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The theory of (matrix) Lie groups G and Lie algebras L

◮ Consider the orthogonal group with MMT = 1

i. (M1M2)(M1M2)
T = M1(M2M

T
2 )MT

1 = 1
ii. 1 = M−1(MMT )(M−1)T = M−11(M−1)T = M−1(M−1)T

◮ Consider path M(t) and M(0) = 1.

Tangents X := dM(t)
dt

∣∣∣
0
satisfy X + XT = 0

◮ Forms a Lie algebra L:

i. X + λY ∈ L
ii. [X ,Y ] :=XY − YX ∈ L

◮ Exponential map: exp : L → G

i.e. exp(X )exp(X )T = exp(X )exp(−X ) = 1X
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DNA substitutions modelled as cont-time Markov chain

◮ Model sequence evolution as a CTMC on nucleotides {A,G ,C ,T}

◮ Two extremes: “All rates are the same” OR “All rates (might be!)
different”.




∗ α α α

α ∗ α α

α α ∗ α

α α α ∗


 OR?




∗ α β γ

δ ∗ ǫ φ

ψ ζ ∗ ϕ

ξ ω σ ∗




◮ What model is best depends on bias-variance tradeoff.

◮ Lots of molecular data means model complexity has somewhat been
driven by computing power.
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The GTR model (Tavare 1986)

◮ Stationary dist: π = (πA, πG , πC , πT )
T

◮ Time reversible: rate A → T equals rate T → A

Q =




∗ πAs1 πAs2 πAs3
πG s1 ∗ πG s4 πG s5
πC s2 πC s4 ∗ πC s6
πT s3 πT s5 πT s6 ∗




◮ (j)Modeltest hierarchy Posada and Crandell, 1998

◮ Huelsenback et. al. 2004 considered submodels via constraints on the
“relative rates” si

I emailed this paper to Peter Jarvis in 2009. . .
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What about the homogeneity assumption?

◮ Phylogenetic models are full of contradictory assumptions (of course!)

◮ Typically, substitution rates Q are assumed fixed throughout
evolutionary history.

◮ Some modern implementations allow for differing rates on each
branch.

◮ Leads to a problem...
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What’s the problem with global homogeneity?

REALITY? MODEL Forgot 2nd taxa

b

bQ1

Q4

Q2 Q3

−→

b

bQ
Q

Q Q

b ≡

eQ̂ = eQ3eQ4

eQ4

eQ3

eQ̂

◮ Is Q̂ in the same model?

Q̂ = log (exp(Q3) exp(Q4))

= Q3 + Q4 +
1

2
[Q3,Q4] +

1

12
[Q3, [Q3,Q4]]−

1

12
[Q4, [Q3,Q4]] + . . .

◮ BCH formula with commutators [Q3,Q4] := Q3Q4 − Q4Q3
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GTR (obviously) doesn’t form a Lie algebra

Q =




∗ πAs1 πAs2 πAs3
πG s1 ∗ πG s4 πG s5
πC s2 πC s4 ∗ πC s6
πT s3 πT s5 πT s6 ∗




Non-linear: qAGqGCqCA = (πAs1)(πC s2)(πG s4) = qACqCGqGA

Therefore, GTR is not multiplicatively closed.
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Is the GTR model bad for molecular phylogenetics?

S et. al. Syst. Biol. 2012
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These errors vanish on the Lie-Markov models
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“Almost” Lie-Markov: GTR with uniform base frequencies

◮ What about if πi =
1
4 in the GTR model?

◮ In this case we do have a linear model:

Q =




∗ s1 s2 s3
s1 ∗ s4 s5
s2 s4 ∗ s6
s3 s5 s6 ∗


 , i.e. QT = Q.

◮ Since this is a linear model, via QT = Q, the first term in the BCH
formula works: (Q1 + Q2)

T = QT
1 + QT

2

◮ Commutators don’t work though:
[A,B ]T = (AB)T − (BA)T = BA− AB = −[A,B ]

◮ In practice errors are not so bad up to order O(t2).

◮ Will come back to the “dual” case si = const. later. . .
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Bring me a list of all Lie-Markov models. . .

