of a room for
allocation are grouped into two categories, needed room
feature (NRF ), and preferred room features (PRF ).
Given feature j of some room r, we write

NRFj(p, r)(σ) =





1 if the needed room feature
is provided

0 otherwise.
(9)

Similarly, we write

PRFj(p, r)(σ) =





1 if the prefered room feature
is provided

0 otherwise.
(10)

• Transfer means relocating a patient from one room
to another during their stay. As it is described by
Demeester et al. [3], transfers can be planned or un-
planned, the latter should be avoided if possible. As
an example of a planned transfer, a patient might be
transferred from surgery to an intensive care unit, and
after recovery they might be transferred to another
ward. An unplanned transfer could be due to a short-
age of resources such as beds or rooms. The transfer
of patient p from room r to another room r∗ on day d
is recorded using variable

tp,r,r∗,d(σ) = 1{xp,r,d−1(σ) = 1, xp,r∗,d(σ) = 1, r∗ 6= r}.
(11)

That is, tp,r,r∗,d(σ) = 1 when patient p was transferred
from room r to room r∗ 6= r on day d, and tp,r,r∗,d(σ) =
0 otherwise.

• Let Qr,d(σ) be the event that a gender conflict is ob-
served in room r on day d, given assignment σ. Also,
define the random variable br,d(σ) such that br,d(σ) = 1
if the event Qr,d(σ) occurs, and br,d(σ) = 0 otherwise.
That is,

br,d(σ) = 1{Qr,d(σ)}. (12)

Then the mean value of br,d(σ) is equal to the proba-
bility of the event Qr,d(σ) occurring, with

E(br,d(σ)) = Pr(Qr,d(σ)). (13)

Denote by Am,d(σ) and Af,d(σ) the events that all
males have left the room before day d, and that all
females have left the room before day d, respectively.
Fr,d is the set of all female patients assigned to room r
on day d, that is Fr,d = {p ∈ F : xp,r,d(σ) = 1}, and
Mr,d is the set of all male patients assigned to room
r on day d, which is Mr,d = {p ∈ M : xp,r,d(σ) = 1}.
Then,

1− Pr(Qr,d(σ)) = Pr(Am,d(σ)) + Pr(Af,d(σ))

−Pr(Am,d(σ) ∩Af,d(σ))

=
∏

Mr,d

xp,r,d(σ)Pr(Lp < d− dp(σ))

+
∏

Fr,d

xp,r,d(σ)Pr(Lp < d− dp(σ))

−
∏

Mr,d∪Fr,d

xp,r,d(σ)Pr(Lp < d− dp(σ)).

(14)
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• Let Zp,r,d(σ) be a random variable such that, given
assignment σ, Zp,r,d(σ) = 1 if patient p is in room r on
day d, and Zp,r,d(σ) = 0 otherwise.

• Let Yr,d(σ) =
∑
p∈P Zp,r,d(σ) be a random variable

recording the number of patients in room r on day d,
given assignment σ, and (E(Yr,d(σ))− κr) be the ex-
pected excess in room r on day d. We then have

E(Yr,d(σ)) = E

(∑

p∈P
Zp,r,d(σ)

)

=
∑

p∈P
E (Zp,r,d(σ))

=
∑

p∈P
Pr (Zp,r,d(σ) = 1)

=
∑

p∈P
xp,r,d(σ)Pr(Lp ≥ d− dp(σ)). (15)

• We define the following cost functions, which we later
use as coefficients in the objective function. Let cp,r,d
be the cost of assigning patient p to a room r on day d.

Let c
(T )
p,r,r∗,d be the cost of transferring patient p from

room r to room r∗ on day d, with c
(T )
p,r,r,d = 0. Let

c
(G)
r,d be the penalty incurred for the violation of gender

policy in room r on day d. Let c
(O)
r,d be the penalty

incurred when the capacity κr of room r is exceeded

on day d. Let c
(De)
p,d be the penalty incurred for the

admission delay of patient p on day d.

Using the parameters and variables mentioned above, we
now construct a stochastic integer programming model with
suitable constraints due to patients medical needs and age,
room capacity, and gender policy, similar to Lusby et al. [6],
with suitable modifications. These include hard constraints
that must be met and soft constraints that can be violated
when necessary, but which are subject to cost penalties.

Hard constraints. For a solution to be feasible, it has to
satisfy the following set of hard constraints (16)-(21). First,
we set the room capacity constraints,

∑

p∈P
xp,r,d(σ) ≤ κ̂r, ∀r ∈ R, ∀d ∈ D, (16)

where κ̂r ≥ κr is some maximum allowed threshold for the
total number of patients in room r, after taking into account
an overstay risk.

Next, patient p should be assigned to ward Wi that is
suited for the patient’s age, denoted Ap. The minimum age
limit a(Wi) and maximum age limit A(Wi) allowed in ward
Wi should be respected. Therefore,

xp,r,d(σ)1{r ∈ Wi} ≤ 1{a(Wi) ≤ Ap ≤ A(Wi)},
∀p ∈ P, r ∈ R, d ∈ D. (17)

Furthermore, a patient p should be assigned to a ward Wi

with a suitable specialism Su, for some u. Therefore,

xp,r,d(σ)1{r ∈ Wi, S(p) = Su} ≤ 1{Su ∼ Wi},
∀p ∈ P, r ∈ R, d ∈ D. (18)

Additionally, the medical treatment of a patient p may
require that he/she is assigned to a room r with special
equipment or other features required for the treatment. That
is, when making decision xp,r,d(σ) = 1 we must have r such
that NRFj(p, r) = 1, when patient p requires room feature j.
Therefore,

xp,r,d(σ) ≤ 1{NRFj(p, r) = 1}, ∀p ∈ P, r ∈ R, d ∈ D.
(19)

Also, patients have to be admitted within the planning
horizon, and so

∑

d∈Dp

yp,d(σ) = 1, ∀p ∈ P. (20)

Moreover, if patient p is admitted on day d̄, the patient
must appear in some room r the following `maxp − 1 nights,
which gives,
∑

r∈R
xp,r,d(σ) ≥ yp,d̄(σ),

∀p ∈ P, d = d̄, . . . , d̄+ `maxp − 1, d̄ ∈ Dp.
(21)

Soft constraints. The set of soft constraints (22)-(25) cor-
responds to desirable conditions that do not have to be met,
but are subject to penalties.

Ideally, patients should be allocated as per their gender to
an appropriate room r with its specified gender policy. We
evalute the presence of a female patient fr,d(σ) in room r on
day d is using

fr,d(σ) ≥ xp,r,d(σ), ∀p ∈ F , ∀r ∈ RSG, ∀d ∈ D,
(22)

and the presence of a male patient mr,d(σ) using

mr,d(σ) ≥ xp,r,d(σ), ∀p ∈M, ∀r ∈ RSG, ∀d ∈ D.
(23)

To determine when both genders are present br,d(σ) we use
the following constraint,

br,d(σ) ≥ mr,d(σ) + fr,d(σ)− 1, ∀r ∈ RSG,∀d ∈ D.
(24)

The transfer of patients is handled using the following
constraint,

tp,r,r∗,d(σ) ≥ xp,r,d(σ)− xp,r,d−1(σ),

∀p ∈ P,∀r ∈ R, ∀d = 2, . . . ,D. (25)

Some other desirable conditions could also be considered.
A patient who asked for a single room, in case of lack of
single rooms should preferably be assigned to a twin room.

In addition to major medical treatment, a patient p may
need to undergo other minor medical treatments within de-
partment Wi in a room r with special equipment to treat
the patient assigned, which requires some minor specialism
S` for some suitable `.
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A patient p may prefer a room r with features that in some
degree correspond to the specialism that is required to treat
the patient’s clinical condition. That is, it is preferable to
have PRFj(p, r) = 1, when patient p prefers room feature j.

Objective function. We define the stochastic objective
function as the total expected cost incurred over the planning
horizon D = {0, 1, . . . ,D}, and write it as a sum of the
following cost components. The first component captures the
cost of assigning patient p ∈ P to room r ∈ R on day d ∈ D.
The second component calculates the cost of transferring
patient p ∈ P from room r ∈ R to another room r∗ ∈ R on
day d ∈ D. The third component determines the penalty
incurred for the violation of gender policy in room r ∈ R on
day d ∈ D. The fourth component determines the penalty
incurred when the capacity κr of room r ∈ R is exceeded
on day d ∈ D. The fifth component computes the penalty
incurred when the admission of patient p ∈ P is delayed
beyond the maximum acceptable admission day dmaxp on day
d ∈ D. The resulting expression is stated as,

min
σ

{ ∑

p∈P

∑

d∈D

∑

r∈R
cp,r,d × xp,r,d(σ)× Pr(Lp ≥ d− dp(σ))

+
∑

p∈P

∑

d∈D

∑

r∈R
c
(T )
p,r,r∗,d × tp,r,r∗,d(σ)× Pr(Lp ≥ d− dp(σ))

+
∑

d∈D

∑

r∈R
c
(G)
r,d × Pr(Qr,d(σ))

+
∑

d∈D

∑

r∈R
c
(O)
r,d ×

(
max{0, E(Yr,d(σ))− κr}

κ̂r − κr

)

+
∑

p∈P
c
(De)
p,d ×

∑

d∈D

(
d− dplanp

dmaxp − dplanp

)
× yp,d(σ)

}
, (26)

where max{0, E(Yr,d(σ))− κr} is the expected number of
patients in room r on day d above the capacity of room r,
given assignment σ.

Random arrivals and departures. In order to model the
random departures, we assume that the random variable
Lp that records the LoS of the type-p patient, and takes
values `p = 0, 1, . . . , `maxp , for some positive integer `maxp ,
follows a discrete phase-type distribution in Latouche and
Ramaswami [5, Chapter 2] and Neuts [7] with parameters
that depend on p.

That is, we consider a discrete-time Markov chain with
state space V = {0, 1, . . . , `maxp }, where `maxp is an absorbing
state, and one-step transition probability matrix P given by

P∗ =

[
P p
0 1

]
, (27)

for some matrix P = [Pi,j ]i,j=0,1,...,`max
p −1 and (column) vec-

tor p = [pi,`max
p

]j=0,1,...,`max
p −1, and the initial distribution

(row) vector τ = [τi]i=0,1,...,`max
p −1.

We then assume that the random variable Lp follows dis-
crete phase-type distribution with parameters τ and P, which
models time till absorption in the above chain,

Lp ∼ PH(τ ,P), (28)

which gives, for `p = 0, 1, . . . , `maxp ,

Pr(Lp = `p) = τP`pp, (29)

Pr(Lp ≤ `p) = 1− τP`p1, (30)

where 1 is a (column) vector of ones of appropriate size.
We use these expressions in order to evaluate the first two
components of the objective function in (26).

In order to include the random arrivals that may occur
during the planning horizon, we apply an approach similar
to Kumar et al. [4]. We simulate random arrivals (from a
suitable distribution) multiple times, resulting in a number of
possible solutions. We then compare the different solutions
by running simulations over some long time period, and then
choose the preferred solution.

For example, suppose that the arrivals of patients (emer-
gency or scheduled) occur according to a Poisson process
with rate λp per day, for type-p patient, for all p ∈ P, where
patient type is determined by their medical needs, age and
gender. We generate the random arrivals of emergency pa-
tients in the time horizon [0, D], using standard simulation
methods. As one possibility, for each patient type p, assume
that dDλpe arrivals have occurred during the time interval
[0,D], and then draw the random arrival times from a dis-
crete uniform distribution on {0, 1, . . . ,D}. We then add
the set of such generated patients to the problem, and solve
it using the model in (26), treating these patients as regis-
tered patients, and so, patients that are known to the system.

Solution approach. We use simulation in order to gener-
ate random inputs for our model, and apply metaheuristic
algorithms, similar to [6], including greedy search, adaptive
neigbourhood search and simulated annealing, to solve the
stochastic integer program. In our algorithm, we set the
initial solution to be the optimal solution of the algorithm
in [6], and compare our results with those of Lusby et al. [6].
The results of the application of our model will be reported
in [1].
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ABSTRACT
We consider stationary Markovian Arrival Processes (MAPs)

where both the squared coefficient of variation of inter-event
times and the asymptotic index of dispersion of counts are
greater than unity:

c2 =
Var(Tn)

E2 [Tn]
≥ 1, d2 := lim

t→∞
Var(N(t))

E[N(t)]
≥ 1.

We refer to such MAPs as bursty. The simplest bursty
MAP is a Hyperexponential Renewal Process (H-renewal
process). Applying Matrix analytic methods (MAM), we es-
tablish further classes of MAPs as Bursty MAPs: the Markov
Modulated Poisson Process (MMPP), the Markov Transition
Counting Process (MTCP) and the Markov Switched Poisson
Process (MSPP). Of these, MMPP has been used most often
in applications, but as we illustrate, MTCP and MSPP may
serve as alternative models of bursty traffic. Hence understat-
ing MTCPs, MSPPs, and MMPPs and their relationships is
important from a data modelling perspective. We establish
a duality in terms of first and second moments of counts
between MTCPs and a rich class of MMPPs which we refer
to as slow-MMPPs (modulation is slower than the events).
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ABSTRACT
Connections between branching and queueing have a long
history. A classical case is the M/G/1 queue where one
can view the children of a customer as the say N customers
arriving during his service time S. This leads to the fixed-
point equation

R
d
= S +

N∑

i=1

Ri (1)

for the busy period R, where R1, R2, . . . are i.i.d. and indepen-
dent of (S,N). Similar equations occur in other branching
process connections. A quick application is to note that the
queue is stable if and only if the corresponding branching
process is subcritical, which immediately gives the ρ < 1
criterion. Equations similar have been used in recent work
([5], [9]) related to the Google page rank algorithm to derive
tail asymptotics of R under regular variation (RV); for the
busy period, the RV asymptotics has earlier been studied
in [6] and [10]. We present a simple random walk argument
from [1] to give a short proof of these results as well as
certain extensions. Motivated from a multiclass queueing
model originating from [4], also a multivariate version of (1)
is studied under RV conditions.

Following [2], we also consider preemptive-repeat LIFO
queues where the time R in system is related to the fixed-
point equation

R(s)
d
= T ∧ s+ 1(T ≤ s)

(
R+R∗(s)

)
(2)

where T is the interarrival time and R(s) the time-in-system
of a customer with service time s. Using again a branching
connection gives a highly non-standard stability condition
for the M/G/1 case. However, for GI/G/1 equation (2) does
not have the correct interpretation, and we present a matrix-
analytic approach that lead to an algorithm for finding the
stability region for PH/G/1. The approach indeed uses a
connection to a (multitype) branching process, but meets
the difficulty that the offspring distribution is not explicit.
For somewhat related models, MAM have earlier been used
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ABSTRACT
The class of matrix–exponential distributions (ME) consti-
tutes an algebraic generalisation of the class of phase–type
distributions (PH). Similarly, the Rational arrival process
(RAP) generalises the Markovian arrival process (MAP) in
an algebraic sense, however, their probabilistic constructions
are considerably different. For the MAP, the driving process
is a Markov jump process with finite state space, while it is
a piecewise deterministic Markov process (PDMP) for the
RAP; see [1]. This approach was further studied in [2] to
define a class of quasi–birth and death processes (QBD) with
RAP components, an algebraic generalisation of the QBD. In
this talk we provide a generalisation of the fluid flow model in
a similar direction. More specifically, we consider the process

Vt =

∫ t

0

1{A(s) ∈ U} − 1{A(s) ∈ D}ds,

where U and D are some affine spaces in Rn and Rm (respec-
tively), and {A(t)}t≥0 is a PDMP with state space U∪D with
the following local characteristics. The process {A(t)}t≥0

evolves between jumps according to the system of differential
equations

dA(t)

dt
=

{
A(t)C+ −A(t)C+e ·A(t) if A(t) ∈ U
A(t)C− −A(t)C−e ·A(t) if A(t) ∈ D,

for some real square matrices C+ and C− of appropiate
dimensions. At each a ∈ U ∪ D, {A(t)}t≥0 has a jump
intensity λ(a) given by

λ(a) =

{
aD+−e if A(t) ∈ U
aD−+e if A(t) ∈ D.

Given that a jump happens at a ∈ U ∪ D, it will land

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MAM10 2019, Hobart, Australia c© 2019 Copyright held by the owner/author(s).

in
aD+−
aD+−e

∈ D if a ∈ U, or in
aD−+

aD−+e
∈ U if a ∈ D,

where D+− and D−+ are some real matrices of appropiate
dimensions. Due to the similiarities of this construction
to the one corresponding to the RAP in [1], we call the
process {Vt,A(t)}t≥0 a Fluid RAP (FRAP). We study
some distributional properties of the process {Vt}t≥0, such
as first passage probabilities and the stationary distribution
of its queue, and relate them to classic results of fluid flow
models. Finally, we discuss some similarities and differences
between the techniques that were needed to study the FRAP
and the ones commonly used for fluid flow models in the
literature.
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1. INTRODUCTION
Let (X , ϕ) = {X(t), ϕ(t)}t≥0 be a fluid queue, where ϕ

is the environment, modelled as a continuous-time Markov
chain with state space S and generator Q ∈ RN×N , N = |S|,
and X is the fluid level with dX(t)/dt = cϕt for t ≥ 0. One
key quantity in the steady-state analysis of a fluid queue is
its first return matrix Ψ with entries

Ψij = P[τ <∞, ϕ(τ) = j ∈ S− | ϕ(0) = i ∈ S+], (1)

where τ = min{t > 0: X(τ) = X(0)} is the first return time,
S+ = {i ∈ S : ci > 0} and S− = {i ∈ S : ci < 0}.

