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The theory of (matrix) Lie groups G and Lie algebras L

Consider the orthogonal group with MMT =1

i (MyMo)(MiMo)T = My(MoMTYMT = 1

i. 1= /\/I_l(/\/IMT)(M_l)T = /\/I_ll(/\/l_l)T = /\/I_l(/\/l_l)T
Consider path M(t) and M(0) = 1.

Tangents X := dl\zgt) . satisfy X + X7 =0

v

v

v

Forms a Lie algebra L:

i X+AY el
i [X,Y]:=XY—-YXeL

Exponential map: exp: L — G
i.e. exp(X)exp(X)" = exp(X)exp(—X) =1/

v
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DNA substitutions modelled as cont-time Markov chain

» Model sequence evolution as a CTMC on nucleotides {A, G, C, T}

» Two extremes: “All rates are the same” OR “All rates (might be!)
different”.

OR?

S % 2 Q
* © O O
Q *x n ™
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Q Q2 QO %
2 o *x Q

» What model is best depends on bias-variance tradeoff.

» Lots of molecular data means model complexity has somewhat been
driven by computing power.
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The GTR model (Tavare 1986)

» Stationary dist: ™ = (7rA,7rG,7rC,7rT)T
» Time reversible: rate A — T equalsrate T — A

* TAST TAS2 TAS3
TGS1 * TGS4 TGSs
TCS2 TCS4 * TCSe
TTS3 T7TTSs TTSe *

» (j)Modeltest hierarchy Posada and Crandell, 1998

» Huelsenback et. al. 2004 considered submodels via constraints on the
“relative rates” s;

| emailed this paper to Peter Jarvis in 2009. ..
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What about the homogeneity assumption?

v

Phylogenetic models are full of contradictory assumptions (of course!)

v

Typically, substitution rates @ are assumed fixed throughout
evolutionary history.

v

Some modern implementations allow for differing rates on each
branch.

v

Leads to a problem...
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What's the problem with global homogeneity?

REALITY? MODEL Forgot 2" taxa
j eQ4 1
= 0
Q Q@ | I
4
Q1 — Q
@2 Q3 Q Q A
eQ — @
> Is a in the same model?

Q = log (eXP(Qs)exp(Q4))
=@+ Q+= [03,04]+ [Qs,[Q3,Q4]]— 2[6\74,[0376\74]]+

» BCH formula with commutators [Q3, Qa] == Q3Qs — Q4 Q3
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GTR (obviously) doesn’t form a Lie algebra

* TAS1 TAS2 TAS3
TGS1 * TGS4 TGSs
TCS2 TCSh * TCSe
TTS3 T7TTSs TTSe *

Non-linear: gacqccaca = (mas1)(mcs2)(m6ss) = gacdcc9ea

Therefore, GTR is not multiplicatively closed.
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Is the GTR model bad for molecular phylogenetics?
S et. al. Syst. Biol. 2012

Maximum absolute error in GTR substitution probabilities

o

50

Percentage error

Distance between Q1 and Q2 UNIVERSITYOf
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“Almost” Lie-Markov: GTR with uniform base frequencies

v

52
S4
%
Se

What about if 7; = % in the GTR model?

53
S5 . T
, e, Q' = Q.

S6
*

» In this case we do have a linear model:
* S1
Q I
So Sy
53 S5
>

formula works: (Q1 + Q)T =

Since this is a linear model, via QT = Q, the first term in the BCH

Qr +Qf

» Commutators don't work though:

[A,B]" = (AB)T — (BA)T

In practice errors are not so bad up to order O(t2).

v

v

= BA— AB = —[A, B]

Will come back to the “dual” case s; = const. later. ..
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Bring me a list of all Lie-Markov models. . .

© Some (specific and general) models are already closed.