1 Some (specific and general) models are already closed.
◮ e.g. Kimura models, Jukes-Cantor, Felsenstein 81
◮ e.g. “Group-based” and equivariant

2 What is the Lie-algebraic closure of a model?
◮ e.g. GTR = GM and HKY = RY 8.8

3 Use regular representation of a finite semigroup.
◮ e.g. “Group-based” and F81 (see later)

4 Constrain problem using symmetries and apply sledgehammer. XXX
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Purine/pyrimidine symmetries

◮ Nucleotides can be divided into purines {A,G} and pyrimidines
{C ,T}

◮ Purines: 2 carbon-nitrogen ring, Pyrimidines: 1 carbon-nitrogen ring
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Models with purine/pyrimidine symmetry

◮ Kimura 2-parameter stationary (K2ST) 1980:

Q =




∗ α β β

α ∗ β β

β β ∗ α

β β α ∗




◮ Hasegawa, Kishino and Yano (HKY) 1985:

Q =




∗ πAα πAβ πAβ

πGα ∗ πGβ πGβ

πCβ πCβ ∗ πCα

πTβ πTβ πTα ∗



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Purine/pyrimidine symmetries

◮ The mathematicians view AG |CT = {{A,G}, {C ,T}}

◮ Symmetries: (AG ) and (AC )(GT ) ∈ S4

◮ Generates the dihedral group D8
∼= C2 ≀ C2 :

{e, (AG ), (CT ), (AG )(CT ), (AC )(GT ), (AT )(GC ), (ACGT ), (ATGC )}
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Purine/pyrimidine symmetries

◮ The mathematicians view AG |CT = {{A,G}, {C ,T}}

◮ Symmetries: (AG ) and (AC )(GT ) ∈ S4

◮ Generates the dihedral group D8
∼= C2 ≀ C2 :

{e, (AG ), (CT ), (AG )(CT ), (AC )(GT ), (AT )(GC ), (ACGT ), (ATGC )}

Example with σ = (AC )(GT ):

Q =




∗ πAα πAβ πAβ

πGα ∗ πGβ πGβ

πCβ πCβ ∗ πCα

πTβ πTβ πTα ∗


 →




∗ πCα πCβ πCβ

πTα ∗ πTβ πTβ

πAβ πAβ ∗ πAα

πGβ πGβ πGα ∗




◮ The labels change but this is still a HKY rate matrix!
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Enter more algebra: group representation theory

◮ All popular models (Lie-Markov or not) have some permutation
symmetries.

◮ e.g. GM, GTR, JC, K3ST, F81 have complete symmetry.

K3ST:

Q =




∗ α β γ

α ∗ γ β

β γ ∗ α

γ β α ∗




◮ e.g. K2ST, HKY have purine/pyrimidine symmetry.

◮ Algebraic theory says (for a linear model!) we can decompose into a
sum of irreducible representations of the relevant permutation group.

◮ e.g. F81∼= id ⊕ (31) and K3ST∼= id ⊕ (22)

◮ In other words 4=1+3 and 3=1+2.
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What the hell does F81 ∼= id ⊕ (31) mean?
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What the hell does F81 ∼= id ⊕ (31) mean?

◮ F81:

Q =




∗ π1 π1 π1
π2 ∗ π2 π2
π3 π3 ∗ π3
π4 π4 π4 ∗


 = π1R1 + π2R2 + π3R3 + π4R4

◮ The matrices {R1,R2,R3,R4} form a basis for this model, e.g.:

R1 =




0 1 1 1
0 −1 0 0
0 0 −1 0
0 0 0 −1




◮ Under permutations σ ∈ S4 clearly Ri 7→ R
σ(i)

i.e. F81 forms a representation of S4.

◮ id is the trivial part: R1 + R2 + R3 + R4 (i.e. JC model!)

◮ (31) is what’s left over: {R1 − R2,R1 − R3,R1 − R4}
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What was that about a sledgehammer?

◮ F81 is a Lie-Markov model: [Ri ,Rj ] = Ri − Rj

◮ We can form the analogous model with constant columns:

Q =




∗ α2 α3 α4

α1 ∗ α3 α4

α1 α2 ∗ α4

α1 α2 α3 ∗


 = α1C1 + α2C2 + α3C3 + α4C4

◮ Again this provides the id ⊕ (31) representation of S4. . .
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What was that about a sledgehammer?