Similarly, for its transient analysis one is interested in
computing the time-dependent matrix Ψ(t) with elements

[Ψ(t)]ij = P[τ < t, ϕ(τ) = j ∈ S− | ϕ(0) = i ∈ S+].

To compute Ψ(t), one of the most popular methods in the
literature is not to evaluate it directly, but to determine its
Laplace-Stieltjes transform Ψ̂(s) in the complex plane [2,
7], then relying on algorithms for the inverse transform [1].
This approach works well in practice, but has two drawbacks.
First, it requires working with complex arithmetic to compute
results that are real positive quantities; second, its results
are not accurate to full machine precision, due to intrinsic
inaccuracies in these inverse transforms.

A different, direct algorithm not based on Laplace trans-
forms can be obtained with small modifications to [5], where
the authors focus on the busy period, Ψ(t)1. Following their
technique, one can also obtain an algorithm for Ψ(t). To the
best of our knowledge, this algorithm has no probabilistic
interpretation; its proof is based on algebraic verification that
the resulting function satisfies the Kolmogorov equations.

In this work, we propose another algorithm, which works
directly on probability matrices and has a direct physical
interpretation. Moreover, it is essentially subtraction-free,
i.e., it requires only sums and products of positive quantities.
Subtraction-free algorithms have already been proposed for
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various similar tasks, see, e.g., [9, 3, 8]. Their main advantage
is that, using the subtraction-free property often one can
prove excellent stability properties, obtaining a forward rela-
tive error of the order of the machine precision. (Note that
the algorithm obtained from [5] is almost subtraction-free,
but it still performs subtractions between the rates ci.)

We explain in Section 2 the recurrence on which our al-
gorithm is based, then explore in Section 3 how to truncate
the infinite sum appearing in it. In Section 4 we compute
the complexity of the algorithm and compare it to that of
competing methods. Finally, in Section 5 we present some
experiments for comparison.

2. THE NEW ALGORITHM
For simplicity, in this short exposition we restrict ourselves

to the case in which no rate ci equals 0, so S = S+ ∪ S−.
Suppose that the fluid is uniformized, i.e., ϕ is replaced by
its uniformized discrete-time Markov chain ϕd = {ϕd(t)}t≥0

with transition matrix P = I + λ−1Q, for a suitable λ > 0.
Note that the matrix Ψ(t) remains unchanged after the
uniformization.

Let {ti}i∈N be the sequence of Poisson epochs of ϕd, t0 = 0,
and set for brevity Xi = X(ti) and ϕdi = ϕd(ti). Define for
n ∈ N+ and t ∈ R>0 the quantity mn = arg min`=1,2,...,nX`,
and two matrices Ψ+

n (t) and Ψ−n (t) with entries

[Ψ+
n (t)]ij = P[Xmn > X(t) > X(0), ϕd(t) = j ∈ S− |

ϕd(0) = i ∈ S+, tn < t ≤ tn+1],

[Ψ−n (t)]ij = P[Xmn > X(0) > X(t), ϕd(t) = j ∈ S− |
ϕd(0) = i ∈ S+, tn < t ≤ tn+1],

respectively, from which it follows that Ψ+
0 (t) = Ψ−0 (t) = 0.

The first non-trivial result is the following.

Lemma 1. The matrices Ψ±n (t) are independent of t.

Proof. This follows from a rescaling argument, we shall
prove Ψ+

n (t) = Ψ+
n (1) for any t ∈ R>0. The same argument

then holds for Ψ−n (t).
Consider an arbitrary but fixed time t > 0. Conditioned

on there being n Poisson events in [0, t], the epochs tk,
k = 1, . . . , n, are uniformly distributed in [0, t], which im-
plies that the epochs tk/t, k = 1, . . . , n, are uniformly dis-
tributed in [0, 1]. Corresponding with each sequence of tran-
sition times {t̂0, . . . , t̂n} and an associated sequence of states
{ϕ̂d0, . . . , ϕ̂dn}, is a unique sample path x̂[0,t] of the fluid level
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X over [0, t]. Similarly, corresponding to {t̂0/t, . . . , t̂n/t} and
the same state sequence {ϕ̂d0, . . . , ϕ̂dn}, is a unique sample
path ŷ[0,1] of the rescaled process {1/tX(s/t)}s∈R≥0 on [0, 1].

As the distribution of the states is determined by P alone
(and not by t), the probability density associated with x̂[0,t]
is the same as the probability density associated with the
rescaled sample path ŷ[0,1]. Thus,

[Ψ+
n (t)]ij = P[Xmn > X(t) > X(0), ϕd(t) = j ∈ S− |

ϕd(0) = i ∈ S+, tn < t < tn+1]

= P[X(tmn/t) > X(1) > X(0), ϕd(1) = j ∈ S− |
ϕd(0) = i ∈ S+, tn/t < 1 < tn+1/t]

= P[X(t∗m∗n) > X(1) > X(0), ϕd(1) = j ∈ S− |
ϕd(0) = i ∈ S+, t∗n < 1 < t∗n+1],

where {t∗i }i∈N is a sequence of epochs of a Poisson process of
the same rate λ and m∗n = arg min`=1,2,...,nX(t∗` ). The last
equality follows from the fact that conditioned on there being
n events in [0, 1], t∗i , i = 1, . . . , n are uniformly distributed
on [0, 1].

Next, we show that Ψ(t) can be computed using Ψ−n (t) alone.
To that end, observe that conditioned on there being n
Poisson events in [0, t] and ϕ(0) ∈ S+, there are four sets of
exhaustive and mutually exclusive sample paths, those with

1. Xmn > X(t) > X(0), which contribute to Ψ+
n (t) —

these have not returned to level X(0) by time t and
therefore do not contribute to Ψ(t);

2. Xmn > X(0) > X(t), which contribute to Ψ−n (t) —
these have returned to level X(0) at some time τ such
that tn < τ < t, and contribute to Ψ(t);

3. X(t) > Xmn > X(0) — these have not returned to
X(0) by time t and thus do not contribute to Ψ(t);

4. X(0) > Xmn , these have returned to X(0) at some
time τ such that τ < tmn — they contribute to Ψ(t).

(For the first two sets, it is not possible that ϕd(t) ∈ S+.)
Note also that in the second set there are n Poisson events in
(0, τ), and in the fourth set there are k, for k = 1, . . . , n− 1,
events in (0, τ). By Lemma 1, we abbreviate Ψ±n (t) to Ψ±n ,
and have the following.

Lemma 2. We have

Ψ(t) =
∞∑

n=0

e−λt
(λt)n

n!

n∑

k=1

Ψ−k . (2)

Proof. Conditioning on the number of events n in [0, t]
and on the index k of the last event before τ , we have

[Ψ(t)]ij =
∞∑

n=0

e−λt
(λt)n

n!

n∑

k=1

P[tk < τ < tk+1, ϕ
d(τ) = j ∈ S− |

ϕd(0) = i ∈ S+, tn < t < tn+1]

=
∞∑

n=0

e−λt
(λt)n

n!

(
Ψ−n (t) +

n−1∑

k=1

Ψ−k (tk+1)

)

=
∞∑

n=0

e−λt
(λt)n

n!

n∑

k=1

Ψ−k (t),

where the last equality follows from Lemma 1.

0

1

2

3

4

X0

X1

X2

X3

t0 t+ t1 t2 t3 t− t4

Figure 1: A sample path in Ψ+
3 (t4) with m3 = 2.

Lemma 3. Setting Ψn = Ψ+
n + Ψ−n , we have

[Ψ+
n ]ij =

ci
ci + |cj |

[Ψn]ij , [Ψ−n ]ij =
|cj |

ci + |cj |
[Ψn]ij . (3)

Proof. The sample paths counted in [Ψn(tn+1)]ij =
[Ψn]ij are those in which Xmn > max(X0,Xn+1), and, in
addition, the fluid level increases with rate ci > 0 in (t0, t1)
and decreases with rate cj < 0 in (tn, tn+1). We shall show,
that under these conditions the probability that X0 > Xn+1

is |cj |/(ci + |cj |); this implies the thesis.
A sample path counted in [Ψn(tn+1)]ij is determined

uniquely by (i) the sequence of states {ϕd0, . . . , ϕdn}, and
(ii) the i.i.d. increments t1 − t0, t2 − t1, . . . , tn+1 − tn, inde-
pendent from the states. If we fix the values of a sequence of
states, and of the increments t2− t1, . . . , tn− tn−1 (excluding
the first and last), this determines uniquely the shape of
the sample path, apart from the lengths of the first and last
legs. In particular, the times t+ ∈ (0, t1] and t− ∈ [tn, tn+1)
at which X(t+) = X(t−) = Xmn are uniquely determined
by this choice, and they are independent from t1 − t0 and
tn+1 − tn. (See Figure 1 for an example that shows how the
various quantities are defined.)

Recall that we have conditioned on Xmn > X0, i.e., the
length of t1−t0 ∼ Exp(λ) exceeds t1−t+; by the memoryless
property, t+−t0 is also Exp(λ). The corresponding difference
in level is Xmn−X0 = X(t+)−X0 = ci(t+−t0) ∼ Exp(λ/ci).
Analogously, Xmn −Xn+1 = X(t−) −Xn+1 = |cj |(tn+1 −
t−) ∼ Exp(λ/|cj |), which is independent from Xmn − X0.
The probability that X0 > Xn+1 equals the probability that
Xmn − X0 < Xmn − Xn+1, which is thus (λ/ci)/(λ/ci +
λ/|cj |) = |cj |/(ci + |cj |).

Our main result is the following recursion, which, together
with (3), allows one to determine Ψ±n .

Theorem 4. The following recurrence holds.

Ψ1 = P+−, and, for all n > 1,

Ψn = P++Ψ−n−1 +

n−1∑

m=2

Ψ+
m−1P−+Ψ−n−m + Ψ+

n−1P−−.

Proof. We consider the signs of the rate of the fluid
before and after the event at time tmn .

At time tmn , if the rate transitions from S+ to S+, there
cannot be other transitions before tmn , because otherwise
Xmn−1 < Xmn , which would contradict the choice of mn;
hence mn = 1. Furthermore, the interval (t1, t) contains n−1
Poisson epochs, and X(t) < X1 < min(X2, . . . ,Xmn); but,
up to a relabelling of the epochs, this is exactly the definition
of Ψ−n−1. So the probability of this case is P++Ψ−n−1.
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Symmetrically, if the rate goes from S− to S−, then it must
be the last, mn = n, otherwise Xmn+1 < Xmn , and it comes
after a path in Ψ+

n−1; this produces the term Ψ+
n−1P−−.

In the case the rate goes from from S+ to S−, then there
cannot be events before nor after tmn . Hence it must be the
case that mn = n = 1. So in Ψ1 only we have a term P+−,
corresponding to the probability of this single transition.

Finally, if the rate changes from S− to S+, then there
must be at least one transition before and after it, so 2 ≤
mn ≤ n− 1. In (0, tmn) we have mn − 1 events and observe
a path in Ψ+

mn−1; in (tmn , t) we have n − mn events and

observe a path in Ψ−n−mn
. This produces the summands

Ψ+
mn−1P−+Ψ−n−mn

, for each possible value of mn.

3. FINITE APPROXIMATION
In a numerical algorithm, we need to truncate or approx-

imate the sum (2), which has an infinite number of terms.
We propose two different procedures to do this.
Algorithm A1. Note thatBn =

∑n
k=1 Ψ−k is a non-decreasing

sequence, and limn→∞Bn = Ψ(∞) = Ψ. Generalizing the
approach in [5], whenever n is sufficiently large we can replace
Bn with Ψ, which may be computed directly with various
algorithms (see, e.g., [6]). More specifically, if n′ is the small-

est integer such that (Ψ− Bn′)
∑
n>n′ e

−λt (λt)n
n!

< ε, then
we can approximate Ψ(t) with

Ψ′(t) =
n′∑

n=0

e−λt
(λt)n

n!
Bn + Ψ

∞∑

n=n′+1

e−λt
(λt)n

n!
, (4)

with error bounded by

Ψ′(t)−Ψ(t) =
∞∑

n=n′+1

(Ψ−Bn)e−λt
(λt)n

n!

≤
∞∑

n=n′+1

(Ψ−Bn′)e−λt
(λt)n

n!
< ε.

Algorithm A2. Another truncation strategy consists in
swapping the order of summation in (2), obtaining

Ψ(t) =
∞∑

k=1

Ψ−k

k−1∑

n=0

e−λt
(λt)n

n!
.

This sum can be truncated when Ψk is sufficiently small.
If we stop the computation of the coefficients at the same
index n′ as above, we get

Ψ′′(t) =
n′∑

k=1

Ψ−k

k−1∑

n=0

e−λt
(λt)n

n!
≤ Ψ(t). (5)

Note that Ψ′′(t) ≤ Ψ(t) ≤ Ψ′(t), so this method produces an
explicit inclusion interval for each entry of Ψ(t).

The quantities
∑k−1
n=0 e

−λt (λt)n
n!

and
∑∞
n=n′+1 e

−λt (λt)n
n!

are related to the upper and lower incomplete Gamma func-
tions by classical identities [4, Eqn. (8.69)], and they can be
computed exactly with the routines included in the mathe-
matical libraries of many languages.

4. COMPLEXITY ANALYSIS
We compare the complexities of various algorithms to

compute Ψ(t). The primitives required by all of them are
linear algebra operations between matrices whose dimensions

are either |S+| or |S−|. The most general way to bound
the cost of each of these operations is O(N3) floating point
operations (flops). We shall use this expression in all the
costs in the following.
Algorithms A1, A2: computing the recursion in Thm. 4,
and then using (4) or (5), respectively, which give approxima-
tions from above and from below. They require O(N3(n′)2)
flops: we compute n′ steps of the recurrence in Thm. 4, and
each step requires O(n′) linear algebra operations. The value
of n′ required to obtain a prescribed accuracy varies with
t. We show in Section 5 (and, especially, in Fig. 2) how the
two values are related in an example. We often consider A1
and A2 together because, once one computes the recursion
in Thm. 4, both estimates can be obtained with a minimal
time overhead.
Algorithm BST: the algorithm obtained by modifying the
approach suggested in [5] (named after the initials of its
authors). It is based on filling certain triangular arrays, each
element of which is a matrix of size |S|× |S−| in our modified
version. There are r such arrays, where 1 ≤ r ≤ |S−| is the
number of distinct negative rates, and each of them has size
O(n′)2. Filling in each element requires O(1) linear algebra
operations, hence the total complexity of this algorithm is
O(N3r(n′)2) flops, which is a factor of r more than A1 or
A2.
Algorithm LST: the algorithm based on inverse Laplace-
Stieltjes transforms (LSTs). Our tests used the Euler al-
gorithm in [1] for inversion, which requires evaluating the

transform Ψ̂(s) in several nodes. The number of nodes rec-
ommended in [1] is 2d+1, where d is the number of (decimal)
digits of precision required. With ε equal to the machine
precision u, d = 16. Each evaluation was carried out with a
number of steps h of Newton’s method [7, Alg. 4]; each step
requires O(1) linear algebra operations. This gives a total
cost of O(N3dh) flops. Note, h is related to the drift δ of the

fluid by ε = O(δ2
h

), due to quadratic convergence results for
Newton’s methods.
Several points. There is another important factor that
works against LST. Often, one needs to evaluate Ψ(t) for m
different values of t. In A1/A2, the most expensive part is
computing the recursion; but it is sufficient to do it once,
with a truncation criterion n′ determined by the largest of the
values t. Thus, the total cost to compute Ψ(t1), . . . ,Ψ(tm) is
O(N3(n′)2 +N2n′m) flops for A1 and A2, where the second
terms comes from applying (4) and/or (5) m times. For
BST, a similar analysis holds; the complexity is O(N3r(n′)2+
N2n′m) flops.

In contrast, we do not know of an established numerical
scheme in the literature that allows one to compute inverse
Laplace transforms at multiple points, so our best estimate
for LST is m times the cost for one point, i.e., O(N3dhm)
flops. This fact makes A1 and A2 a very convenient choice
when multiple evaluations are required.

A further remark is that a more careful analysis of the
N3 term for the linear algebra cost would show that A1, A2,
BST scale better than LST when the matrix Q is sparse,
or when one among |S+| and |S−| is much smaller than the
other.

5. NUMERICAL EXPERIMENTS
We ran some tests to compare the various numerical al-

gorithms. Where not specified otherwise, the truncation
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Algorithm t = 0.1 t = 1.1 t = 9.9

BST 6.6× 10−16 5.9× 10−16 1.2× 10−15

LST 6.1× 10−11 4.2× 10−11 4.1× 10−11

A1 6.5× 10−16 1.9× 10−16 3.8× 10−16

A2 2.8× 10−16 2.4× 10−16 8.4× 10−16

Table 1: Relative errors obtained with the various
algorithms in a simple example.

Algorithm t = 0.1 t = 1.1 t = 9.9 t = 15 t = 0:15
BST 0.17 0.39 3.54 6.11 6.11
LST 0.06 0.09 0.07 0.12 5.49
A1 & A2 0.08 0.09 0.26 0.64 0.64
n′ 17 47 182 243 243

Table 2: CPU times (seconds) obtained with the
various algorithms.

threshold ε in A1, A2, and BST is equal to the machine
precision u ≈ 2 · 10−16.
Relative errors. We generated a toy model with |S+| =
2, |S−| = 3 with the MATLAB instructions

rng(’default’);

T = rand(N); T = T - diag(T*ones(N,1));

C = blkdiag(diag(0.2 * rand(Nplus,1)), ...

