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Example

o Buffer in a telecommunication network.
@ Bandwidth on the output streamis C

o Each source has an on-off pattern: during ON intervals, the
source feeds packets at a constant rate r (much smaller than C),
during OFF intervals, the rate is 0.

o Superposition of independent sources: when i sources are in their
ON interval, the total input rate is i x r.
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M/M/1 vs Fluid

M/M/1-type queue Fluid queue

Work in system

Bufferwith C=1,r=04

T v 9

Net input rate = actual input — maximum output
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Markovian assumption

Sources behave in a Markovian manner.

Example:

total of N sources,

each source alternates between ON and OFF state,
ON intervals are exponential with parameter «,
OFF intervals are exponential with parameter (.

= Number of ON sources is a birth-and-death process, transition
i — i — 1 atrate ia, transition i — i + 1 at rate (N — /),
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General Framework

@ Process {X(t), o(t)}

@ ¢ € S is the Markovian phase (controlling system)

o The generator of ¢ is T, assumed to be irreducible, S is finite.
o X € R* is the level (buffer content); when ¢(t) = i,

aX(t) Ci if X(t) >0
ar

~ | max(0,¢) if X(t)=0
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Introduction

General Framework

level

I\ A

time
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Introduction

Density function

Density of (x,/) attime t, x > 0

w6, 1) = 2 PIX(0) < x,0(0) = 1],

Flow equations:

d 0
60+ om(x:£) 6 = %m(X, 07T
Stationary equations: 7;(x) = lim;_. (X, t)
d
&@'(X) G = %WI(X)TI‘

written as L (x)C = m(x)T, C = Diag(c; : i € S). JACEMS

Nigel Bean



Remove horizontal intervals

d
aﬂ(x)C =x(x)T (1)
Partition § = S, U Sp: ¢ = 0in Sp.
Too TcO
m(X) = [me(X),mo(x)] T = [ ]
Toe  Too
Equation (1) becomes
CZ'(ﬂ'.(X)C. = Te(X) Tee + ™o(X) Toe C. = Diag(c; : i € S.)

0 = me(X) Too + mo(X) Too

Replace mo(x) in first equation and obtain an ODE system ‘*ACEMJ’
for we(x). Thus, we may assume that ¢; # 0 for all /.
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Approach

Many authors since '72 have seen the problem mainly in terms of
solving the ODE system

L
ax
with suitable boundary conditions. But
o the ODE approach is sometimes numerically unstable
(eigenvalues with positive real part .. .)

o We like to build algorithmic procedures based on probabilistic
arguments. Equivalently, we are opinionated and want to do
things our own way.

o Probabilistic approach has been very fruitful and connections with
Numerical Analysis have flourished.

()C=m()T,
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More relevant history

Rogers '94 and Asmussen '95 use Wiener-Hopf factorization and
time-reverse duality to prove that the stationary distribution is
phase-type, and they suggest resolution algorithms.

Ramaswami '99 uses renewal arguments leading to a

matrix-exponential form, and uses duality as a basis for a
computational procedure based on QBDs.
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Unit input rates

Change of time scale and input rates
9,
dx

where |C| = Diag(|cj| : i € S).

(X)C=n(x)T ==(x)|Cl[C| T,

Define T =[C|~'T, and so
a x(x)|C| = =(x)|C|T
dx - ’

m(x)|C| is proportional to the stationary density vector of the fluid
queue with infinitesimal generator T and flow rates equal to 1 only.

Write S =S, US_:inS; rateis +1,in S_ itis —1. ‘*ACEMJ’
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Level x =0

Steady state probability of the empty buffer

fim PIX(t) = 0,0(t) =11 =0, €S,

lim P[X(t) = 0,0(t) =jl = 5;, jeS-.

t—o00

“¥ACEMS

Nigel Bean



Analysis

jesS, x>0

Take X(0) = 0 and condition on last visit to level x.

| AW,
/

(%, ) Z/ ri(x,t - 7)d(dr)

€S+

where ¢;(dr) is the probability that the return to the same ‘*ACEMJ’
level occurs in (7,7 + dr) and in phase j € S_.
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jes

mi(x, 1) Z/w, )i (dT)

€S+

t—>oo Z 7Tl / ¢/j dT

€Sy

—Zﬂ', Vi

€S+

where V;; = [ ¢;;(d7) is the probability of return to the same level in
finite time, and doing so in phase j € S_. Matrix notation:

m (X) = m (X)V. FACEMS
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Introduction  Analysis W Algorithms

So far,

[ri(x) m_(x)] = [me(x) wp(x)V]

N ()
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eSS, x>0

level

‘ time
t—7 t
t
DY / Bi(t — ) Tyy(x. 7)dlr
jes_ kes, 70

f3(t) = probability of being in level 0 and phase j € S_ at time t,
~ki(X, 7) = probability of crossing level x at —
in phase i € S; while avoiding level 0. ‘*ACEMJ.
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iesS,
JES_ keSS
oo Z Z 5] /k/ Yki( X, T)dT
JES_ keSy
= