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Subfunctionaliztion

We consider the evolution of a pair of gene duplicates, each with z
regulatory regions and a coding region.

Under the subfunctionalization model a null mutation can fix
in any of the z regulatory regions of either copy. We assume this
occurs at equal Poisson rate ur for all 2z regions.

Coding 1 2 z

in the coding region of either gene. We assume this occurs at Poisson
rate uc for each gene.

Coding 1 2 z
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Fates of Duplicates

As mutations build up in the two copies, one of two possible fates
eventually occurs

Subfunctionalization

Coding 1 2 z

Coding 1 2 z

Pseudogenization, or gene loss

Coding 1 2 z

Coding 1 2 z
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Biological model

(0→ 1)− 4ur (1→ 2)− 3ur (2→ 3)− 2ur (3→ P )− ur

(0→ P )− 2uc (1→ P )− uc (2→ P )− uc (3→ P )− uc

(1→ S)− 3ur (2→ S)− 2ur (3→ S)− ur

Notice
Initial rate of Pseudogenization is 2uc

After first mutation, drops to uc

At final mutation, increases to uc + ur .
Rate of Subfunctionalization equals rate of transition to i + 1 equals
(z − i)ur .
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Continuous-time Markov Chain

Model is given by Q = [qij ] where

qij =



2uc if i = 0, j = P
2zur if i = 0, j = 1
uc if 1 ≤ i ≤ z − 2, j = P
(z − i)ur if 1 ≤ i ≤ z − 2, j = i + 1 or j = S
ur + uc if i = z − 1, j = P
ur if i = z − 1, j = S.

(1)

The structure of this CTMC is much like those that give rise to the
phase-type distribution.
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Generator as block matrix

For CTMCs of this structure, it is convenient to write

Q =
[

Q∗ V
O O

]
, (2)

where Q∗ contains the entries corresponding to transitions between
transient states, and V transitions to absorbing states.
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Some measures
Its possible to exploit the phase-type-like structure of our chain to derive
many measures of interest.

Probability density of absorption

fi (t) = eieQ∗tV1 (3)

Cumulative distribution function

Fi (t) =
∫ t

u=0
fi (u)du

=
∫ t

0
eieQ∗uV1du

Using the fact that Q∗1 + V1 = 0 its easy to show

Fi (t) = 1− eieQ∗t1. (4)
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Some measures
With the density and cumulative distribution functions, we’re able to
derive results for various measures

Probability of absorption into j ∈ {S,P}

pi ,j =
∫ ∞

t=0
eieQ∗tVjdt

= −ei(Q∗)(−1)Vj (5)

The kth moment of time until absorption

m(k)
i =

∫ ∞
t=0

tkeieQ∗tV1dt

= (−1)kk!ei(Q∗)(−k)1, (6)

Variance of time until absorption

vari = m(2)
i − (mi )2. (7)
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Cause-specific hazard rates
When there are several absorbing states, often interested in the
cause-specific hazard rate

Cause-specific hazard rate

λij(t) = lim
h→0+

P(t < T{S,P} < t + h,X (T{S,P}) = j |T{S,P} > t,X (0) = i)
h

= fij(t)
1− Fi (t) =

eieQ∗tVj
e0eQ∗t1 (8)

fi (t) =
∑

j∈{S,P}
fij(t),

λi (t) =
∑

j∈{S,P}
λij(t). (9)
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Thinking physically...

The numerical states in our chain are essentially a pure-birth process
(recall we track the number of mutations to have occurred).

Think of the process eventually reaching the state z − 1, with no
possibility of transition from i to j < i .
Recall

qz−1,P = uc + ur ,
qz−1,S = ur .

Since hazard rate assumes process is not absorbed, as t becomes large
X (t) is almost certainly z − 1.

So lim
t→∞

λij is surely uc + ur for j = P ur for j = S.
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Some useful definitions

We define the following:

Some events
The event that processes has not been absorbed by time t, but is
absorbed by later time t + h
Ah

t = {t < T{S,P} < t + h}.