-diag(rand(Nminus,1)));

which produced a model with a negative drift of −0.096.
We evaluated for each computed value X̃ the relative for-

ward error ‖X̃−X‖∞/‖X‖∞. Here X is an ‘exact’ reference
value obtained by running both LST and A1 with higher
working precision, as well as a higher number of nodes for
LST, and checking that their results coincide up to the ma-
chine precision u.

Table 1 confirms that LST (with normal working precision
and the default number of nodes d = 16) can obtain only an
accuracy of the order of 10−11. These results are consistent
with the theory in [1, Sect. 7], which predicts an accuracy (for
well-behaved functions) of 0.6d decimal digits when working
with 2d+ 1 nodes and d decimal digits of precision. Further
tests show that this is the typical behaviour, at least for small
values of |S|, although computing these reference values is
extremely slow.
Running times. We generated a more challenging test,
with the same code but |S+| = 10, |S−| = 11. Table 2 shows
the CPU times obtained for several values of t and, in the last
column, for when 100 values equispaced in [0, 15] are com-
puted simultaneously. The results show that LST requires a
constant time to compute each time sample, irrespective of
t, while the other algorithms get slower as t increases. On
the other hand, these algorithms can compute the 100 time
samples of Ψ(t) basically with no overhead w.r.t. the cost
of computing the one with the largest t. This confirms the
theory in Section 4.

To see how the time to compute the recursion in Thm. 4
varies with t and with the accuracy required, we plot in
Fig. 2 these times, for various values of ε. The reason for the
plateau observed for ε = 10−5 is, at t ≈ 11 the first return
has already been observed w.p. 1− 10−5, so Ψ(t) coincides
with Ψ = Ψ(∞) at that level of accuracy. Fig. 3 shows
the complementary CDF of the first return time observed
when starting from the state with the largest positive rate.
Observing the two plots, one sees that the values of t that

require a high CPU time correspond to the ‘tail’ of the
distribution of Ψ(t), and are needed only for a fine analysis
at high levels of accuracy.

Note that these algorithms do not require a negative drift
to work; the main effect of the drift is that Ψ(t) and Ψ−n
decay more slowly with t and n respectively, thus increasing
the computational time.
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Figure 2: CPU times required by the new algorithm
to compute the quantities Ψn to various required
accuracies for Ψ(t).
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Figure 3: Complementary CDF (survival function)
of the first return time starting from the state with
the largest positive rate

6. CONCLUSIONS
We introduced a subtraction-free algorithm to compute

the time-dependent first return probabilities of a fluid queue,
Ψ(t). Experimentally, this algorithm is faster than that
obtained by generalizing the results in [5], and also faster
and more accurate than the one based on the inverse LST,
when one computes several values of Ψ(t) simultaneously. Its
main drawback is that the CPU time required increases when
one is interested in computing very accurately the values of
Ψ(t) within the very tail of the distribution.
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ABSTRACT
We consider some Markov processes involving infinite state
spaces, e.g., Quasi-Birth-and-Death (QBD) on N or N2. Of-
ten their transition probability matrices have Toeplitz or
block Toeplitz structure, and the boundary conditions are
encoded by low-rank corrections with finite support. Finding
their steady state probability distribution can be recasted to
finding minimal solutions to the quadratic matrix equation

AX2 + BX + C = X,

where the matrices A,B,C are obtained from the blocks of
the multilevel Toeplitz matrix. The state-of-the-art algo-
rithms to solve these equations require to perform matrix
operations involving these matrices. When the Markov pro-
cess is defined on N2, the matrices A,B,C are semi-infinite.
Recently, a computational framework for handling these prob-
lems without truncating the dimension of the state space
has been proposed in [2]. This is achieved by approximating
this kind of matrices as the sum of a banded semi-infinite
Toeplitz plus a low-rank correction with finite support.

We propose an extension of this framework which allows to
deal with more general situations such as processes involving
restart events, where the process can move to level (or phase)
0 at any moment with a certain positive probability. This is
motivated by the need for modeling processes that can incur
in unexpected failures like computer system reboots. Alge-
braically, this gives rise to corrections with infinite support
that can not be treated using the tools currently available
in the literature. We present a theoretical analysis of an
enriched space that, combined with appropriate algorithms,
enables the numerical treatment of these problems. We
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demonstrate that the new approach considerably improves
the method proposed in [2] as well, since there are cases
where the coefficients A,B,C live in the space described
there, but the solution X cannot be approximated without
considering low-rank corrections with infinite support [1].
We show that this class of problem, previously numerical
intractable, can now be handled in this framework.

We test our implementation on some case studies that
confirm the applicability of the method.
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ABSTRACT
We consider a class of branching processes with countably
many types which we refer to as Lower Hessenberg branching
processes. These are multitype Galton-Watson processes with
typeset X = {0, 1, 2, . . . }, in which individuals of type i may
give birth to offspring of type j ≤ i+ 1 only. For this class of
processes, we study the set S of fixed points of the progeny
generating function. In particular, we highlight the existence
of a continuum of fixed points whose minimum is the global
extinction probability vector q and whose maximum is the
partial extinction probability vector q̃. In the case where
q̃ = 1, we derive a global extinction criterion which holds
under second moment conditions, and when q̃ < 1 we develop
necessary and sufficient conditions for q = q̃.
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ABSTRACT
We consider a class of multitype Galton-Watson branching
processes with countably infinite type set X whose mean
progeny matrices have a block lower Hessenberg form. For
these processes, we derive partial and global extinction cri-
teria. Our approach involves embedding a finite-type explo-
sive Galton-Watson process in a varying environment in the
original infinite-type process, and then establishing asymp-
totic relationships between the two processes. We study the
probability of extinction in sets of types A ⊆ X , q(A). In
particular, we develop conditions for q(A) to be different
from the global and partial extinction probability vectors.
We present an iterative method to compute the vectors q(A),
and investigate their location in the set of fixed points of the
progeny generating vector.
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ABSTRACT
Bladt et.al. [2] introduced a method for obtaining FIM(Fisher
Information Marix) for PH(Phase Type) class using the
Expectation- Maximisation (EM) algorithm. In this article,
we attempt to find out the Fisher Information for some
functions of PH variates. We discuss the following cases : (i)
when the function g(X), of the PH variate X, is differentiable
for all X = x and either the derivative at x is strictly positive
or negative, (ii) when the derivative of g is continuous and
non zero for all but finite number of values of x and for
every real number y, there exists n = n(y) inverses and, (iii)
when Y = g(X) and g is invertible only in a finite interval
and at each point y the function is having countable number
of inverses. The FIM for the finite support PH variates,
which comes under case (iii), introduced by Ramaswami and
Viswanath [7], is computed using the EM algorithm.

Keywords: Finite support phase type distributions;
Fisher information; EM algorithm; Functions of PH vari-
ates .

1. INTRODUCTION
Phase type (PH) distributions introduced by Neuts [5]

form a dense family of distributions (in the metric of weak
convergence of distributions) on [0,∞) and have found lot
of applications in the area of applied probability. A PH
distribution can be regarded as the distribution of the time
until absorption in a finite state Markov chain with one
absorbing state into which absorption is certain. In the recent
past, many research papers have been appeared to study, the
models which are governed by PH distributed time. Apart
from their denseness property that makes them versatile as
models, there are many other motivations for using PH
distributions in statistical models. The most important
ones come from their connection with Markov chains and
matrix theory. While the former is offering much simplicity
in various conditioning arguments occurred in the model
analysis, the latter is helping us to develop more accurate
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and faster algorithms that make many models involving PH
distributions computationally tractable.

Phase type distributions, however, can be used for mod-
elling only non-negative random variables, and they have
an infinite support. But, in practice, there are many ran-
dom variables for which the distributions have finite support.
Even though, theoretically, the denseness property of the
PH class allow us to fit such distributions by a suitable PH
distribution, it may require a representation of large order
so that practically the fit may not render a realistic approx-
imation. In order to cater to the needs of this situation,
Ramaswami and Viswanath [7] introduced a new class of
distributions derived from PH distributions called, phase
type distributions with finite support (FSPH). Since these
distributions are also based on phase type distributions, they
bear a strong connection to Markov chains. Their densities
are of the matrix exponential type giving thereby the ability
to bring to bear all the tools of matrix computations.

Fisher information or more commonly called Fisher infor-
mation matrix (FIM) plays a key role in uncertainty calcula-
tion and in other aspects of estimation for a wide range of
statistical applications. It essentially describes the amount
of information that the data provide about unknown parame-
ters. The expected FIM, that is the expectation of the square
of the gradient of the incomplete data log-likelihood functions
at the maximum likelihood estimates (MLEs), can be used
to calculate the Cramer-Rao lower bound and asymptotic
distribution of the MLE. The role of FIM in the computation
of the asymptotic distribution of the MLE enable us to use it
effectively in testing of hypothesis and in the construction of
confidence regions for the unknown parameters. In addition
to compute the Fisher information contained in the sample
observations assumed by a single variate, the same can be
computed for the sample taken from a process.

The expectation-maximization (EM) algorithm introduced
by Dempster, Laird and Rubin [3] is a well-known method
to compute the MLE iteratively from the observed data.
It is applied to problems in which the observed data is
incomplete or the log-likelihood function of the observed
data is too difficult to be solved to get the MLE directly
from it. It provides a sequence of results obtained from
the simple complete data log-likelihood function, and hence
avoids calculations from the complicated incomplete data log-
likelihood function. One of the major criticisms of the EM
approach was that it cannot be directly used to obtain the
FIM for the observed data since the EM algorithm does not
automatically produce an estimate of the covariance matrix

26



of the MLE. However, Oakes [6] provided a simple explicit
formula for the matrix of second derivatives of the criterion
function (the conditional expectation of the complete data
log-likelihood given the observed data) invoked by the EM
algorithm.

Estimation and statistical inference for PH distributions
are of considerable importance when taking into consider its
role in different areas of application. Asmussen, Nerman, and
Olsson [1] was the first to develop a general approach to ML
estimation of continuous PH distributions. Bladt, Esparza,
and Nielsen [2] suggested an alternative method of calculating
matrix exponentials and related integrals, appearing in the E-
step in the EM algorithm, in order to speed up the execution
of the algorithm considerably well for small and medium
sized data sets. Apart from this, the main contributions
of Bladt, Esparza, and Nielsen [2] are that of proposing
methods for calculating the FIM for discrete and continuous
PH distributions using formulae that are related to both EM
algorithm and the Newton-Raphson approach.

In this paper, we discuss the computation of FIM of some
functions of PH variates by the EM approach. We follow the
method adopted by Bladt, Esparza, and Nielsen [2] - where
they considered FIM for PH class - for computing FIM of
some functions of PH variates .

2. FIM
We consider the following three types of functions of a PH

variate X.

2.1 Case 1
Let the function Y = g(X) be differentiable for all X = x

and the derivative g′ at x is either strictly positive or negative.
In this case the function g will be invertible. So, if we are
given n observations y1, y2, . . . , yn from Y , then by taking the
inverses of these observations i.e, g−1(y1), g−1(y2), . . . , g−1(yn),
we get n observations from g−1(Y ) = X, a PH variate. Hence
we can compute the FIM of Y using that of X, which is
already known. For example, the FIM of logPH distribu-
tion, introduced by Ahn et. al. [8], can be computed in this
manner.

2.2 Case 2
Let the derivative of g be continuous and non zero for all

but finite number of values of x and for every real number
there exist a finite number of inverse values.i.e, for every
real number y, there exist a positive integer n = n(y) and
real numbers x1, x2, . . . , xn such that, g[xk] = y, g′[xk] 6=
0, k = 1, 2, . . . , n(y).
This case can be illustrated with the example, Y = |X − k|
where k is any positive real number.

2.3 Case 3
Here we consider the case when Y = g(X), where g is, in

general, not an invertible function. Assume that in a finite
interval g is invertible and at each point y, the function is
having countable number of inverses, which are given by
h(y) + l(n), n = 0, 1, 2, . . . where h is the inverse of g in the
finite interval and l is a linear function of n. So once we are
given a sample from Y , using the relation X = h(Y ) + l(n)
we can obtain observations from a PH variate. Also, if F is

the distribution function of X, then that of Y is,

F̃ (y) =
∞∑

n=0

[F (h(y) + l(n))− F (l(n))].

Now using this distribution function and the MLE of the
PH−variate X, we obtain the MLE as well as the FIM of
Y.

As an example, we have considered two functions of PH
variates namely FSPH variate and sine function. In Oakes[6],
the FIM is given as,

∂2L(θ; y)

∂θ2
=

{
∂2Q(θ̂/θ)

∂θ̂2
+
∂2Q(θ̂/θ)

∂θ∂θ̂

}

θ̂=θ

where Q(θ̂/θ) = Eθ
(
lf (θ̂;x)/y

)
.

For finding the FIM of an FSPH variate of order p, let
θ = (α1, α2, · · ·
αp−1, t1, T12, · · ·T1p, T21, t2, T23 · · ·T2p, · · ·Tp1, Tp2 · · ·Tp,p−1, tp)
be the parameter vector of order p−1+p2 for the FSPH1(α, T )
distribution. Note that here we take αp = 1−∑p−1

j=1 αj and

Tii = −∑p
j=1
j 6=i

Tij − ti. Since the FSPH distribution is be-

ing derived from the PH distribution, from the likelihood
function of the latter, we get,

Q(θ̂/θ) =

p∑

i=1

log(α̂i)
n∑

k=1

B̂i
k

+

p∑

i=1

p∑

j=1
j 6=i

n∑

k=1

log(T̂ij)N̂ij
k

−
p∑

i=1

p∑

j=1j 6=i

n∑

k=1

T̂ijẐi
k

+

p∑

i=1

n∑

k=1

log(t̂i)N̂i
k

−
p∑

i=1

n∑

k=1

t̂iẑi
k

where B̂i
k
, N̂i

k
, N̂ij

k
and Ẑi

k
are the estimates of the suffi-

cient statistics Bi, Ni, Nij and Zi respectively related to the
kth sample observation, and Bi, Ni, Nij and Zi are given by,

• Bi, the number of trajectories that start in phase i,
i = 1, 2, · · · , p.

• Ni, the number of trajectories for which absorption
occurs from phase i, i = 1, 2, · · · , p.

• Nij , the number of transitions that occur from phase i
to phase j, 1 ≤ i, j ≤ p, i 6= j.

• Zi, the total sojourn time in phase i for all the n
trajectories combined, for i = 1, 2, · · · , p.

Then by substituting α =
∑p−1
j=1 αje

T
j +

(
1−∑p−1

j=1 αj
)
eTp

and using the FIM of PH distribution, we get the elements of
the FIM for FSPH1(α, T ) distribution of order p as follows:
For i, j = 1, 2, · · · p− 1, the (i, j)th element is given by

∂Ui
∂αj

− ∂Up
∂αj

;

for m = 1, 2, · · · p−1 and i, j = 1, 2 · · · p, the (ip−1 + j,m)th

element is given by

∂Um
∂Tij

− ∂Up
∂Tij

if i 6= j,
∂Um
∂ti

− ∂Up
∂ti

if i = j;
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the (m, ip− 1 + j)th element is given by

∂Vij
∂αm

− ∂Vii
∂αm

if i 6= j,
∂Wi

∂αm
− ∂Vii
∂αm

if i = j;

and for i, j,m, n = 1, 2 · · · p, the (ip− 1 + j,mp− 1 + n)th

element is given by

∂Vij
∂Tmn

− ∂Vii
∂Tmn

if i 6= j,m 6= n,
∂Vij
∂tm

− ∂Vii
∂tm

if i 6= j,m = n,

∂Wi

∂Tmn
− ∂Vii
∂Tmn

if i = j,m 6= n,
∂Wi

∂tm
− ∂Vii
∂tm

if i = j,m = n,

where,

Ui =
∑n
k=1

e
′
ie

Tyk (I−eT )−1t

f(yk)

Wi =
∑n
k=1

αeTyk (I−eT )−1ei
f(yk)

Si = −∑p
j=1
j 6=i

T̂ij − t̂i

and Vij =
∑n
k=1

e
′
jM
∗(yk,α,T )ei

f(yk)
,

with,

M∗(y, α, T ) = (I − eT )−1 M(y, α, T ) + (I − eT )−1

M(1, α, T ) (I − eT )−1eTy

and M(y, α, T ) =

∫ y

0

eT (y−u) tαeTu du.

As an another example we have considered the case of
Y = sinX, where X is a PH(α, T ) variate, in which case we
get the distribution function of Y as,

F (y) =
{
αT−1(I − e2πT )−1

[
eπT (eπT − e− sin−1 yT )+

esin
−1 yT − I

]
t
}
δ0≤y≤1 +

{
αT−1(I − e2πT )−1

eπT
[
e(π−sin−1 y)T − esin−1(−y)T

]
t
}
δ−1≤y≤0

where δ is the indicator function.
Proceeding as in the above case, we can compute the FIM
of Y.

The Fisher information matrix is widely used in optimal
experimental design, machine learning, physics, computa-
tional neuroscience etc. It is used in the formulation of test
statistics as well as finding the confidence region of parame-
ters under consideration. The inverse of the FIM gives the
asymptotic variances and covariances of the maximum likeli-
hood estimates of the parameters. The FIM, in general, is
not invertible and the invertibility has to be verified for each
model. Since the same phase type distribution has different
representations, we can expect the non-singularity for the
representation with minimum number of parameters. The
three cases, that are discussed in this paper covers almost
all classes of distributions which can be obtained from the
class of PH- distributions. Many of them find applications
in various fields including insurance and finance. For ex-
ample, LogPH class distributions exhibits a heavy tail and
has some nice tail properties that are well aligned with the
extreme value theory. Since fitting heavy tailed loss data
with parametric distributions being an important analytical
task in the insurance field, LogPH, which can fit the whole
data in a straightforward manner plays an important role
in insurance field. In addition, some classes of distributions,
which come under the above discussed cases, have denseness

properties (denseness of FSPH and LogPH are proven). So
the statistical inference of those classes can offer the proper-
ties of rich classes of distributions without separate analyses.
Hence the parameter estimation and the computation of FIM
play an important role in the statistical inference of many
distributions which are having practical applications.
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ABSTRACT
Consider a Markov model for the evolution of the family of
genes proposed in [1, Section 10], in which the state (n,m)
records the number copies n = 0, 1, 2, . . ., and the number of
redundant copies m = 0, 1, , . . . , n of a gene in the family. By
redundant copies we mean copies whose loss will not result in
the loss of the functions of the gene when these are preseved
by some other genes in the family.

