
Introduction Constructive Methods

Computational Methods for Tree Search

Michael Charleston

University of Tasmania
michael.charleston@utas.edu.au

2015.11.17

Computational Methods for Tree Search
michael.charleston@utas.edu.au

2015.11.17
1 / 24

Introduction Constructive Methods

Really big numbers

n # trees yes, but how much is that really?

3 3 enumerable by hand
4 15 enumerable by hand
5 105 enumerable by hand on a rainy day
6 945 enumerable by computer
7 10395 still searchable very quickly on computer
8 135135 a bit more than the number of hairs on your head
9 2027025 population of Sydney living west of Paramatta
10 34459425 ≈ upper limit for exhaustive searching; about the number of

possible combinations of numbers in the National Lottery
20 8.2×1021 ≈ upper limit for branch-and-bound searching
48 3.21×1070 ≈ number of particles in the universe

136 2.11×10267 number of trees to choose from in the “Out of Africa” data[1]

[1]Vigilant et al.., 1991
Computational Methods for Tree Search

michael.charleston@utas.edu.au
2015.11.17

2 / 24

Introduction Constructive Methods

Which is the best tree?

Given the huge number of possible trees even for small data sets, we
have two options:

Ï Build one according to some algorithm;

Ï Assign a “goodness of fit” criterion and search for the tree(s) which
optimise(s) this criterion.

Computational Methods for Tree Search
michael.charleston@utas.edu.au

2015.11.17
3 / 24

Introduction Constructive Methods

Building Trees From Scratch

The simplest way to build trees is by construction:
Most trees are constructed with an input matrix of distances.

Computational Methods for Tree Search
michael.charleston@utas.edu.au

2015.11.17
4 / 24

Introduction Constructive Methods

What data should we use?

There are many types of data available to infer phylogenies:

Ï morphological characters

Ï morphometric

Ï DNA×DNA hybridization

Ï immunological distances

Ï molecular sequences

Ï RFLP (Restriction fragment length polymorphism)

Ï RAPD (Random ampliflied polymorphic DNA)

Ï SNP (Single nucleotide polymorphism)…

Computational Methods for Tree Search
michael.charleston@utas.edu.au

2015.11.17
5 / 24

Introduction Constructive Methods

Distance Data

These data can be obtained in many ways, most of which do not have an
explicit model, so it is difficult to correct for parallel or convergent
evolution.

However, sequence data can be converted to distances, that do
correspond to a model — by correcting for multiple hits and other
complexities (see later).

Computational Methods for Tree Search
michael.charleston@utas.edu.au

2015.11.17
6 / 24

Introduction Constructive Methods

Constructive Algorithm

Algorithm 1: Construct-A-Tree(D) :T

1 given D, an n×n distance matrix
2 let n be the number of leaves in the final tree
3 let T be a tree // we will return this
4 T ←; // T “gets” the value “empty set”
5 let b be the number of leaves we’ve built into the tree
6 b←n
7 while (b> 1) do
8 · Using distance matrix D, choose x,y to connect
9 · Create new node z as their most recent common ancestor (w.r.t. the others)
10 · Add edges (z,x) and (z,y) to T
11 · Calculate d(z,w) for every remaining vertexw
12 · Remove rows and columns for x and y from D
13 · Insert new row and column for the d(z,w)’s
14 · b← b−1
15 return(T)

Computational Methods for Tree Search
michael.charleston@utas.edu.au

2015.11.17
7 / 24

Introduction Constructive Methods

Constructive Algorithm (cont.)

Note that:

Ï We never go back to fix mistakes;

Ï We always get a tree;

Ï We don’t get a sense of how good any other trees are;

Ï We don’t get a sense of how “tree-like” the distances are.

Computational Methods for Tree Search
michael.charleston@utas.edu.au

2015.11.17
8 / 24

Introduction Constructive Methods

Constructing a tree

Building a tree

Input Data Initialise T =; Is |V (T)| =X? Choose x,y Recalculate D
T ←T+ x

z z

y

Return T

no

yes

Computational Methods for Tree Search
michael.charleston@utas.edu.au

2015.11.17
9 / 24

Introduction Constructive Methods

Construction is FAST

As a kind of hand-wavy method of working out how fast the algorithm
to construct a tree is, we make some simplifying assumptions (that turn
out to be ok):

Ï We care about how the time taken to run the algorithm grows with
the size of the input data;

Ï We ignore implementation details (programming language,
computer);

Ï We ignore constant multipliers: to us, 45n3 is equivalent to n3.

Ï Only the biggest (fastest growing) terms matter:

n4+ 11006︸ ︷︷ ︸
a constant

+ log(n)+n! is dominated by n! .

Computational Methods for Tree Search
michael.charleston@utas.edu.au

2015.11.17
10 / 24

Introduction Constructive Methods

Construction is FAST (cont.)

Construct-A-Tree(D) :T

1 given D, an n×n distance matrix
2 let n be the number of leaves in the final tree
3 let T be a tree // we will return this
4 T ←; // T “gets” the value “empty set”
5 let b be the number of leaves we’ve built into the tree
6 b←n
7 while (b> 1) do // about n iterations
8 · Choose x,y from D // around O(n2)
9 · Create new node z // trivial
10 · Add edges (z,x) and (z,y) to T // trivial
11 · Calculate d(z,w) for every remaining vertexw // O(n)
12 · Remove rows and columns for x and y // trivial
13 · Insert new row and column // trivial
14 · b← b−1 // really trivial
15 return(T)

// trivia+n× (O(n2)+O(n)+ trivia) =O(n3)

Computational Methods for Tree Search
michael.charleston@utas.edu.au

2015.11.17
11 / 24

Introduction Constructive Methods

Choosing x,y

One way is to choose x,y such that they are as close as possible to each
other, but that can fail badly:

A

B

C D

E

F

z

Ï Here, d(C,D) = 3 but they
aren’t each other’s “closest”
relatives.