The event that process has not been absorbed by time t
Bt = {T{S,P} > t}.
The event that the process has entered state z − 1 by time t
Ct = {Tz−1 ≤ t}.
The event that the process has not entered state z − 1 by time t
C t = {Tz−1 > t}
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Proof outline for lim
t→∞

λij

First, note that

lim
t→∞

P(Ct |Bt ,X (0) = i) = 1 and lim
t→∞

P(C t |Bt ,X (0) = i) = 0,

Now,

lim
t→∞

λij(t) = lim
t→∞

lim
h→0+

P(Ah
t ,X (T{S,P}) = j |Bt ,X (0) = i)

h
by law of total probability and two limits above this becomes

lim
t→∞

lim
h→0+

P(Ah
t ,X (T{S,P}) = j |Bt ,X (0) = i ,Ct)

h
Which simplifies to

lim
t→∞

lim
h→0+

P(X (t + h) = j |X (t) = z − 1)
h

(10)

By Markov Property we can drop the t’s, and we’re left with qz−1,j
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Cause-specific hazard rates

Time - (units 1/u
c
)
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Something slightly different

We might be interested in the rate of absorption into state P at time t
conditional only on not having been absorbed into P.

We define the following rate

Pseudogenization rate

hz
P(t) = lim

h→0+

P(t < TP < t + h|TP > t,X (0) = 0)
h

= f (t)
1− F (t)

= e0eQ∗tVP

1−
∫ t

u=0 e0eQ∗uVPdu

= e0eQ∗tVP
1− e0 (eQ∗t − I) (Q∗)(−1)VP

. (11)

Here TP is RV tracking time to absorption into P, and could be infinity.
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Some limit analysis

Intuitively, expect pseudogenization rate to go to 0 as t →∞.

This is easily proved using fact that

limt→∞eQ∗t = 0, (12)

Notice

lim
t→∞

hP(t) = limt→∞ e0eQ∗tvP
1− limt→∞ e0 (eQ∗t − I) (Q∗)(−1)vP

= 0
1 + e0(Q∗)(−1)vP

= 0. (13)
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Wake up! A picture.
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A quick (historical) aside

Some work has been done in the past on modelling this
subfunctionalization process.

Hughes and Liberles (2007,2008) did approximate mechanistic
analysis implicitly based on embedded DTMC of process considered
here.
Later, phenomenological approximations have been used, informed by
analysis of Hughes and Liberles (Notable Konrad (2011), Tuefel
(2014)).
Sigmoid functions have been successful in fitting to real data.

This motivates us to look into the behaviour of the model in negative time!
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Sigmoid Function

-10 -8 -6 -4 -2 0 2 4 6 8 10
Time - (units 1/u

c
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
h

P12
(t

)

Tristan L. Stark (Utas) Fate of Gene Duplicates November 18, 2015 18 / 25



Limit as t → −∞

Usually interested in physical time. Analysis of negative limit is novel.

We considered a general CTMC with initial distribtuion α and structure

Q =
[

Q∗ V
O O

]
, (14)

hP(t;α) is an obvious generalization of our earlier function (rate of
transition into absorbing state P assuming not already in P).

Using l’Hôpital’s rule we get

lim
t→−∞

hP(t;α) = lim
t→−∞

αeQ∗Q∗VP
−αeQ∗tvP

. (15)
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Limit as t → −∞

We diagonalize Q∗

Q∗ = A−1ΛA

Then we do some algebra to get

lim
t→−∞

hP(t;α) = lim
t→−∞

∑
k [αA−1]keλk tλk(AVp)
−

∑
l [αA−1]leλl t(AVp). (16)

Letting λm be the eigenvalue of maximum absolute real part of Q∗ the
numerator is

Numerator ∑
k

[αA−1]ke(λk−λm)tλk(Avp)

Which in the limit is just λm
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Limit as t → −∞

Similarly, the denomenator is

Denomenator

−
∑

l
[αA−1]le(λl−λm)tλl (AVp)

Which in the limit is just 1. So, it turns out that

Result

lim
t→−∞

hP(t) = −λm = Sp(Q) (17)

We can use this to fit the phenomenological approximation of Tuefel et al
(2014) to our exact mechanistically function.
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Phenom. vs Exact
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Summary

Using theory of phase-type distributions we are able to derive and analyze
mathematical model for the biological subfunctionalization model
assuming only that

The rate of null mutations in regulatory regions is Poisson ur

The rate of null mutations in the coding region is uc

Pseudogenization rate implied by this model turns out to have the same
behaviour as existing phenomenological approximations

We have provided a means to translate between the exact function
and the popular approximation
As well as deriving a host of performance measures

This work provides a mathematically rigorous, mechanistically motivated
and exact analysis for the fate of gene duplicates.
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Future work

Future work will move in two directions

Allowing for multiple duplication events to analyze the fates of whole
gene families.
Expanding the model to allow for a mixture of sub- and
neofunctionalization.
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