The transition rates between the state of the Markov model
in [1, Section 10] depend on the following key processes: du-
plication of a gene; loss of one copy of a gene; one copy
acquiring a new function (neofunctionalisation); and a loss
of some regulatory region in one of the genes which leads to
a number of genes required to fulfill some function (subfunc-
tionalisation).

The aim of this work is to develop suitable expressions for
the transition rates function. As an initial inspiration of our
analysis, we consider a Markov model with a more detailed
state, represented as a matrix, where rows corresponds to the
various genes in the family, and columns to their functions.
That is, state is a binary matrix A = [Aij ]i=1,...,M ;j=1,...,Z ,
where M is the number of genes in the family, and Z the
number of functions, such that Aij = 1 when function j is
performed by some regulatory region of gene i, and 0 other-
wise.

∗We would like to thank the Australian Research Coun-
cil for funding this research through Discovery Project
DP180100352.
†Australian Research Council Centre of Excellence for Math-
ematical and Statistical Frontiers.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MAM10 2019, Hobart, Australia c© 2019 Copyright held by the owner/author(s).

Although we suspect that the model with the detailed
representation will not be tractable for developing analytic
solutions (except in very small cases) we propose to use it
as a simulation model to give insight into suitable transition
rates in the reduced state space representation.
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ABSTRACT
We study the boundary of the set of matrix-exponential dis-
tributions with m real poles. We show that the boundary
consists of three parts: two parts in some lower dimensional
spaces and a curved part. The curved part is characterized
as the union of convex hulls of solutions from m− 2 curves
each generated by three Coxian distributions. The charac-
terization of the boundary leads to algorithms for construct-
ing the set of matrix-exponential distributions.
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ABSTRACT
The purpose of this research is to model the decision making
process in a hospital in which patients are allocated to beds
in different wards, according to their needs, priorities, as
well as availability of the resources. The problem analysed
here is a generalisation of the advanced patient admission
scheduling (APAS) problem studied in [1, 2, 6], in which pa-
tients are admitted and alocated to the hospital capacitated
resources [2] over some planning horizon.

We construct a Markov Decision Process (MDP), in which,
at the start of the planning period, arrived patients are as-
signed to suitable wards in a manner that optimises the
performance measures of interest. We build on the MDP
model in [7], in which decisions are made at the time of arrival
or departure of a patient. Here, we assume that the deci-
sions are made at the start of the time period of some fixed
length, and so the allocation involves several arrived patients.

Assume that the information about the system at the start
of the planning period is given as state s = ([nk,i]K×I , [qi]1×I),
where nk,i is the number of type-i patients in ward k, with
i ∈ I, k ∈ K, and qi is the number of newly arrived type-i
patients (or the expected number of type-i patients to arrive
during the current period), who are yet to be assigned to the
wards.

Here, I = {1, 2, . . . , I} is the set of all patient types, where
a type may correspond to the medical needs of the patient,
their priority, their age, gender, and other relevant features.
We assume that the set I is ordered according to the priori-
ties, so that 1 and I represents the least and the most severe
patients, respectively. Furthermore, K is the set of the wards
in the hospital system. There are Bk beds in ward k ∈ K.
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Suppose that type-i patients arrive according to a Poisson
process with the rate λi. Let Qi(t) be the random variable
recording the number of arrivals of type-i patients during the
time period of length t. The distribution of Qi(t) is Poisson,
Qi(t) ∼ Poi(λit).

The newly assigned type-i patient will stay in ward k for
the duration of time LoSk,i, referred to as the length of
stay, according to some discrete Phase-type distribution [3,

4], PH(γ(k,i),P(k,i)). Let Zk,i(t) be the random variable
recording the number of departures of type-i patients from
ward k during the time period of length t. The distribution
of Zk,i(t) is binomial, Zk,i(t) ∼ Bin(nk,i, pk,i(t)), where

pk,i(t) = Pr(LOSk,i ≤ t) = 1− γ(k,i)
(
P(k,i)

)t
1,

for all t = 0, 1, 2, . . ., where 1 is a column vector of ones of
appropriate size.

After observing state s = ([nk,i]K×I , [qi]1×I), a decision
a = ([xk,i]K×I , [yk,`,i]K×K×I) is made about where to assign
the patients, which involves assigning xk,i type-i patients to
ward k, and transfering yk,`,i type-i patients from ward k to `.
The resulting post-decision state is some s̄ = ([n̄k,i]K×I),
with

n̄k,i = nk,i + xk,i +
∑

k∈K
yk,`,i −

∑

`∈K
yk,`,i.

Following the decision a, the process transitions from state s
to some state s′ =

(
[n′k,i]K×I , [q

′
i]1×I

)
with n′k,i = n̄k,i−zk,i,

according to the probability given by

Pr{s′| (s, a)} =
∏

i

Pr(Qi(t) = q′i)
∏

k,i

Pr(Zk,i(t) = zk,i).

The above model describes the evolution of the system
that depends on decision making process as well as random
arrivals and departures in a given time period of length t.
We formulate suitable value function and constraints, and
consider the corresponding infinite-horizon MDP, in which
the aim is to optimise the long-run discounted total mean
cost, given discount factor α.

Since solving large-scale infinite-horizon MDPs is a chal-
lenging task, we consider suitable approximation techniques,
such as Approximate Dynamic Programming (ADP)[5], in
order to find an approximation that represent the value
function of the MDP.
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ABSTRACT
This paper presents matrix-exponential (ME) distributions,
whose squared coefficient of variation (SCV) is very low.
Currently there is no symbolic construction available to
obtain the most concentrated ME distributions, and the
numerical optimization-based approaches to construct them
have many pitfalls too. We present a numerical optimization-
based procedure which avoids numerical issues.

Keywords: Non-negative matrix-exponential functions,
Matrix-exponential distributions, Numerical optimization,
Coefficient of variation

1. INTRODUCTION
Highly concentrated matrix exponential functions play an

important role in many research fields, for example, they
turned out to be essential for numerical inverse Laplace
transform methods as well [6].

The least varying phase type (PH) distribution of order N
is known to be the Erlang distribution [1] with SCV=1/N
(defined as µ0µ2

µ2
1
− 1, where µi, i = 0, 1, 2, are the moments

of the distribution). The least varying ME distribution for
order N much less known. It is known that for order 2
the class of ME distributions is identical to the class of PH
distributions, and it is also known that there exists order 3
ME distribution with SCV=0.200902 < 1/3, but it is still
only a conjecture that this is the least varying order 3 ME
distribution. Concentrated ME distributions are provided
in [2] up to order 17 and in [5] up to order 47. These
preliminary results indicate that the minimal SCV of order
N ME distributions tends to be less than 2/N2. In this work,
we propose numerical procedures by which much higher order
concentrated ME distributions can be computed and based
on that we refine the dependence of the minimal SCV on the
order.
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2. CONCENTRATED ME DISTRIBU-
TIONS

Definition 1. Order N ME functions (referred to as
ME(N)) are given by

f(t) = αeAt(−A)1, (1)

where α is a real row vector of size N , A is a real matrix
of size N ×N and 1 is the column vector of ones of size N ,
and α is such that α1 > 0.

If f(t) ≥ 0, ∀t ≥ 0 and α1 = 1 then f(t) is the probability
density function of a ME distribution.

According to (1), vector α and matrix A define the matrix
exponential function. We refer to the pair (α,A) as matrix
representation in the sequel.

An ME distribution is said to be concentrated when its
squared coefficient of variation

SCV (f(t)) =
µ0µ2

µ2
1

− 1, (2)

is low. In (2), µi denotes the ith moment, defined by
µi =

∫∞
t=0

tif(t)dt for i = 0, 1, 2. SCV is insensitive to mul-
tiplication and scaling, i.e. SCV (f(t)) = SCV (c1f(c2t)).

Although matrix-exponential functions have been used for
many decades, there are still many questions open regarding
their properties. Such an important question is how to decide
efficiently if a matrix-exponential function is non-negative
∀t > 0. In general, f(t) ≥ 0, ∀t > 0 does not necessarily hold
for given (α,A) parameters, unless it has been constructed
to be always non-negative. In this paper, we are going to
restrict our attention to such a special construction, the
exponential-cosine square functions.

For the least varying ME(N) distributions only conjectures
are available for N ≥ 3 [2]. According to the current conjec-
ture for odd N , the most concentrated ME(N) distribution
belongs to a special subset of ME(N) given by the definition
below.

Definition 2. The set of exponential cosine-square func-
tions of order n has the form

f+(t) = e−t
n∏

i=1

cos2
(
ωt− φi

2

)
. (3)

An exponential cosine-square function is defined by n+ 1
parameters: ω and φi for i = 1, . . . , n. An exponential cosine-
square function is a matrix exponential function. Although
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the representation in (3), which we refer to as the cosine-
square representation, is not a matrix representation, [5, Ap-
pendix A] presents the associated matrix representation of
size N = 2n+ 1. Consequently, the set of exponential cosine-
square functions of order n is a special subset of ME(N)
(where N = 2n+ 1) which, by construction, is non-negative.
The SCV of an exponential cosine-square function is a compli-
cated function of the parameters, whose minimum does not
exhibit a closed analytic form. That is why we have resorted
to the following numerical problem. For a given odd order
N = 2n+ 1, we are looking for efficient numerical methods
for finding the ω and φi (i = 1, . . . , n) parameters which
result in a low SCV. For efficient numerical minimization of
the SCV for N > 47 (i.e., n > 23) we need

i) an accurate computation of the SCV based on the
parameters with low computational cost and

ii) an efficient optimization procedure with low computa-
tional cost.

In this paper we present a method that addresses i) in
Section 3, and one that addresses ii) in Section 4.

3. EFFICIENT COMPUTATION OF THE
SQUARED COEFFICIENT OF VARIA-
TION

To evaluate the objective function of the optimization,
namely the SCV, we need efficient methods to compute µ0,
µ1 and µ2. Deriving the µi parameters based on (3) is
difficult (for large N). Hence we propose to compute them
based on a different representation.

3.1 The hyper-trigonometric representation
The following theorem defines the hyper-trigonometric

form of the exponential cosine-square functions and provides
a recursive procedure to obtain its parameters from ω, φi, i =
1, . . . , n.

Theorem 1. An order N = 2n + 1 exponential cosine-
square function can be transformed to a hyper-trigonometric
representation of form

f+(t) = c(n) · e−t + e−t
n∑

k=1

a
(n)
k cos(kωt) (4)

+ e−t
n∑

k=1

b
(n)
k sin(kωt),

where c(n) = 1
2
a
(n)
0 and the coefficients a

(n)
k , b

(n)
k are calcu-

lated recursively:

• for n = 1:

a
(1)
0 = 1, b

(1)
0 = 0, a

(1)
1 =

1

2
cosφ1, b

(1)
1 =

1

2
sinφ1,

(5)

• for k > n, n ≥ 1:

a
(n)
k = b

(n)
k = 0,

• for k = 0, n ≥ 1:

a
(n)
0 =

1

2
a
(n−1)
0 +

1

2
a
(n−1)
1 cosφn +

1

2
b
(n−1)
1 sinφn,

(6)

b
(n)
0 = 0, (7)

• for 1 ≤ k ≤ n, n ≥ 2

a
(n)
k =

1

2
a
(n−1)
k +

1

2

a
(n−1)
k−1 + a

(n−1)
k+1

2
cosφn

+
1

2

b
(n−1)
k+1 − b(n−1)

k−1

2
sinφn, (8)

b
(n)
k =

1

2
b
(n−1)
k +

1

2

b
(n−1)
k−1 + b

(n−1)
k+1

2
cosφn

+
1

2

a
(n−1)
k−1 − a(n−1)

k+1

2
sinφn. (9)

The hyper-trigonometric representation makes it possible
to express the Laplace transform (LT) and the moments µi
in a simple and compact way.

Corollary 1. The LT and the µi, i = 0, 1, 2 moments of
the exponential cosine-square function are given by

f∗(s) =
c(n)

1 + s
+

n∑

k=1

a
(n)
k (1 + s) + b

(n)
k kω

(1 + s)2 + (kω)2
, (10)

and

µ0 = c(n) +
n∑

k=1

a
(n)
k + b

(n)
k kω

1 + (kω)2
, (11)

µ1 = c(n) +
n∑

k=1

a
(n)
k + 2b

(n)
k kω − a(n)k (kω)2

(1 + (kω)2)2
,

µ2 = 2c(n) +
n∑

k=1

2a
(n)
k + 6b

(n)
k kω − 6a

(n)
k (kω)2 − 2b

(n)
k (kω)3

(1 + (kω)2)3
.

3.2 Numerical computation of the moments
Theorem 1 together with Corollary 1 provides a very ef-

ficient explicit method to compute the SCV based on the
parameters ω, φi, i = 1, . . . , n.

There is one numerical issue that has to be taken care of
when applying this numerical procedure with floating point
arithmetic for large values of n. To evaluate the SCV, co-

efficients a
(n)
k , b

(n)
k , c(n) need to be obtained from the ω and

φi, i = 1, . . . , n parameters. The recursion defined in The-
orem 1 involves multiplications between bounded numbers
(sine and cosine always fall into [−1,+1]), which is beneficial
from the numerical stability point of view, but subtractions
are unfortunately also present, leading to loss of precision.
To overcome this loss of precision, we introduced increased
precision floating point arithmetic both in our Mathematica
and C++ implementations1. Mathematica can quantify the
precision loss, enabling us to investigate this issue experimen-
tally. According to Figure 1, the number of accurate decimal
digits lost when evaluating the SCV from the ω, φi parame-
ters (computed by the Precision function of Mathematica),
denoted by Ln, is nearly linear and can be approximated by

Ln ≈ 1.487 + 0.647n. (12)

1In C++ we used to mpfr library for multi-precision compu-
tations
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Figure 1: The precision loss while computing the
SCV

In the forthcoming numerical experiments we have set the
floating point precision to Ln+16 decimal digits to obtain an
accuracy of results up to 16 decimal digits, and this precision
setting eliminated all numerical issues.

It is important to note that the high precision is needed

only to calculate the a
(n)
k , b

(n)
k , c(n) coefficients and the SCV

itself. Representing parameters ω, φi themselves does not
need extra precision, and the resulting exponential cosine-
square function f(t) can be evaluated with machine precision
as well (in the range of our interest, n ≤ 1000).

A basic pseudo-code of the computation of the SCV with
the indications where high precision is needed is provided by
Algorithm 1.

Algorithm 1 Pseudo-code for the computation of the SCV

1: procedure ComputeSCV(n, ω, φi, i = 1, . . . , n)
2: Compute the required precision, Ln, from (12)
3: Convert ω, φi, i = 1, . . . , n to Ln + 16 digits precision

4: Calculate a
(n)
k , b

(n)
k , c(n), k = 1, . . . , n, recursively by

Theorem 1 (high precision)
5: Calculate moments µ0, µ1, µ2 according to (11) (high

precision)
6: Calculate SCV = µ0µ2

µ2
1
− 1 (high precision)

7: Convert SCV to machine precision
8: return SCV
9: end procedure

4. MINIMIZING THE SQUARED COEFFI-
CIENT OF VARIATION

Given the size of the representation N = 2n + 1, the
f+(t) function providing the minimal SCV is obtained by
minimizing (2) subject to ω and φi, i = 1, . . . , n. The form of
the SCV does not allow a symbolic solution, and its numerical
optimization is challenging too. The surface to optimize has
many local optima, hence simple gradient descent procedures
failed to find the global optimum and are sensitive to the
initial guess.

4.1 Optimizing the parameters
In the numerical optimization of the parameters, we had

success with evolutionary optimization methods, in particu-
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Figure 2: The minimal SCV of the exponential
cosine-square functions as the function of n in log-log
scale

lar with evolution strategies. The results introduced in [5]
were obtained by one of the simplest evolution strategies,
the Rechenberg method [7]. In [5], it was the high com-
putational demand of the numerical integration needed to
obtain the SCV and its reduced accuracy that prevented the
optimization for N > 47 (n > 23).

However, computing the SCV based on the hyper-
trigonometric representation using the results of Section
3.1 allows us to evaluate the moments orders of magnitudes
faster and more accurately, enabling the optimization for
higher n values. With the Rechenberg method ([7], also
referred to as (1+1)-ES in the literature) it is possible to
obtain low SCV values relatively quickly for orders as high
as n = 125, but these values are suboptimal in the majority
of cases.

With more advanced evolution strategies the optimal SCV
can be approached better. Our implementation supports the
covariance matrix adoption evolution strategy (CMA-ES [3]),
and one of its variants, the BIPOP-CMA-ES with restarts [4].
Starting from a random initial guess, we got very low SCV
values much quicker with the CMA-ES than with the (1+1)-
ES with similar suboptimal minimum values (cf. Fig. 4).
The limit of applicability of CMA-ES is about n = 180. The
best solution (lowest SCV for the given order), however, was
always provided by the BIPOP-CMA-ES method, although
it is by far the slowest among the three methods we studied.
In fact, we believe that BIPOP-CMA-ES returned the global
optimum for n = 1, . . . , 74, and we investigate the properties
of those solutions in the next sections. For n > 74, we can
still compute low SCV functions with the BIPOP-CMA-ES
method, but its computation time gets to be prohibitive,
and we are less confident about the global minimality of the
results.