» e.g. Kimura models, Jukes-Cantor, Felsenstein 81
» e.g. "Group-based” and equivariant

Q@ What is the Lie-algebraic closure of a model?
» eg. GTR = GM and HKY = RY8.8

© Use regular representation of a finite semigroup.
> e.g. "Group-based” and F81 (see later)

© Constrain problem using symmetries and apply sledgehammer. v v
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Purine/pyrimidine symmetries

» Nucleotides can be divided into purines {A, G} and pyrimidines
{C. T}

» Purines: 2 carbon-nitrogen ring, Pyrimidines: 1 carbon-nitrogen ring
PURINES

Adenine (A) Guanine (6)

PYRIMIDINES

o o NH,

¢ ¢ ¢
HNS T ScH HNY 4 3c—cH, 7 e
C2 1 SCH é’ 1 SCH 5 SEH

~No ot Ny
oW o o

H H H
Uracil (U) Thymine (T) Cytosine (C)
;

Jology, ixth Edion
92008 Freeman and Compary

n—2z

L

UNIVERSITY of
TASMANIA

Jeremy Sumner Lie Markov models 11 /23



Models with purine/pyrimidine symmetry

» Kimura 2-parameter stationary (K2ST) 1980:

D ™ Q%
D ™ ¥ Q2
Q % D™
* 0 ™

» Hasegawa, Kishino and Yano (HKY) 1985:

*  mwaa AL waAS
TGQ * 7TG,B 7rg,5
e wef  ox Tca
nrfB wTh Tra %
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Purine/pyrimidine symmetries

» The mathematicians view AG|CT = {{A, G},{C, T}}
» Symmetries: (AG) and (AC)(GT) € &,
» Generates the dihedral group Dg = G G -

(e, (AG), (CT), (AG)(CT), (AC)(GT), (AT)(GC), (ACGT), (ATGC)}
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Purine/pyrimidine symmetries

» The mathematicians view AG|CT = {{A, G},{C, T}}
» Symmetries: (AG) and (AC)(GT) € &,
» Generates the dihedral group Dg = G G -

(e, (AG), (CT), (AG)(CT), (AC)(GT), (AT)(GC), (ACGT), (ATGC)}

Example with o = (AC)(GT):

x  mwaa AL TaAS x wca wcf wep

_ | mea x 7B mep Tra x  wrf TP

wch wchB o *x  Tco - maB waB  x WA«
B mrf mra ok el weB mea  *

» The labels change but this is still a HKY rate matrix!
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Enter more algebra: group representation theory

» All popular models (Lie-Markov or not) have some permutation

symmetries.
» e.g. GM, GTR, JC, K3ST, F81 have complete symmetry.
K3ST:
x a [ v
o x v B
Q= B v * «
v B oo x

» e.g. K2ST, HKY have purine/pyrimidine symmetry.
» Algebraic theory says (for a linear model!) we can decompose into a

sum of irreducible representations of the relevant permutation group.
» e.g. F81= id @ (31) and K3ST= id @ (22)
> In other words 4=1+3 and 3=1+2.
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What the hell does F81 = jd @ (31) mean?
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What the hell does F81 = id & (31) mean?

» F81:
* T 1 T
T * T T2
Q= =m1Ry + mRy + m3R3 4+ maRa
T3 T3 * T3

T4 T4 T4 *

» The matrices {R1, Rz, R3, Ra} form a basis for this model, e.g.:

0 1 1 1
0 -1 0 0
Ri=1o 0 -1 o0
0 0 0 -1

» Under permutations o € &4 clearly R — R,
i.e. F81 forms a representation of Gg4.
» id is the trivial part: Ry + Ry + R3 + R4 (i.e. JC model!)
» (31) is what's left over: {Ry — Ry, R1 — R3, R1 — Ry} TASMANIAY
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What was that about a sledgehammer?

» F81 is a Lie-Markov model: [R;, Rj] = Ri — R;
» We can form the analogous model with constant columns:
* Qo (3 Q04
a1 * a3«
Q=" P GG+ a3G+asG
a1 Q2 * a4
a1 Qo Q3 *

» Again this provides the id @ (31) representation of G;,. ..
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What was that about a sledgehammer?

» F81 is a Lie-Markov model: [R;,Rj]] = Ri — R;

» We can form the analogous model with constant columns:
* Qo (3 Q04
a1 * a3 Qg4
Q= =a01G+oG+azG+asGy
a1 Q2 * a4

a1 Qo Q3 *

» Again this provides the id @ (31) representation of G;,. ..