Ï We should have joined
(E,F) together first and
formed z, their common
ancestor;

Ï Then D and z could have
been joined.

Computational Methods for Tree Search
michael.charleston@utas.edu.au

2015.11.17
12 / 24

Introduction Constructive Methods

Neighbour Joining

Neighbo[u]r Joining uses “net divergence”, a measure of how far each
potential pair of leaves is, to choose which ones to join.
Given a matrix of distances D we use dij as a short-hand for the distance
between leaves i and j.
The net divergence ri of i is given by

ri =
∑
j 6=i

dij,

that is, the sum of the distance of i to any other leaf.
NJ chooses which leaves to join by finding the minimum entry in
matrixM, defined in turn by

Mij =dij−
1

n−2 (ri+rj)

Computational Methods for Tree Search
michael.charleston@utas.edu.au

2015.11.17
13 / 24

Introduction Constructive Methods

Example of NJ

Suppose we have

D=

A B C D E

B 5
C 4 7
D 7 10 7
E 6 9 6 5
F 8 11 8 9 8

with n= 6. First, ri’s (without the gory details):

rA = 5+4+7+6+8= 30

rB = 42, rC = 32, rD = 38, rE = 34, rF = 44

Computational Methods for Tree Search
michael.charleston@utas.edu.au

2015.11.17
14 / 24

Introduction Constructive Methods

Example of NJ (cont.)

This gives us ourM (recallMij =dij− 1
n−2 (ri+rj)):

M =

A B C D E

B -13

C −11.5 −11.5
D −10 −10 −10.5
E −10 −10 −10.5 -13

F −10.5 −10.5 −11 −11.5 −11.5

The minimal entries areMAB andMDE; we have to choose one so we’ll
pick A,B and make new node z.

Computational Methods for Tree Search
michael.charleston@utas.edu.au

2015.11.17
15 / 24

Introduction Constructive Methods

Example of NJ (cont.)

Calculating dzi next we get:

dzC = (dAC +dBC −dAB)/2= 3

dzD = (dAD+dBD−dAB)/2= 6

dzE = (dAE+dBE−dAB)/2= 5

dzF = (dAF +aBF −dAB)/2= 7

— and we also can work out the branch lengths between z and A, B; call
thesewzA,wzB:

wzA = dAB
2

+ (rA−rB)

2(n−2)
= 1;wzB =dAB−wzA = 4

Computational Methods for Tree Search
michael.charleston@utas.edu.au

2015.11.17
16 / 24

Introduction Constructive Methods

Example of NJ (cont.)

We now have a new distance
matrix:

D′ =

z C D E

C 3
D 6 7
E 5 6 5
F 7 8 9 8

and we’ve begun the tree:

z

A

B

Computational Methods for Tree Search
michael.charleston@utas.edu.au

2015.11.17
17 / 24

Introduction Constructive Methods

Searching for a tree

There are two ways in which we can search through tree space to find
the best tree for our data:

Ï Branch-and-bound: finds the optimal tree by implicitly checking
all possible trees

Ï Heuristic: searches by randomly perturbing the tree, does not
check all trees and cannot guarantee to find the optimal one(s).

(we do not count exhaustive searching here, which is only possible for
very small data sets)

Computational Methods for Tree Search
michael.charleston@utas.edu.au

2015.11.17
18 / 24

Introduction Constructive Methods

Branch-and-bound 1

Effectively checks all possible trees but doesn’t list them all.
Finds bounds on the best possible score for any tree containing just a
given part:

A B

C D

In the above we don’t care about the internal structure of the subtrees
A, B, C, or D; just the relationship they have to each other.

Computational Methods for Tree Search
michael.charleston@utas.edu.au

2015.11.17
19 / 24

Introduction Constructive Methods

Branch-and-bound 2

Parsimony is fine:

Ï adding more branches to a subtree can never decrease the tree
length, so

Ï we can use a bound of the parsimony length of the subtree.

Computational Methods for Tree Search
michael.charleston@utas.edu.au

2015.11.17
20 / 24

Introduction Constructive Methods

Heuristic Search

Heuristic methods do not offer any guarantees: they are the best we can
do under difficult computational circumstances.

They can do very well but remember optimality is not guaranteed!

Computational Methods for Tree Search
michael.charleston@utas.edu.au

2015.11.17
21 / 24

Introduction Constructive Methods

Landscapes

The landscape of the problem affects how well our heuristic searching
will do.

The more rugged the landscape, the harder it will be to search.

Computational Methods for Tree Search
michael.charleston@utas.edu.au

2015.11.17
22 / 24

Introduction Constructive Methods

Heuristic search in tree space

The process is quite simple.

1. Begin with a tree T.

2. Perturb T at random to get T ′ — this is the “branch-swapping” part
of PAUP*.

3. Calculate the value of the optimality criterion of this tree.

4. If the new tree is acceptable, set T ′ to T and continue the random
walk.

5. If not, keep trying different perturbations until we get bored.

Computational Methods for Tree Search
michael.charleston@utas.edu.au

2015.11.17
23 / 24

Introduction Constructive Methods

Pros and Cons of heuristic search

Pros:

Ï It’s fast, and is the only way to tackle large problems;

Cons:

Ï Cannot guarantee to find the optimal solution;

Ï Different runs can find different “best” trees;

Ï Sensitivity to search parameters.

Computational Methods for Tree Search
michael.charleston@utas.edu.au

2015.11.17
24 / 24

	Introduction
	Constructive Methods
	fromScratch
	Distances
	Phylogenetic Data
	Searching Tree Space