For our particular problem, the running time, T , and the
quality of the minimum, Q (how low the SCV is), obtained
by the different optimization methods can be summarized as
follows

TCMA-ES < T(1+1)-ES << TBIPOP-CMA-ES,

QCMA-ES ∼ Q(1+1)-ES < QBIPOP-CMA-ES.

4.2 Properties of the minimal SCV solutions
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The minimal SCV values obtained by the BIPOP-CMA-ES
optimization, which we consider as being optimal for n =
1, . . . , 74, are depicted in Figure 2. Apart from the minimal
SCV values of the exponential cosine-square functions, Figure
2 also plots 1/N and 2/N2, for comparison. The SCV = 1/N
is known to be the minimal SCV value of phase-type (PH)
distributions of order N [1], which form a subset in the set of
ME distributions by assuming positive off-diagonal elements
for A and nonnegative elements for α. The 2/N2 curve
is reported to be the approximate decay rate in [5], up to
n = 23 (N = 47).

Figure 2 indicates that the SCV decreases much faster
than 1/N and a bit faster than 2/N2. Indeed, 2/N2 is a
good approximation up to n = 23, but the decay seems to
decrease below 2/N2 for n > 23.

5. HEURISTIC OPTIMIZATION WITH 3
PARAMETERS

According to the previously discussed approach the number
of parameters to optimize increases with n. This drawback
limits the applicability of the general optimization procedures
to about n ≤ 74 in case of BIPOP-CMA-ES and about
n ≤ 180 in case of the basic CMA-ES. By these n values the
optimization procedure takes several days to terminate on
our average PC clocked at 3.4 GHz.

While the f+(t) function obtained this way for n = 180
have an extremely low (≈ 10−5) SCV already, some applica-
tions might benefit from ME distributions with even lower
SCV. To overcome this limitation we developed a suboptimal
heuristic procedure, that aims to obtain low SCV for a given
large order n.

Our heuristic procedure has to optimize only three param-
eters, independent of the order n. The procedure is based on
the assumption that the location of the spike in the (0, 2π)
cycle of the cosine-squared function plays the most important
role in the SCV, and the exact values of the φk parameters
are less important, the only important feature is that the
cosine-squared terms characterized by the φk parameters
should suppress f+(t) uniformly in the (0, 2π) cycle – apart
from the spike (cf. Figure 3).

Based on this assumption we set the φk parameters of the
cosine-squared terms equidistantly. This way the position
of the spike (p) and its width (w) inside the (0, 2π) interval
completely define the φk values for a given order n.

The distance of the φk parameters (d) and the number of
φk parameters before the spike (i) can be computed from p
and w by

d =
2π − w
n

, i =

⌊
p− w/2

d
+

1

2

⌋
, (13)
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Figure 4: The minimal and the heuristic SCV as a
function of order n in log-log scale

and for k = 1, . . . , n the φk parameters are

φk + π =

{
(k − 1/2)d if k ≤ i,
(k − 1/2)d+ w if k > i.

(14)

Figure 4 depicts the SCV obtained by the heuristic pro-
cedure for large n values, compared with the outputs of the
highly accurate BIPOP-CMA-ES and the faster CMA-ES
optimization procedures. Figure 4 suggests that the heuris-
tic optimizations remains very close to the minimum also
for larger n values and the SCV obtained by the heuristic
optimization maintains its polynomial decay between n−2.1

and n−2.2.
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ABSTRACT
We present effective numerical inverse Laplace transforma-
tion (ILT) method which belongs to the Abate–Whitt frame-
work and exhibits some of the best properties among all
the procedures of the framework. E.g., the proposed ILT
method does not generate overshoot and undershoot (up-
ward/downward jump exceeding the jump of the original
function), numerically stable and gradually improving.

Keywords: numerical inverse Laplace transformation,
Abate–Whitt framework, concentrated matrix exponential
distribution.

1. INTRODUCTION
There are plenty of numerical inverse Laplace transfor-

mation methods published in the literature (for a relatively
recent survey we refer to [6]). Among these methods one
of the most widely applied and well characterized subset is
Abate–Whitt framework defined in [1]. This framework im-
plicitly defines function families in which various optimiza-
tions can be performed in order to obtain efficient inverse
Laplace transformation methods.

We propose a procedure which is based on the most gen-
eral function family of the Abate–Whitt framework (referred
to as Class III in [1]) where we adopt a restriction that the
inverse Laplace transformation should be non-overshooting.

It turns out that matrix exponential (ME) distribu-
tion applied in the Abate–Whitt framework ensures non-
overshooting inverse Laplace transformation. In [5] low or-
der inverse Laplace transformation is applied, using concen-
trated ME (CME) distributions, which were available at that

∗This work is supported by the OTKA K-123914 project

Permission to make digital or hard copies of part or all of this work for personal or
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time [2, 4]. Recent improvements in the computation of
CME distributions [3] allow us to extend the numerical ILT
method also to high orders. In this work we present the first
numerical experiences about the ILT method based on high
order CME distributions.

2. INVERSE LAPLACE TRANSFOR-
MATION AND THE ABATE–WHITT
FRAMEWORK

For a real or complex valued function h(t) the Laplace
transform is defined as

h∗(s) =

∫ ∞

t=0

e−sth(t)dt. (1)

and the inverse transform problem is to find an approximate
value of h at point T (i.e., h(T )) based on h∗(s).

Remark 1. We assume that
∫∞
t=0

e−sth(t)dt is finite for
Re(s) > 0 thus h∗(s) is well-defined by (1) for Re(s) > 0.

Remark 2. We assume that h(t) is real in this work. As
a result, h∗(s̄) = h̄∗(s) and h∗(s̄) + h∗(s) = 2Re(h∗(s)).

Among the wide range of inverse Laplace transforma-
tion methods, we restrict our attention to the Abate–Whitt
framework which we summarize below.

2.1 The Abate–Whitt framework
The idea is to approximate h by a finite linear combination

of the transform values, via

h(T ) ≈ hn(T ) :=
n∑

k=1

ηk
T
h∗
(
βk
T

)
, T > 0, (2)

where the nodes βk and weights ηk are complex numbers,
which depend on n, but not on the transform h∗ or the
time argument T . This framework was introduced and in-
vestigated by Abate and Whitt in [1]. When h(t) in (1) is
real valued it can be approximated by the real part of the
weighted transform values:

Re(h(T )) ≈ Re(hn(T )) =
n∑

k=1

Re

(
ηk
T
h∗
(
βk
T

))
.
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In the special case when there is a complex conjugate pair
among the nodes and weights (that is, ηi = η̄j and βi = β̄j)
then

ηi
T
h∗
(
βi
T

)
+
ηj
T
h∗
(
βj
T

)
= 2Re

[
ηi
T
h∗
(
βi
T

)]
.

For numerical comparisons, we consider two classic algo-
rithms of the Abate–Whitt framework: the Gaver–Stehfest
method and the Euler method, which are investigated also
in [1]. These two methods approximate h(T ) by hn(T ),
where hn(T ) has the form (2) with weights ηk and nodes
βk, k = 1, 2, . . . n as follows.

Gaver–Stehfest method (for even n)

βk = k ln(2), for 1 ≤ k ≤ n,

ηk = (−1)n/2+k ln(2)

min(k,n/2)∑

j=b(k+1)/2c

jn/2+1

(n/2)!

(
n/2

j

)(
2j

j

)(
j

k − j

)
,

for 1 ≤ k ≤ n,

where bxc is the greatest integer less than or equal to x.

Euler method (for odd n)

βk =
(n− 1) ln(10)

6
+ πi(k − 1), 1 ≤ k ≤ n

ηk = 10(n−1)/6(−1)k−1ξk, 1 ≤ k ≤ n

where

ξ1 =
1

2

ξk = 1, 2 ≤ k ≤ (n+ 1)/2

ξn =
1

2(n−1)/2

ξn−k = ξn−k+1 + 2−(n−1)/2

(
(n− 1)/2

k

)

for 1 ≤ k < (n− 1)/2.

Remark 3. The set of real valued functions
∑
k ηke

−βkt

with potentially complex valued coefficients has the following
real representations.

Class I If both ηk and βk are real then
∑
k ηke

−βkt is a real
representation.

Class II If ηk is real and βk is complex then

Re

(∑

k

ηke
−βkt

)
=
∑

k

ηke
−bkt cos(ωkt)

is its real representation, where βk = bk + iωk.

Class III If both ηk and βk are complex then

Re

(∑

k

ηke
−βkt

)
=
∑

k

ake
−bkt cos(ωkt+ φk)

is its real representation, where βk = bk + iωk and
ak, φk are real and obtained from the real and imagi-
nary parts of ηk [4].

The Gaver–Stehfest method falls into Class I, the Euler
method falls into Class II, the proposed ME distribution
based method (described in detail in Section 3.2) falls into
Class III.

For Re(βk) > 0, we can reformulate the inverse Laplace
transformation methods of the Abate–Whitt framework as

hn(T ) =
1

T

n∑

k=1

ηkh
∗
(
βk
T

)
=

1

T

n∑

k=1

ηk

∫ ∞

0

e−
βk
T
th(t)dt

=

∫ ∞

0

h(t)fnT (t)dt, (3)

where the numerical approximation of the Laplace inverse at
point T is obtained as the integral of the original function,
h(t), with

fnT (t) =
1

T

n∑

k=1

ηke
− βk
T
t. (4)

If fnT (t) was the Dirac impulse function at point T then the
Laplace inversion would be perfect, but depending on the
order of the approximation (n), the applied inverse transfor-
mation method (weights ηk, nodes βk) and the time point
(T ), function fnT (t) only approximates the Dirac impulse
function with a given accuracy.

Remark 4. fnT (t) is a scaled version of

fn1 (t) =
n∑

k=1

ηke
−βkt (5)

because, according to (4),

fnT (t) =
1

T
fn1

(
t

T

)
. (6)

3. MATRIX EXPONENTIAL DISTRIBU-
TIONS

The class of matrix exponential distributions of order N ,
denoted ME(N), contains random variables with pdf of the
form

fX(t) = −αAeAt1, t ≥ 0, (7)

where α is a row vector of length N , A is a matrix of size
N ×N and 1 is a column vector of ones of size N . As fX(t)
is a pdf, fX(t) is non-negative for t ≥ 0.

Assuming that A is diagonalizable, with spectral decom-
position A =

∑n
i=1 uiλivi, the pdf can be written as

fX(t) =
n∑

i=1

−αAuivi1︸ ︷︷ ︸
ci

eλit =

n∑

i=1

cie
λit, (8)

where λ1, . . . , λn are eigenvalues of A. Comparing (8) and
(5) indicates that ME distributions with diagonalizable ma-
trix A can be used in the place of fn1 (t).

Remark 5. Due to the non-negativity of fX(t), the in-
tegral in (3) results in an inverse Laplace transformation
without overshoot.
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3.1 Concentrated ME distributions
Concentrated ME(N) distributions with low coefficient of

variation has been calculated in [4] up to N = 47 and in [3]
for up to N = 2001, using the following form (for odd N):

fME(t) = c e−λt
(N−1)/2∏

i=0

cos2(ωt− φi) (9)

with real values of c, λ, ω and φ1, . . . , φ(N−1)/2 obtained from
numerical optimization.

3.2 ME distribution-based inverse Laplace
transformation

In order to apply the CME distributions for inverse
Laplace transformation (9) needs to be rewritten in a form
consistent with (5):

fME(t) = c e−λt
(N−1)/2∏

i=0

cos2(ωt− φi) =
N∑

i=1

ηie
−βit

where n = (N + 1)/2, η1, β1 are real, and the values
β2, . . . , βn have positive imaginary parts. For the details
of this transformation, see the Appendix of [4].

4. NUMERICAL COMPARISON WITH
THE ME BASED METHOD

In order to investigate the properties of the considered
inverse Laplace transformation methods (Euler, Gaver–
Stehfest (Gaver in short), Concentrated ME based (CME)),
we performed a set of numerical inverse Laplace transfor-
mations for the 6 functions of Table 1 using our Matlab im-
plementation, where we applied standard double precision
floating point The arithmetic for CME and 100 digit preci-
sion arithmetic with the Matlab Symbolic Math Toolbox for
Euler and Gaver. Numerical properties of the 6 test func-
tions are rather similar; we demonstrate them using mainly
the test function btc mod 2.

h(t) e−t sin t 1(t > 1)

h∗(s) 1
1+s

1
s2+1

1
s
e−s

h(t) 1(t > 1)e1−t btc btc mod 2

h∗(s) e−s
1+s

1
s

1
es−1

1
s

1
es+1

Table 1: Set of test functions

Figures 1 and 2 investigate the dependency of the Gaver
and the Euler methods on the order. The Gaver method
fails to follow the alternating feature of the original function
for low order (n = 10). It produces a smooth curve with
some overshoot for medium order (n = 50), and reaches its
limit of numerical stability, despite using 100 digit precision,
at n = 64. The Euler method for low order (n = 11) follows
the alternating feature of the original function for longer; it
produces a smooth curve with more dominant overshoot for
medium order (n = 51), and reaches its limit of numerical
stability, despite using 100 digit precision, at n = 101.

In comparison, the inverse Laplace transformation ob-
tained by the CME method is depicted in Figure 3. The
CME method does not produce overshoot at any order. Sim-
ilar to the Euler method, the CME method follows the alter-
nating feature of the original function for low order (n = 10).
It produces a smooth curve for low, medium (n = 50) and
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Gaver(n=10)
Gaver(n=50)
Gaver(n=64)

Figure 1: h(t) = btc mod2 with Gaver method

high (n = 500) orders using double precision arithmetic.
The accuracy of the inverse Laplace transformation contin-
uously increases with the order.

Figures 4 and 5 compare the methods for h(t) = btc with
low and medium orders, while Figures 6 and 7 compare
the methods for h(t) = btc mod 2 with the same orders.
In each case, the benefit of the non-overshooting inverse
Laplace transformation is dominant. Especially, the figures
with medium orders indicate the uncertainties coming from
overshooting inverse Laplace transformation using the more
alternating Euler method.

The sharpest increase of the Euler and the CME meth-
ods are similar for the same orders. Approximating dis-
continuity, the Euler method provides a bit sharper in-
crease/decrease than the CME method at a given order,
but at the cost of significant overshoots before and after the
discontinuity.
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Figure 2: h(t) = btc mod 2 with Euler method
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Figure 3: h(t) = btc mod 2 with CME method
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Figure 4: h(t) = btc with low orders
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Figure 5: h(t) = btc with medium orders
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Figure 6: h(t) = btc mod 2 with low orders
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ABSTRACT
Traditional matrix-analytic models can be viewed as Markov
additive processes with level component living on a lattice
and some special behaviour at the boundary. The basic
assumption that the level process is skip-free in one direction
allows for an in-depth analysis of such models. It turns out
that a somewhat similar analysis is possible in the continuous-
time non-lattice case when assuming that the level process
is jump-free in one direction. Such model corresponds to a
Lévy process modulated by a Markov chain with additional
jumps at phase switching epochs, where all jumps are of the
same sign.

This tutorial will focus on some basic theory for one-sided
Markov additive processes highlighting the links to the tra-
ditional matrix-analytic models [3]. In particular, we will
consider the three fundamental matrices: the right-, the
left-solution of a certain matrix equation, and the linking
matrix of expected occupation times at zero. Moreover, we
will construct the so-called scale (matrix-valued) function [4],
and discuss some applications of the theory to insurance
risk [1]. If time allows we will also look at the underlying
spectral theory based on the so-called generalized Jordan
chains corresponding to analytic matrix functions [2].

Prior knowledge of Lévy processes (Lévy-Khintchine for-
mula) will not be assumed, but will render this tutorial easier
to follow.
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ABSTRACT
An intensive care unit (ICU) is a crucial and limited resource
in a hospital which is affected by uncertainty and variability.
ICUs provide high level care to critically ill patients. This
includes burns, cardiothoracic, general medicine and surgical,
spinal, and trauma cases, as well as patients who require life
support. ICUs have the highest nurse to patient ratios in the
hospital and often operate close to capacity. Insufficient re-
sources in the ICU causes many negative effects both within
the ICU and in other connected departments [1].

Queueing theory has been used to model the bed occu-
pancy in ICUs for the last 20 years, with a particular focus
on using M/M/· and M/PH/· queueing models [1]. These
queueing models assume that the arrival process (patient
arrivals) is a Poisson process, the service times (length of
stay) follow an exponential or Phase-Type distribution, and
most crucially that the arrival process and service times are
independent of each other. These assumptions are ideal for
researchers as many problems become tractable and the anal-
ysis of such queueing models is relatively straightforward.
However, several studies have revealed that patients may be
refused entry into the ICU due to capacity issues [2], and
that there may be some dependence structure between the
arrival process and the service times in an ICU [3]. Without
independence between the arrival process and service times,
all standard queueing models become invalid.

Our research analyses the patient flow of the ICU at the
Royal Adelaide Hospital, Adelaide, South Australia, Aus-
tralia. The Royal Adelaide Hospital (RAH) is the largest
hospital in Adelaide, South Australia. Prior to November
2017, the RAH was located on North Terrace, Adelaide,
containing 680 beds and an ICU capacity of 42 beds. The
dataset used in this research was obtained from the ICU
at the RAH and contains de-identified information on 7124
patients who arrived to the ICU from 1 October 2014 to 30
November 2016. This dataset was also used in the analysis
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to demonstrate the dependence structure between patient
arrivals and patient length of stay [3].