But this is not a Lie-Markov modell!

BT A WA 3300
_ 1 000 — _ _
[C17C2]—<1000> (0100) C2C1—<—1100>X
1 000 0100 —-1100
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Her All-embracing Majesty, the general Markov model (!Weyl ~1939)

» GM= id @ 2(31) @ (22) @ (213)
» In other words: 12 =1+2 x 3+2+ 3.

» Our big idea: Models with symmetries must come as direct sum of
irreducible bits

Reduces computational complexity of “use a sledgehammer”
approach just enough to solve the problem.

> ie id® (31) = {Rl, R2, R3, R4} and {Cl, Cz, C3, C4}

» Result (S et. al. JTB 2012): The Lie subalgebras of GM with full
symmetry are JC, K3ST, F81, F+K, and GM.

» Result (Fernandez-Sanchez et. al. JMB 2015): There are (roughly)
35 Lie-Markov models with purine/pyrimidine symmetry.
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The Lie-Markov models with purine/pyrimidine symmetry

(K2ST) (C)

(TrNef) (K3ST)
G G») Gx)
T 1 %
A

No distinguished
D pair (no separate
RY, WS, MK variants)
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“More than” Lie-Markov

» A matrix algebra A (as opposed to a Lie algebra), is a linear set of
matrices closed under products: AB € A

» All matrix algebras form Lie algebras automatically:
[A,B]:=AB—-BAc A
» The reverse is not true (see next slide for counter example).

» In our 2015 characterization of models with purine/pyrimidine
symmetry each model we found actually forms a matrix algebra.

» This is probably because the symmetry conditions are so strong.
» So do the “equivariant” models (Draisma and Kuttler 2009).
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“More than” Lie-Markov: Noether’s central dogma

» Any semi-group produces a Lie-Markov model under the regular
representation, as follows.

» Consider the semigroup S with products xy = x.
If S ={a1,a2,a3,as} we have, e.g.

a; =

O O O
O O O
O O O
O O O
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“More than” Lie-Markov: Noether’s central dogma

» Any semi-group produces a Lie-Markov model under the regular
representation, as follows.

» Consider the semigroup S with products xy = x.
If S ={a1,a2,a3,as} we have, e.g.

1111
0 — 0 00O
17100 0 0
0 00O
» This produces a Lie-Markov model: R; := —1 + a; satisfying

[R,’, Rj] = [a,-, aj] =adaj —aj = R,' — Rj.
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“More than” Lie-Markov: Noether’s central dogma

» Any semi-group produces a Lie-Markov model under the regular
representation, as follows.

» Consider the semigroup S with products xy = x.
If S ={a1,a2,a3,as} we have, e.g.

1111
g — 0 00O
17100 0 0
0 00O
» This produces a Lie-Markov model: R;:= —1 + a; satisfying

[R,’, Rj] = [a,-, aj] =adaj —aj = R,' — Rj.
> None other than the F81 model!
* T 1 T
) * T T2
™3 T3 * T3
T4 T4 T4 *
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“Exactly” Lie-Markov

» We know a few Lie-Markov models which do not form matrix
algebras.

i. “Symmetric embedded” Jarvis and S 2012.
ii. AustMS 2015 model:

-3 0 0 -1 0 2
L; = 1 0 1 L, = 1 0 1
2 0 -1 0 0 -3
» Both models satisfy [L1, Lo] = L1 — L, but have algebraic closures
{L1,L2,X,Y,Z} and {Ly, Ly, X} respectively.

> e.g.
6 0 0 0 0 0
2=10 0 0| =-3L1+L+X==-31+L+|2 0 2
-6 0 0 -2 0 -2
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Final thoughts

» Does anyone here have any other ideas on how to proceed?

Does this issue matter in other contexts?

Can the Lie-Markov condition be used as a productive constraint in
other contexts?

What about time-inhomogeneous Markov chains? What is the
Lie-Markov condition saying in this case?

v

v

v
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