◮ F81 is a Lie-Markov model: [Ri ,Rj ] = Ri − Rj

◮ We can form the analogous model with constant columns:

Q =




∗ α2 α3 α4

α1 ∗ α3 α4

α1 α2 ∗ α4

α1 α2 α3 ∗


 = α1C1 + α2C2 + α3C3 + α4C4

◮ Again this provides the id ⊕ (31) representation of S4. . .

But this is not a Lie-Markov model!

[C1,C2] =

(
−3 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

)(
0 1 0 0
0 −3 0 0
0 1 0 0
0 1 0 0

)
− C2C1 =

(
−1 3 0 0
3 1 0 0
−1 1 0 0
−1 1 0 0

)
X
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Her All-embracing Majesty, the general Markov model (!Weyl ∼1939)

◮ GM∼= id ⊕ 2(31) ⊕ (22)⊕ (213)

◮ In other words: 12 = 1 + 2× 3 + 2 + 3.

◮ Our big idea: Models with symmetries must come as direct sum of

irreducible bits

Reduces computational complexity of “use a sledgehammer”
approach just enough to solve the problem.

◮ i.e. id ⊕ (31) = {R1,R2,R3,R4} and {C1,C2,C3,C4}

◮ Result (S et. al. JTB 2012): The Lie subalgebras of GM with full
symmetry are JC, K3ST, F81, F+K, and GM.

◮ Result (Fernandez-Sanchez et. al. JMB 2015): There are (roughly)
35 Lie-Markov models with purine/pyrimidine symmetry.
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The Lie-Markov models with purine/pyrimidine symmetry
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“More than” Lie-Markov

◮ A matrix algebra A (as opposed to a Lie algebra), is a linear set of
matrices closed under products: AB ∈ A

◮ All matrix algebras form Lie algebras automatically:
[A,B ] := AB − BA ∈ A

◮ The reverse is not true (see next slide for counter example).

◮ In our 2015 characterization of models with purine/pyrimidine
symmetry each model we found actually forms a matrix algebra.

◮ This is probably because the symmetry conditions are so strong.

◮ So do the “equivariant” models (Draisma and Kuttler 2009).
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“More than” Lie-Markov: Noether’s central dogma

◮ Any semi-group produces a Lie-Markov model under the regular

representation, as follows.
◮ Consider the semigroup S with products xy = x .

If S = {a1, a2, a3, a4} we have, e.g.:

a1 =




1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0



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“More than” Lie-Markov: Noether’s central dogma

◮ Any semi-group produces a Lie-Markov model under the regular

representation, as follows.
◮ Consider the semigroup S with products xy = x .

If S = {a1, a2, a3, a4} we have, e.g.:

a1 =




1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0




◮ This produces a Lie-Markov model: Ri := −1+ ai satisfying
[Ri ,Rj ] = [ai , aj ] = ai − aj = Ri − Rj .
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“More than” Lie-Markov: Noether’s central dogma

◮ Any semi-group produces a Lie-Markov model under the regular

representation, as follows.
◮ Consider the semigroup S with products xy = x .

If S = {a1, a2, a3, a4} we have, e.g.:

a1 =




1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0




◮ This produces a Lie-Markov model: Ri := −1+ ai satisfying
[Ri ,Rj ] = [ai , aj ] = ai − aj = Ri − Rj .

◮ None other than the F81 model!

Q = π1R1 + π2R2 + π3R3 + π4R4 =




∗ π1 π1 π1
π2 ∗ π2 π2
π3 π3 ∗ π3
π4 π4 π4 ∗



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“Exactly” Lie-Markov

◮ We know a few Lie-Markov models which do not form matrix
algebras.

i. “Symmetric embedded” Jarvis and S 2012.
ii. AustMS 2015 model:

L1 =



−3 0 0
1 0 1
2 0 −1


 L2 =



−1 0 2
1 0 1
0 0 −3




◮ Both models satisfy [L1, L2] = L1 − L2, but have algebraic closures
{L1, L2,X ,Y ,Z} and {L1, L2,X} respectively.

◮ e.g.

L21 =




6 0 0
0 0 0
−6 0 0


 = −3L1 + L2 + X = −3L1 + L2 +




0 0 0
2 0 2
−2 0 −2



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Final thoughts

◮ Does anyone here have any other ideas on how to proceed?

◮ Does this issue matter in other contexts?

◮ Can the Lie-Markov condition be used as a productive constraint in
other contexts?

◮ What about time-inhomogeneous Markov chains? What is the
Lie-Markov condition saying in this case?
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