Varney et al. [3] provided an engineering-style method to
provide a reasonable model of bed occupancy in the ICU at
the RAH. In this talk, we aim to provide a more principled
approach to modelling bed occupancy in ICUs using quasi-
birth-and-death processes (QBDs). Although PH/PH/·
queues are examples of QBDs, they maintain the indepen-
dence between the arrival process and the service times. By
allowing the phases of the arrival process and the service
times to interact with each other, QBDs provide the flexibil-
ity to model a queueing system with dependence between
the arrival process and the service times.

However, little research has been conducted in fitting non-
specified queueing models to data from queueing systems. In
particular, no theory has been developed to statistically fit
arbitrary QBD models to bed occupancy data. In this talk,
we will describe the approaches we have taken to fit suitable
QBDs to the RAH ICU data.
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ABSTRACT
Recently, in the work of Göbel et al [2], two continuous-time
Markov chain models were introduced in order to model
interactions between a small pool of miners, and a larger
collection of miners, within the Bitcoin blockchain. The first
model—Model 1—represents the case where the pool behaves
in an honest manner, while the second model—Model 2—
attempts to model what can happen when the pool behaves
dishonestly, and follows a selfish-mining strategy.

Our first result is a new derivation of the stationary distri-
bution (up to a normalizing constant) of Model 1, and we
further build on the results of [2] by showing that the normal-
izing constant can be expressed in closed-form. Furthermore,
the Laplace transforms of the transition functions are shown
to be just as tractable, if we assume that the larger collection
of miners has the same information about the blockchain as
the smaller pool at time zero.

Our next set of results show that the stationary distribution
of Model 2—when it exists—can be calculated exactly as
well, without having to truncate the state space. A similar
statement can be made about the Laplace transforms of the
transition functions of Model 2 as well, if we further assume
that the larger collection of miners has the same information
about the blockchain as the smaller pool at time zero.

The methods we use to study both models, particularly
Model 2, make use of ideas that often appear in the theory
of matrix-analytic methods, except our analysis makes use of
the recently-developed random-product technique introduced
in [1].
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ABSTRACT
We consider a Markov-modulated fluid queue for which the
environment is nearly-completely decomposable: the set of
phases is partitioned into subsets in such a way that transi-
tion rates between different subsets are order of magnitudes
smaller than transition rates between phases in the same
subset. Technically, the generator is of the form

Q(ε) = Q∗ + εG, (1)

where ε is a is a small number and Q∗ is a block-diagonal
matrix, so that the phase process is split into separate pro-
cesses when ε = 0. The matrix G is such that Q(ε) is an
irreducible generator when ε > 0.

Each subset may be thought of as driving its own fluid
queue and the whole process behaves sometimes like one fluid
queue, sometimes like another. This is a model for a system
with very slowly varying parameters, and we are interested
in analysing the stationary distribution of the whole system.

If each of the isolated fluid queues is positive recurrent,
then the whole system is positive recurrent as well, and we
show that its stationary distribution is approximated, for
ε → 0, by a properly weighted mixture of the stationary
distributions of the isolated fluid queues. A similar result
holds for finite, discret-time Markov chains, as shown in
Simon and Ando [5], Courtois [1] and Schweitzer [4] among
others. In the recent paper Jiang et al. [2], the authors
analyse the case of a countable state space and give a recent
bibliography.

One may imagine that the whole system is positive recur-
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rent when ε > 0, while some of the isolated fluid queues
are transient on their own. In that case, the result men-
tioned above may not apply, since such transient isolated
fluid queues do not have a stationary distribution. Instead,
we show that some of the probability mass disappears from
sight as ε tends to 0. To make the presentation sufficiently
simple, we assume that there are only two subsets of phases,
corresponding respectively to a positive recurrent and to a
transient isolated fluid queues.

Latouche and Schweitzer [3] bears some similarity with
the fluid queue analysed here. Our present results, however,
are more detailed and more general. In particular, we show
that the usual Riccati equation for the matrix Ψ has three
(sub)stochastic solutions for ε = 0, only one of which is
physically relevant as a limit for ε → 0.
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ABSTRACT
Consider a level independent quasi-birth-death process (QBD)
[3][1] with time-varying periodic rates, and N phases in each
level. The infinitesimal generator for such a system is given
by

Q(t) =




A00(t) A1(t) · ·
A−1(t) A0(t) A1(t) ·

·
. . .

. . .
. . .




where the blocks Ai(t) are N×N matrices whose components
are periodic functions representing transition rates. When
the system is ergodic, there is an asymptotic periodic solution
to the system of differential equations

∂

∂t
pn(t) = pn−1(t)A1(t) + pn(t)A0(t) + pn+1(t)A−1(t)

for n > 0 and boundary condition

∂

∂t
p0(t) = p0(t)A00(t) + p1(t)A−1(t)

The vectors pn(t) are of length N . The generating function
for the asymptotic periodic probabilities is given by

Pz(t) =
∫ t

t−1

p0(u)
(
A00(u)−A0(u)− z−1A−1(u)

)
Φz(u, t)du

× (I− Φz(t− 1, t))−1

where Φz(s, t) is the generating function for the correspond-
ing unbounded process, that is, the random walk process[2].
For this generating function, the coefficients on zn are ma-
trices. The (i, j)th component of the coefficient on zn is the
probability of a transition from phase i to phase j and up n
levels.

Φz(s, t) solves the differential equation

∂

∂t
Φz(s, t) = Φz(s, t)A(z, t)
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where

A(z, t) = zA1(t) + A0(t) + z−1A−1(t).

If we were working with a constant rate process, Φz(s, t)

would be the matrix exponential eA(z)(t−s).
In general, an explicit formula for Φz(s, t) is not known. In

this paper, we consider several cases where such a formula is
available and explore the combinatorial interpretation of the
resulting expressions. In particular, we study a single-server
pre-emptive priority queue in which the Eulerian numbers
appear[4] and a QBD with Erlang arrivals in which roots of
unity play a role[5].

Pre-emptive Priority Queue with Finite Buffer
In the case of the pre-emptive priority queue with finite
buffer space for class-2 customers, out state space is given by
(X(t), J(t)) where X(t) gives the number of class-1 customers
and J(t) gives the number of class-2 customers at time t. As-
sociated with this queue-length process, is a two-dimensional
random walk where the level, X(t) is unbounded, and the
phase, J(t) ranges from zero to K where K is the size of the
buffer. Let λi(t) give the arrival rate of class i-customers
and µi(t) give the service rate of class-i customers. Since
class-2 customers are served only when there are no class-1
customers in the system, µ2(t) is not part of the expression
for the random walk generating function.

Let ak(s, t) give the probability of k class-2 arrivals during
the time-interval (s, t], so that

ak(s, t) =

(∫ t
s
λ2(u)du

)k

k!
e−

∫ t
s λ2(u)du.

Define the random walk generating function for a particle
moving to the right at rate λ1(t) and to the left at rate µ1(t)
as

βz(s, t)

= exp

{∫ t

s

λ1(u)du(z − 1) +

∫ t

s

µ1(u)du(z−1 − 1)

}

=
∞∑

n=−∞
Pr{X(t) = n+ k|X(s) = k}zn.
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Then Φz(s, t) is given by

Φz = βz




a0 a1 a2 . . . . . . aN−1 a>N−1

0 a0 a1

. . . . . . aN−2 a>N−2

0 0
. . .

. . .
. . .

...
...

0 0 0 a0 . . . aN−i a>N−i

0 0 0 0
. . .

. . .
...

0 0 0 0 0 a0 a>0

0 0 0 0 0 0 1




where the dependence on s and t is suppressed in the notation.
We are also interested in an explicit expression for (I −

Φz(t − 1, t))−1. This too is available for the pre-emptive
priority queue with finite buffer. We consider transition
rates which are periodic with period 1. Note that for such
transition rates, the integral of the rate from t − 1 to t
is equal to the average value of the rate, so, for example,∫ t
t−1

λ1(u)du = λ̄1. We may express (I − Φz(t− 1, t))−1 in
terms of these average rates.

Remark: Note that it is not true for general quasi-birth-
death processes with time-varying periodic rates that (I −
Φz(t− 1, t))−1 does not depend on t; however, it is true that
the determinant of Φz(t− 1, t) does not depend on t.

Recall that

(I−Φz(t−1, t))−1 =
∞∑

n=0

Φnz (t−1, t) =
∞∑

n=0

Φz(t−1, t+n−1).

For the Poisson probabilities giving the probability of k
class-2 arrivals during an interval of length n, we have

ak(t−1, t+n−1) =

(∫ t+n−1

t−1
λ2(u)du

)k

k!
e−

∫ t+n−1
t−1 λ2(u)du

=
λ̄k2n

k

k!
e−λ̄2n.

The (j, j+k) component of the matrix generating function
(I − Φz)

−1 is given by

[(I − Φz)
−1]j,j+k

=
∞∑

n=1

λ̄k2n
k

k!
e−λ̄2nβnz (0, 1)

=
λ̄k2
k!

∞∑

n=1

nke−λ̄2nβnz (0, 1).

The Carlitz identity for the Eulerian polynomials[4] is

∞∑

n=0

(n+ 1)ktn =
Sk(t)

(1− t)k+1

where Sk(t) is the kth Eulerian polynomial. The kth Eulerian
polynomial provides a generating function for the number of
permutations of length k with a given number of descents.
Applying this identity, we have

[(I − Φz)
−1]j,j+k

= e−λ̄2
λ̄k2
k!

βz(0, 1)Sk(βz(0, 1)e−λ̄2)

(1− e−λ̄2βz(0, 1))k+1
.

We can use this result to obtain asymptotic estimates for
the probability distribution at time t within the period for
the pre-emptive priority queue with finite buffer. For an
ergodic QBD with time-varying periodic rates, we will obtain
periodic estimates.

We will also provide a combinatorial interpretation of the
2-dimensional generating function given by (I − Φz)

−1 in
terms of a sequence of random walks.

K−Erlang arrivals and exponential departures
For a random walk with K−Erlang arrivals and exponential
departures, the matrices A1(t), A0(t) and A−1(t) are given
by

A1(t) =




· · · · · ν(t)
· · · · · · · ·
...

...
...

...
· · · · · · · ·




A0(t) =




−ν(t)− µ(t) · · ·
ν(t) −ν(t)− µ(t) · ·

·
. . .

. . . ·
· · ν(t) −ν(t)− µ(t)




and

A−1(t) =



µ(t) · ·

·
. . . ·

· · µ(t)


 .

The stochastic flow diagram for this system is
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µ
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j-2,0

j-2,1

...
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µ

µ

µ

µ

µ

µ

ν

ν

ν
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Define

Az(t) = A1(t)z + A0(t) + A−1(t)z−1.

Then the eigenvalues of Az(t) are given by

ε`(t) = ω−`K ν(t)z1/K − µ(t)− ν(t) + µ(t)z−1

for ` = 0, 1, . . . ,K − 1 with

ωK = e−
2πi
K = cos

(
2π

K

)
− i sin

(
2π

K

)
.

The diagonalization of the matrix Az(t) is

Az(t) = HD(t)H−1.

The eigenvectors do not depend on t. This makes the matrix
function Φz(s, t) particularly easy to compute. It is given in
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terms of the exponential of the integrals of the diagonals so
we have

Φz(s, t)

= H




e
∫ t
s ε0(u)du 0 · · · 0

0 e
∫ t
s ε1(u)du 0

...
...

. . .
. . .

...

0 · · · 0 e
∫ t
s εK−1(u)du



H−1.

Note that Φz(s, r)Φz(r, t) = Φz(s, t), that is

Φz(s, r)Φz(r, t)

= H




e
∫ r
s ε0(u)du 0 · · · 0

0 e
∫ r
s ε1(u)du 0

...
...

. . .
. . .

...

0 · · · 0 e
∫ r
s εK−1(u)du




×H−1H×



e
∫ t
r ε0(u)du 0 · · · 0

0 e
∫ t
r ε1(u)du 0

...
...

. . .
. . .

...

0 · · · 0 e
∫ t
r εK−1(u)du



H−1

= Φz(s, t)

The normalized eigenvector corresponding to the `th eigen-
value, ε`(t) = ω−`K ν(t)z1/K − µ(t)− ν(t) + µ(t)z−1, is

v` =
1√
K




ω0`
K z

K−1
K

ω1`
K z

K−2
K

...

ω
(K−2)`
K z

1
K

ω
(K−1)`
K z0



.

Define B as a diagonal matrix with diagonal:
[
z
K−1
K z

K−2
K · · · z0

]
.

Let H be the matrix whose columns are the normalized
eigenvectors. We can write H in terms of a matrix of roots
of unity and the diagonal matrix B. Let

Ω =




ω0
K ω0

K · · · ω0
K

ω0
K ω1

K · · · ωK−1
K

...
. . .

. . .
...

ω0
K ωK−1

K · · · ω
(K−1)2

K



,

then

H =
1√
K
BΩ,

and H−1 is then given by

H−1 =
1√
K

ΩB−1

where Ω is the complex conjugate of the matrix Ω.

For general K, an explicit formula for the (m, j) component
of Φz(s, t) is

[Φz(s, t)]m,j

=
z
j−m
K e

∫ t
s (−µ(u)−ν(u)+µ(u)z−1)du

K

K−1∑

`=0

e
∫ t
s ω

`
Kν(u)z1/Kduω

`(j−m)
K

= e−
∫ t
s (ν(u)+µ(u)−µ(u)z−1)du

∞∑

n=1

(∫ t
s
ν(u)du

)Kn−j+m

(Kn− j +m)!
zn

The (m, j) component depends on j −m, the distance from
the diagonal and not on j and m separately. Φz(s, t) is a
Toeplitz matrix.

The structure of the Φz(t−1, t) matrix makes it particularly
simple to compute the matrix (I − Φz(t− 1, t))−1:

(I − Φz(t− 1, t))−1 = Hdiag

[
1

1− eεi

]
H−1.

This result readily yields formulas suitable for asymptotic
analysis, that is, asymptotic in the level of the process.

Summary
Explicit formulas are seldom available for the random walk
generating functions associated with level independent QBDs
with time-varying periodic rates. In the special circumstances
where they are available, they can be exploited to better un-
derstand the combinatorial properties of the process, and
to facilitate asymptotic (in the level) analysis of the distri-
bution. It is hoped that insights gained from processes for
which explicit formulas are known may be extended to more
general QBDs with time-varying periodic rates.
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ABSTRACT
Consider a cyclic stochastic fluid model {(X̂(t), J(t)) : t ≥ 0}
with level variable X̂(t) ≥ 0 and phase variable J(t) ∈ S,
driven by a continuous-time Markov chain {J(t) : t ≥ 0}
with a time-varying generator T (t) = [T (t)ij ]i,j∈S and cycle
of length 1 such that T (t) = T (t+ 1) for all t ≥ 0.

Assume real-valued rates cJ(t) ∈ R such that when X̂(t) >

0 then the level X̂(t) changes at rate cJ(t), and when X̂(t) = 0

then the level X̂(t) changes at rate max{0, cJ(t)}.

Let S0 = {i ∈ S : ci = 0}, S+ = {i ∈ S : ci > 0},
S− = {i ∈ S : ci < 0}, and partition the generator T (t)
according to S = S0 ∪ S+ ∪ S−, with

T (t) =



T00(t) T0+(t) T0−(t)
T+0(t) T++(t) T+−(t)
T−0(t) T−+(t) T−−(t)


 .

Consider the asymptotic periodic distribution of the model
corresponding to the observations at time points t ∈ [0, 1)
within the cycle, which consists of density π(t;x), t ∈ [0, 1),
x > 0, partitioned according to S = S+ ∪ S− ∪ S0,

π(t;x) =
[
π(t;x)+ π(t;x)− π(t;x)0

]
, (1)

such that for all t ∈ [0, 1) and i ∈ S,

π(t;x)i =
∂

∂x

∞∑

n=0

P (X(t+ n) ≤ x, J(t+ n) = i), (2)

and mass at zero, also partitioned according to S = S+ ∪
S− ∪ S0,

p(t) =
[
0 p−(t) p0(t)

]
, (3)
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Frontiers.
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such that for all t ∈ [0, 1) and i ∈ S− ∪ S0,

p(t)i =
∞∑

n=0

P (X(t+ n) = 0, J(t+ n) = i). (4)

The aim of this research is to derive theoretical expressions
and algorithms for the asymptotic periodic distribution of the
model. This work is an extension of the results in Margolius
and O’Reilly [1], where the model was introduced.
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ABSTRACT
Branching processes [1] describe the dynamics of a popula-
tion of individuals which reproduce and die independently,
according to some specific probability distributions. More
precisely, we assume that any individual has a unit lifetime,
at the end of which it might give birth to one or more off-
springs simultaneously. This is encoded into the probability
generating function P (z) :=

∑
j∈N pjz

j where pj is the prob-
ability of generating j individuals. These kind of processes
are known in the literature as Galton-Watson processes.

We consider populations that are certain to become extinct,
yet appear to be stationary over any reasonable time scale.
More precisely, we are interested in characterizing the quasi-
stationary distribution of the process, i.e., the asymptotic
distribution of the population size, conditional on its survival.

Yaglom [2] proved that if m := P ′(1) ∈ (0, 1) then the
quasi stationary distribution exists and its probability gener-
ating function G(z) :=

∑
j∈N gjz

j solves the Schröder func-
tional equation

G(P (z)) = mG(z) + 1−m, ∀z ∈ [0, 1]. (1)

We study the link between the regularity of P (z) and that
of G(z) and we propose a strategy for solving (1).

In the case where P (z) and G(z) are analytic on a disc of
radius r > 1, we rewrite (1) as

∫

|t|=r

G(t)

t− P (z)
dt = mG(z) + 1−m, ∀|z| ≤ r. (2)

The discretization of (2) leads to a numerical method that
is capable to find arbitrary accurate approximations of the
coefficients of G(z). Moreover, we point out the (numerical)
low-rank structure that appears in the discretized problem,
and we show how to exploit it in the proposed procedure.
Numerical tests confirm the nice scalability of the computa-
tional cost with respect to the accuracy of the approximation
of G(z). Finally, we discuss the extension of the technique
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to multi-type processes and how to deal with the curse of
dimensionality.
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ABSTRACT
In [2], the authors constructed a sequence of stochastic fluid
processes and showed that it converges weakly to a Markov-
modulated Brownian motion {(Xt, ϕt)}t≥0.

Here, we construct another sequence of stochastic fluid
processes, with different characteristics to the ones considered
in [2], and show that it converges strongly to {(Xt, ϕt)}t≥0.
We also show that the rate of this almost sure convergence
is proportional to n−1/2 logn.

When reduced to the special case of standard Brownian
motion, our convergence rate is an improvement over that
obtained by [1], which is proportional to n−1/2(logn)5/2.
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One-sided Markov additive processes: exit problems and
related topics
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ABSTRACT
This tutorial continues the story of Markov additive processes
presented by Jevgenijs Ivanovs, focusing on exit problems and
possible applications in applied probability intimately related
with queueing theory, risk theory and financial mathematics.

At the beginning, we discuss main ideas presented in [2]
and [3] corresponding to exit identities and potential mea-
sures. Later, following [4] and [6], we consider the seminal
Wiener-Hopf factorization. We will also mention new models
based on random observations (see [5]) and on the killing
that depends on the state of the Markov additive processes
(see [1]).

At the end of the tutorial we show extended list of possible
applications of the above mentioned theory.
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Quasi stationarity
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ABSTRACT
Many biological systems are predicted to “die out”, yet they
persist over any reasonable time scale. This phenomenon,
termed quasi stationarity, is apparent in many biological
systems: a population may persist over many years; an
infection may become endemic in a population; a chronically
ill patient may survive for a long period of time. I will review
several approaches to modelling this behaviour.
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ABSTRACT
We apply physical interpretations to construct algorithms
for the key matrix G in discrete-time quasi-birth-and-death
(dtQBD) and its z-transform G(z) , motivated by the work
on stochastic fluid models (SFMs) in [13]. In this method-
ology, we first write a summation expression for G(z) by
considering a physical interpretation similar to that of an
algorithm in [13]. Next, we construct the corresponding it-
erative scheme, and prove its convergence to G(z).

In particular, here we consider the physical interpretation
of Algorithm 1 for Ψ(s) in [13], and use a similar physical
interpretation for G(z) partitioned into three sections, each
expressed in terms of matrices analogous to block matrices
in the fluid generator Q(s) in stochastic fluid models.

1. INTRODUCTION
We consider stochastic fluid models (SFMs) and quasi-

birth-and-death processes (QBDs), which are key processes
in the literature of matrix-analytic methods (MAMs). We
exploit the similarities between them in order to apply anal-
ogous physical interpretations to construct new expressions
and algorithms for the key matrix G in discrete-time QBDs
(dtQBDs) and its z-transform G(z).

Many expressions in the theory of SFMs, including those
for the matrix Ψ(s), have underlying physical interpreta-
tions, which are obtained by deconstructing sample paths
into various components, and then writing corresponding
expressions in terms of fluid generator Q(s) [9, 11, 12, 13].

Here, we apply a physical interpretation and conditioning
similar to that used in the construction of [13, Algorithm 1]
for matrix Ψ(s) in SFMs to derive an expression and algo-
rithm for the matrix G(z).

The main algorithms for QBDs were generated with phys-
ical interpretations where the set of included sample paths
were partitioned, according to the iteration count, by the

∗Australian Research Council Centre of Excellence for
Mathematical and Statistical Frontiers.
†The second author would like to thank the Australian Re-
search Council for funding this research through Linkage
Project LP140100152.

ACM ISBN 978-1-4503-2138-9.
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maximum level reached. The linearly-convergent algorithms
then had a linearly increasing maximum level, while the
quadratically convergent algorithms had a geometrically in-
creasing maximum level.

Such a partitioning was not entirely appropriate when al-
gorithms were being developed for SFMs. Instead, in [11,
Sections 3.1-3.5], sample paths included in the matrix Ψ(s)
were partitioned according to a key level, y, and the be-
haviours on the required three sample path components were
carefully controlled: starting at level 0 and reaching level y,
leaving level y before returning to level y, and starting at
level y until reaching level 0 for the first time. Each of these
components can be expressed in terms of the fluid genera-
tor Q(s).

To construct an analogous algorithm for G(z), we use a
similar partitioning principle and three sample path com-
ponents to construct the iterations for G(z). We express
each component in terms of the matrix M(z), the dtQBD-
equivalent of the fluid generator Q(s).

2. PRELIMINARIES

2.1 Discrete-time QBDs
Consider a dtQBD, denoted {Xt : t = 0, 1, 2, . . .}, on a

two-dimensional state space {(n, i) : n ≥ 0, 1 ≤ i ≤ m},
with level variable n and phase variable i, and the one-step
transition probability matrix

P =




B A+ 0 0 · · ·
A− A0 A+ 0 · · ·
0 A− A0 A+ · · ·
0 0 A− A0 · · ·
...

...
...

...
. . .



, (1)

where matrices B,A+,A−,A0 are square matrices of or-
der m such that, for all i, j ∈ {1 ≤ i ≤ m},

[B]ij = P (Xt+1 = (0, j) | Xt = (0, i)), (2)

[A+]ij = P (Xt+1 = (n+ 1, j) | Xt = (n, i)), (3)

[A−]ij = P (Xt+1 = (n− 1, j) | Xt = (n, i)), (4)

[A0]ij = P (Xt+1 = (n, j) | Xt = (n, i)). (5)

Discrete-time QBDs have been used to analyse a variety of
real-life situations including modelling embedded queues [16]
and maintenance [14]. The analytical expressions for the
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key quantities in the transient and stationary analysis of
this model have led to powerful algorithms. The derivations
of both the analytic expressions and subsequent algorithms
appear in [1, 6, 16].

We now define a key building block used in the construc-
tion of the algorithm in later sections.

Definition 1. For complex number z inside the unit disk,
let the matrices M+(z) = [M+ij(z)]1≤i,j≤m and M−(z) =
[M−ij(z)]1≤i,j≤m be given by

M+(z) =
∞∑

n=0

(A0z)
nA+z = (I−A0z)

−1A+z,

M−(z) =
∞∑

n=0

(A0z)
nA−z = (I−A0z)

−1A−z.

For an irreducible discrete-time QBD, (I−A0z)
−1 exists [17].

The entry [M+(z)]ij is the probability generating func-
tion (PGF) of the time taken for the process to reach level (n+ 1)
for the first time and do so in phase j, whilst avoiding
level (n−1), given the process starts in level n > 0 in phase i
at time zero.

The entry [M−(z)]ij is the PGF of the time taken for the
process to reach level (n − 1) for the first time and do so
in phase j, whilst avoiding level (n + 1), given the process
starts in level n > 0 in phase i at time zero.

The particular quantity we consider in this paper is the
matrix G(z). Before defining G(z), we define τ as the time
taken to first reach level (n− 1). Then the (i, j)-th entry of
the matrix G(z) is defined

[G(z)]ij = E[zτI{τ <∞, Xτ = (n−1, j)}|X0 = (n, i)], (6)

where [G(z)]ij records the PGF of the time taken for the
process to reach level n − 1 for the first time and do so in
phase j, given the process starts in level n at phase i. Note
,I{·} denotes the indicator function throughout the paper.

For 0 ≤ z ≤ 1, the matrix G(z) is the minimal non-
negative solution [17] to

G(z) = A−z + A0zG(z) + A+z(G(z))2. (7)

Transforming this into a fixed-point equation by using the
recommended iteration by Neuts [17], and then representing
in terms of M+(z) and M−(z), we get

G(z) = M−(z) + M+(z)(G(z))2 (8)

or G(z) = (I−M+(z)G(z))−1M−(z). (9)

2.2 SFMs
Consider a SFM, denoted {(ϕ(t), X(t)) : t ≥ 0}, with

phase variable ϕ(t) ∈ S = {1, . . . , n} and level variable X(t)
with lower bound at zero, such that:

• the phase process {ϕ(t) : t ≥ 0} is an irreducible
continuous-time Markov chain (CTMC) with state space
S and generator T = [Tij ]i,j∈S ,

• the level variable X(t) changes at rate dX(t)/dt =
cϕ(t) at time t wheneverX(t) > 0, and at rate max{cϕ(t), 0}
whenever X(t) = 0.

SFMs have been used in the analysis of a variety of real-life
situations, including telecommunications systems [19], risk

assessment [7], power generation systems [10] and congestion
control [18].

The stationary and transient analysis of SFMs and power-
ful algorithms for the numerical evaluations of various per-
formance measures can be found in [2, 3, 4, 5, 11, 13, 20].

We now define the key building blocks in SFMs used in
the construction of the algorithms in [10, 11, 12, 13, 21].
Let S+ = {i ∈ S : ci > 0}, S− = {i ∈ S : ci < 0}, S0 =
{i ∈ S : ci = 0}. Block matrices Q++(s) and Q−−(s) in the
fluid generator Q(s) introduced in [12] are analogous to the
building blocks M+(z) and M−(z) in QBDs, respectively.

Definition 2. For s ∈ C with R(s) ≥ 0, let

Q(s) =

[
Q++(s) Q+−(s)
Q−+(s) Q−−(s)

]
, (10)

where

Q++(s) = C−1
+ [T++ − sI − T+0(T00 − sI)−1T0+],

Q−−(s) = C−1
− [T−− − sI − T−0(T00 − sI)−1T0−],

Q+−(s) = C−1
+ [T+− − T+0(T00 − sI)−1T0−],

Q−+(s) = C−1
− [T−+ − T−0(T00 − sI)−1T0+].

The physical interpretation is reliant on the following defi-
nitions of the in-out fluid h(t) and the first time for h(t) to
hit some y > 0. For any t ≥ 0, define the random variable

h(t) =

∫ t

u=0

|cϕ(u)|du, (11)

interpreted as the total amount of fluid that has entered or
exited the buffer X(·) during the time interval [0, t], and
referred to as the in-out fluid [12] of the process X(·). Also,
for any y > 0, define the random variable

ω(y) = inf{t > 0 : h(t) = y}, (12)

interpreted as the first time at which the in-out fluid of the
process X(·) reaches y.

Subsequently, the physical interpretation of [eQ++(s)y]ij
as shown in [12] and extended in [21] is the Laplace-Stieltjes
Transform (LST) of the distribution of time for the in-out
fluid to reach y for the first time and do so when the pro-
cess is in phase j ∈ S+ whilst avoiding phases in S−, given
that the in-out fluid starts at 0 and the process starts in
phase i ∈ S+.

Further, let θ(x) = inf{t > 0 : X(t) = x} be the first pas-
sage time to level x. For i ∈ S+, j ∈ S−, and s ∈ C, where
R(s) ≥ 0, [Ψ(s)]ij is given by the conditional expectation

[Ψ(s)]ij = E[esθ(x)I{θ(x) <∞, ϕ(θ(x)) = j}|X(0) = x, ϕ(0) = i].
(13)

The physical interpretation of [Ψ(s)]ij is the LST of the
time taken for the process to hit level x for the first time
and does so in phase j, given the process starts from level x
whilst avoiding levels below x.

3. LOWEST-TROUGH ALGORITHM
We construct a lowest-trough algorithm (LT) for the ma-

trix G(z) by considering the physical interpretation of the
sample path corresponding to Algorithm 1 for matrix Ψ(s)
in [13]. Algorithm 1 partitions all relevant sample paths ac-
cording to the lowest-trough observed in any sample path,
corresponding to Ψ(s), occurring at level y.

In this section, we first summarise Algorithm 1 in [13] by
stating the iterative scheme, the integral equation equivalent
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to the iterative expression, and the physical interpretation
of the expression. Next, we apply a similar physical inter-
pretation to derive a summation equation for G(z). Further,
we construct an iterative scheme resulting from that equa-
tion, denoting by GLT

n (z) the matrix calculated in the n-th
iteration of the scheme. Finally, we let the corresponding
algorithm be called the LT Algorithm, and prove its conver-
gence to G(z).

3.1 Algorithm 1 for Ψ(s) in SFMs.
Algorithm 1 in [13] is based upon the following iterative

scheme, which continues until an appropriate stopping cri-
terion is met.

1. Let Ψ0(s) = 0.

2. For n = 0, 1, 2, . . ., let Ψn+1(s) be the unique solu-
tion to

Q++(s)Ψn+1(s) + Ψn+1(s)Q−−(s)

= −Q+− −Ψn(s)Q−+(s)Ψn(s). (14)

For s ≥ 0, the above iterative scheme converges to the
minimal non-negative solution of the Riccati equation for
Ψ(s) [11, 13].

As described in [13], equation (14) is equivalent to

Ψn+1(s) =

∫ ∞

y=0

eQ++(s)y(Q+−(s)

+Ψn(s)Q−+(s)Ψn(s))eQ−−(s)ydy, (15)

which has the following physical interpretation, after defin-
ing Φn as the set of sample paths contributing to Ψn.

Each sample path contributing to [Ψ(n+1)(s)]ij has three
stages outlined below and depicted in Figure 1.

1. Given the process starts at level 0 in phase i ∈ S+, the
process remains in some phases in S+ ∪ S0 until the
process reaches level y in phase i1 ∈ S+ whilst avoiding
any transitions into S−. The LST corresponding to
this stage is [eQ++(s)y]ii1 .

2. Given the process starts at level y in phase i1 ∈ S+,
the process:

• Either makes a transition from phase i1 to i2 ∈ S−
with instantaneous LST rate [Q+−(s)]i1i2 .

• Or, the process leaves level y in phase i1 ∈ S+,
before returning to level y in some phase i3 ∈ S−
along a path in Φn with LST [Ψn(s)]i1i3 .

Then the process makes a transition from phase
i3 to phase i4 ∈ S+ with instantaneous LST rate
[Q−+(s)]i3i4 .

The process then leaves level y in phase i4 ∈ S+,
before returning to level y in some phase i2 along
a path in Φn with LST [Ψn(s)]i4i2 .

The LST rate corresponding to this stage is
([Q+−(s) + Ψn(s)Q−+(s)Ψn(s)]i1i2).

3. Given the process starts from level y in phase i2 ∈ S−,
the process remains in some phases in S− ∪ S0 until
the process drains to level 0 and does so in phase j,
whilst avoiding any transitions into S+. The LST of
the time taken to complete this stage is [eQ−−(s)y]i2j .

By integrating over all possible y, all possible sample paths
are captured in (15).

y

0

Stage 1

i1

i

[eQ++(s)]ii1

Stage 3

i2

j

[eQ−−(s)]i2j

Stage 2

or

[Q+−(s) + [Ψn(s)Q−+(s)Ψn(s)]i1i2

i1 → i2

∈ Φn ∈ Φn

i1 i2

Figure 1: A sample path for Ψn+1(s) from equa-
tion (15) for a particular y.

3.2 Lowest-trough algorithm for G(s) in dtQBDs
We now construct the LT Algorithm using a similar physi-

cal interpretation to that of Algorithm 1 in [13], as described
in Section 3.1 above. Let G0(z) = 0 and define ΩLTn , n ≥ 0,
as the set of sample paths contributing to Gn(z).

Suppose that the process starts from level 1 in phase i
and first reaches level 0 in phase j. Then for each sample
path contributing to Gn(z) the following three stages must
occur, also depicted in Figure 2.

1. Given the process starts at level 1 in phase i, the pro-
cess reaches level k in some phase i1 without making a
downwards transition. The PGF corresponding to this
stage is [M+(z)k−1]ii1 .

2. Given the process starts from level k in phase i1, the
process:

• Either makes a transition to level (k−1) in phase
i2, without reaching leve (k+1), with PGF [M−(z)]i1i2 .

• Or, the process first reaches level (k + 1) for the
first time whilst avoiding level (k − 1), and does
so in some phase i3. The corresponding PGF is
[M+(z)]i1i3 .

Next, given the process starts from level (k+1) in
phase i3, it reaches level k for the first time and
does so in some phase i4 along a path ΩLTn . The
corresponding PGF is [Gn(z)]i3i4 .

The process must repeat the above at least one
more time ending at level k in some phase i5 under
the same restrictions. The corresponding PGF is
[
∑∞
`=2(M+(z)Gn(z)))`]i1i5 . Finally, the process

makes a transition from level k in phase i5 to level
(k − 1) in phase i2.

The PGF corresponding to this stage is [M−(z) +∑∞
`=2(M+(z)Gn(z)))`M−(z)]i1i2 .

3. Finally, given the process starts from level (k − 1) in
phase i2, the process first drains to level 0 in phase j
without making an upwards transition. The PGF cor-
responding with this stage is [M−(z)k−1]i2j .

By stages 1 – 3 above and partitioning on k ≥ 1, we obtain
the following expression,

Gn+1(z) =
∞∑

k=1

M+(z)k−1

(
I +

∞∑

`=2

(M+(z)Gn(z)))`
)

M−(s)k

=
∞∑

k=1

M+(z)k−1((I−M+(z)Gn(z))−1

−M+(z)Gn(z))M−(z)k. (16)
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k
k − 1

1
0

Stage 1

i1

i

[M+(z)k−1]ii1

Stage 3

i2

j

[M−(z)k−1]i2j

Stage 2

or

[M−(z) +
∑∞
`=2(M+(z)Gn(z)))`M−(z)]i1i2

i1

i2

i1

i2

Figure 2: A sample path for GLT
n+1(z) from equa-

tion (16) for a particular k.

We use [15, Theorem 3] below, where ρ(·) represents the
spectral radius of a given matrix.

Lemma 1. Equation

X = AXB + C, (17)

for appropriately sized matrices A, B and C, has the unique
solution given by

X =
∞∑

k=0

AkCBk (18)

if and only if ρ(A)ρ(B) < 1.

After applying Lemma 1, we express equation (16) as the
iterative scheme

GLT
0 (z) = 0, (19)

GLT
n+1(z)−M+(z)GLT

n+1(z)M−(z) (20)

=
(

(I−M+(z)GLT
n (z))−1 −M+(z)GLT

n (z)
)

M−(z),

to construct the LT Algorithm and then show its conver-
gence to G(z).

Lemma 2. GLT
n (z) converges to G(z) as n→∞.

Proof: Firstly, let Ω be the set of sample paths that con-
tribute to G(z) and recall that ΩLTn is the set of sample paths
that contribute to the n-th iteration of GLT

n (z). The phys-
ical interpretation of GLT

n (z) is the PGF of the time taken
to traverse paths in ΩLTn ⊆ Ω, and so 0 ≤ GLT

n (z) ≤ G(z).
Now, from the physical interpretation, for all n, the sam-

ple paths contributing to GLT
n (z), ΩLTn must also contribute

to G(z), that is ΩLTn ⊆ Ω. Now, consider an arbitrary sam-
ple path in Ω. That path must either have a single peak at
some level k ≥ 1 or a minimum trough at some level k. As
such that path is counted by the n-th iteration of ΩLTn for
all n sufficiently large to allow for the necessary sample path
components. Since the sample path was chosen arbitrarily,
then all sample paths in Ω are contained within ΩLTn for

some n. The result follows.

4. NUMERICAL EXAMPLE
Consider the six-phase dtQBD version of Example 1 in [8],

with

A+ =




0.0151 0.3021 0 0 0 0
0 0.0151 0.3021 0 0 0
0 0 0.0151 0 0 0
0 0 0 0.0151 0.3021 0
0 0 0 0 0.0151 0
0 0 0 0 0 0.0151



,

(21)

Algorithm 1 LT Algorithm for calculating G(z)

Input: A−, A0, A+

Set a real ε > 0, z ∈ Re > 0.
Set:
M+(z) = (I−A0z)

−1A+z,
M−(z) = (I−A0z)

−1A−z, and
GLT
n (z) = 0.

while ||GLT
n+1(z)−GLT

n (z)||∞ > ε do
Compute:
C = ((I−M+(z)GLT

n (z))−1 −M+(z)GLT
n (z))M−(z)

Solve:
X −M+(z)XM−(z) = C
Set:
GLT
n (z) = X

end while
Output: G(z) ≈ GLT

n (z)

Work Count:
One matrix inversion, two matrix products, and solv-

ing the Sylvester equation, for approximately 61m3 float-
ing point operations per iteration.

A0 =




0.6344 0.0302 0 0 0 0
0.0302 0.6042 0.0302 0 0 0

0 0.0302 0 0.0302 0 0
0 0 0.0302 0.6042 0.0302 0
0 0 0 0.0302 0 0.0302
0 0 0 0 0.0302 0.0302



,

(22)
and

A− =




0.0181 0 0 0 0 0
0 0.0181 0 0 0 0
0 0 0.0181 0.9063 0 0
0 0 0 0.0181 0 0
0 0 0 0 0.0181 0.9063

0.9063 0 0 0 0 0.0181



.

(23)
We set the stopping criterion to ε = 10−12.
The algorithm achieved the desired precision in the pro-

duction of the matrix

G =




0.7831 0.0149 0.0016 0.1084 0.0015 0.0905
0.6538 0.0492 0.0030 0.1889 0.0018 0.1033
0.0533 0.0016 0.0183 0.9180 0.0002 0.0087
0.7426 0.0015 0.0016 0.1270 0.0022 0.1252
0.0650 0.0001 0.0000 0.0040 0.0182 0.9126
0.9489 0.0002 0.0000 0.0017 0.0006 0.0485



,

(24)
LT algorithm converges in 60 iterations with an average

time of 0.015 seconds on a Dell OptiPlex 7450 AIO.

5. CONCLUSION
We constructed a linearly-convergent lowest-trough algo-

rithm for G(z) by applying physical interpretation analo-
gous to that of Algorithm 1 for Ψ(s) in [13].

Future work includes using similar methodology to con-
struct further algorithms through their physical interpreta-
tion. That is, we partition sample paths according to some
key level k, derive the corresponding iterative schemes, and
numerically compare them with the existing algorithms.
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ABSTRACT
Aminoacyl-tRNA synthase (aaRS) are a set of 20 enzymes
essential in the biological process of gene expression. For most
life forms, they can be divided by their chemical properties
into two categories: Class I and Class II [3, 4, 1]. Our
analysis aimed to find ways of testing the hypothesis that
aaRS enzymes came into existence at the same time as the
genetic code and had a role in how it was determined.

The methods for this analysis brought about ways of build-
ing a family of stochastic rate matrices from a phylogenetic
tree which was then fit to empirical data [2]. It was found
that for a given tree, the set of Markov matrices that could
be generated formed a closed set under matrix multiplication
and addition.

The results of the analysis found that trees which took into
account aaRS class fit data better than randomly generated
trees. Other chemical properties of interest, particularly
polarity of amino acids, were used to build trees and it was
found that some types of tree generally fit the data better
than ones that only took aaRS class into account. However,
it was found in these cases that also including aaRS class
into the analysis improved the trees even more.

For further analysis, an F-test was developed to compare
the matrices generated by two nested trees to see if the fit
improvement of their respective matrices was statistically
significant. This analysis resulted in confirming that aaRS
class did add significant improvement to trees that took into
account other chemical properties.
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ABSTRACT
SIR epidemic models describe the spread of an infectious dis-
ease in a closed homogeneously mixing population subdivided
into three classes: the susceptibles, the infected individuals
and the removed cases. The class of susceptibles contains
the healthy individuals who can become infected. When
contaminated, a susceptible is contagious for a random dura-
tion, called the infectious period. During this period, he can
transmit the disease to the susceptibles, independently of
the other infected individuals. Then he becomes a removed
case and plays no further role in the spread of the epidemic.

In this work, we consider the case of an SIR epidemic in
which the infectious periods are represented by an arbitrary
absorbing Markov process. When an individual gets infected,
a version of this process starts to govern his period: the rate
at which the individual makes contaminations is a function of
the state occupied by his infection process, and the removal
occurs as soon as it is absorbed.

We use a martingale approach to determine the exact
final epidemic outcome, that is, the state of the population
when there are no more infected individuals. We derive
the distribution of two statistics: the ultimate number of
susceptibles and the final severity, a measure of the total
cumulative cost due to all infected individuals that emerged
during the course of the epidemic.

Next, we consider a particular case where the infection pro-
cesses are represented by Markov-modulated fluid flows, the
contamination rate and severity functions depending on both
the level and the phase. This provides a flexible and tractable
class of models that allow to incorporate different features in
the description of the disease. The continuous variations in
the infection mechanism may reflect, for instance, the periods
when an individual undergoes a treatment and those when his
illness is worsening. We use techniques from matrix-analytic
methods to refine the results in this setting. We also provide
a closed expression for the basic reproduction number, one
of the most widely used estimators of the virulence of the
epidemic.
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ABSTRACT
Genomes typically contain thousands of genes that perform
different functions. Rather than all arising independently,
these genes group into families that share a common evo-
lutionary origin. Gene families arise because of gene dupli-
cation, which is thought to be one of the major sources of
evolutionary novelty [4, 6]. However, genes are only pre-
served in genomes if they have a function that is maintained
by selection, and at the time of origin a duplicated gene is
identical to another gene with the same functions. A dupli-
cate gene can suffer one of several fates [1, 2]: it may be lost
(nonfunctionalisation) - effectively destroyed by mutation -
leaving its partner to carry out all the gene’s functions; both
copies may be retained but with complementary and reduced
functionality (subfunctionalisation); or it may acquire a new
function (neofunctionalisation) that comes to be protected
by selection.

In 2017 Stark et. al [5] developed and analyzed a math-
ematical model for the fate of a pair of duplicated genes.
In this model it is assumed that each gene can carry out a
number of functions that are controlled by different regula-
tory regions (e.g. different transcription factor binding sites
might activate the gene in different pathways). All the func-
tions are assumed to be protected by selection. Immediately
following duplication the genes are both able to perform
all of the functions. Over time mutations (modelled as a
Poisson process) are able to knock-out regulatory regions
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or the coding region of different genes. A mutation to the
coding region of a gene will inactivate all of it’s functions.
Eventually the genes will meet one of two fates: either one
gene will be lost (nonfunctionalisation) or both genes will be
retained but with complementary functions (subfunctionali-
sation). The innovation in Stark et. al (2017) was to express
this stochastic process as an absorbing state Markov chain
and to recognize that the results from the rich literature of
Phase-Type distributions [3] could be applied to give analytic
solutions for the time to absorption into different states.

In this talk we will introduce the model above and also
discuss some initial results that extend the framework intro-
duced in [5] to cases where:

• There are n > 2 gene duplicates.

• New functions can arise due to mutation in an existing
regulatory region.

• New functions can arise due to de novo creation of a
regulatory region.
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ABSTRACT
A microsatellite, or simple sequence repeat, is a strand of
DNA which repeats a motif of length 1–6 nucleotides [1]. For
example, we may have the string of nucleotides ATATATATAT,
which is the motif AT repeated 5 times. Microsatellites un-
dergo a mutation process, slipped-strand mispairing, which
leads to a change in the number of repeats, at a rate which
is orders of magnitude higher than the rate for other forms
of mutation. Most existing microsatellite models focus on
treating slipped-strand mispairing alone, however, it has been
observed [2, 3, 4] that mutation rate varies between inter-
rupted and uninterrupted repeat sequences. This leads to an
interaction effect between point mutations (which introduce
interruptions) and slipped-strand mispairing. The aim of this
project is to develop new models for microsatellite evolution
which treat slipped-strand mispairing together with point
mutation in a biologically realistic manner, and to fit these
models to data in order to better understand the dynamics
of microsatellite evolution.

The first part of the project is theoretical. We introduce
an absorbing level-dependent quasi-birth and death process
to model the evolution of microsatellite sequences, with the
levels tracking the conventionally-modelled repeat number,
and the phases tracking the extent of interruption in the
repeat sequence. This model is developed at the level of
individual microsatellite sequences, and is then extended to
a population-level model by the introduction of a Poisson
process to model the birth of microsatellites. We then derive a
transient distribution for the population-level process, which
can be fit to some empirical data to estimate, in particular,
the extent of the slowdown conferred by interruptions in
the repeat sequence, among other biologically meaningful
parameters.
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ABSTRACT
Recall that a Markov matrix is said to be “embeddable”
if it is expressible as a matrix exponential eQt where Q
is a Markov generator. In general this is known to be a
hard characterisation problem: Davies [2] provides a useful
summary of what is known in general, with a complete result
known only in the 2 × 2 case [3].

Our particular perspective is to address the problem in a
model-specific fashion where we restrict to classes of Markov
matrices satisfying particular algebraic conditions (for exam-
ple, symmetric transition probabilities). In this way, we show
that significant progress can be made for particular models
and our key observation is that there is, in almost all cases,
a clear algebraic relation between an embeddable Markov
matrix and its generator. Namely, the generator must belong
to the centralizer of the Markov matrix (and vice versa).

To illustrate, we will present the complete solution to the
(model-specific) embedding problem for so-called equal-input
models. This is an important foundational model class in the
context of phylogenetic and molecular substitution models.
We will also explain the role that complex eigenvalues play in
producing exceptional examples. This is work in preparation
[1].
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ABSTRACT
Over the last 5 years+ our research group has explored a
class of continuous-time Markov chains we like to refer to as
“Lie-Markov models” [3]. Each model in this class has the
pleasing property of producing substitution matrices that
are closed under matrix multiplication. To date, our pri-
mary motivation and focus has been on applications to phy-
logenetics and model of molecular substitution. However the
general concept of multiplicative closure of a Markov model
ushers in a multitude of only partially resolved mathemati-
cal questions.

In particular, there is a close relationship to these models
and the well-known algebraic construction of Lie groups and
Lie algebras. In that field, the central dogma states that a
given Lie group, which is generally a non-linear set, is more
easily analysed by passing to its associated Lie algebra (its,
linear, tangent space). The Lie group is then recoverable by
applying the exponential map to the Lie algebra (technically,
the connected component to the identity is recovered in this
way).

In the context of the Lie-Markov models, the situation is
reversed. A Lie-Markov model is defined by choosing a set
of generator matrices that form a Lie algebra. The tran-
sition probability matrices are then obtained by applying
the exponential map (as it standard in Markov chain the-
ory). However, this construction leaves open the question
of what is the algebraic connection between the structure
of the resulting transition probability matrices and the lin-
ear constraints that define the Lie algebra of generator rate
matrices. A notable result follows: the constraints on the
transition probabilities are non-linear if and only if the gen-
erator matrices span a linear subspace that is closed under
commutators (as is required for a Lie algebra) but is not
closed under matrix multiplication.
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Somewhat surprisingly, with notable exceptions (e.g. [1]),
only a few previous authors have constructive solutions to
this problem in the context of general Lie group theory.

In this talk, we will explain the relevance of the required
algebraic structures, explore various illuminating examples,
and present an algorithmic approach to finding a solution
for general Lie-Markov models.

This is work in preparation [2].

1. REFERENCES
[1] W. A. de Graaf. Computation with linear algebraic

groups. Chapman and Hall/CRC, 2017.

[2] J. Shore and J. Sumner. Finding the Lie group
associated to a Lie algebra of matrices. In preparation.

[3] J. G. Sumner, J. Fernández-Sánchez, and P. D. Jarvis.
Lie markov models. Journal of Theoretical Biology,
298:16–31, 2012.

63



Maximum likelihood rearrangement distance for circular
genomes

Venta Terauds ∗

University of Tasmania
Churchill Avenue
Hobart, Tasmania

venta.terauds@utas.edu.au

Jeremy Sumner ∗

University of Tasmania
Churchill Avenue
Hobart, Tasmania

jeremy.sumner@utas.edu.au

ABSTRACT
Phylogenetic modelling attempts to recover the evolutionary
relationships between present-day biological organisms. Typ-
ical input to phylogenetic methods is genomic data such as
DNA or amino acid sequences. There are many techniques
available, but the predominant modern approach is to model
sequence evolution (be it DNA, amino acids, or other) as a
continuous-time Markov chain on a finite state space and
then use likelihood (or a Bayesian approach) to estimate
model parameters and the most likely evolutionary history.

In contrast to the point mutation focus of much phylo-
genetic modelling, genome rearrangement models compare
genomes with identifiably similar content, such as genes or
other large scale genomic units, and focus on differences in
structure, such as the order that these units appear in the
genome. Under these models, evolution occurs via rearrange-
ment of the genomic units.

The calculation of evolutionary distance via models of
genome rearrangement has an inherent combinatorial com-
plexity. Various algorithms and estimators have been used
to address this, however many of these set quite specific
conditions for the underlying model.

We discuss a technique, first presented in in [1] and [2],
which applies representation theory to calculate evolutionary
distance between circular genomes as a maximum likelihood
estimate (MLE) of time elapsed. In [3], the implementation
of the technique was explored and it was shown that it may
be applied to models with any choice of rearrangements and
relative probabilities thereof. We give the results of some
initial MLE calculations for various models, and show that
one may predict the existence or otherwise of an MLE, for
a given pair of genomes, without needing to calculate the
entire likelihood function.
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ABSTRACT
Coral reefs have a wide variety of functions in ocean ecosys-
tems. The process of coral bleaching is a sign of distress, in
which the coral polyps eject their algal resident. However,
some believe that bleaching could be an adaptive response
designed to aid in coral’s resilience. This interpretation is
known as the Adaptive Bleaching Hypothesis (ABH). Coral-
algal symbiosis is crucial to the survival of reef corals, and
the ABH posits that bleaching encourages changes in these
symbioses and thus may allow coral to be better adapted
to the stressful environment, should they subsequently be
re-colonised by a more suitable clade of algae.

We consider a stochastic fluid model for the ABH, inspired
by the work of Helfgott et al. [1], to model the algal density
in an abstracted coral ‘unit’. We consider the phase process
as representing the dominant clade of algae residing in the
coral and the level process to represent the algal density,
which is a proxy for the rate of production of energy for the
coral.

The phase process can change organically due to better-
adapted clades growing faster and becoming dominant, or by
bleaching, after which other clades may or may not colonise
the vacant space. The level input/output rates correspond
to algal growth (increasing density), algal decay (decreasing
density) and bleaching (rapidly decreasing density).

Our primary aim is to model coral mortality through
bleaching, and so we propose that under an algal density
threshold z, our coral ‘unit’ is not receiving enough energy
to sustain itself. We derive the Laplace-Stietljes transforms
of times spent below this density threshold, and times to
reach the threshold. Thus, we can approximate the time
until mortality in our coral ‘unit’ by the time taken for the
coral to reach this threshold as a result of bleaching, and
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subsequently exhaust its energy supplies by spending too
long below the threshold.
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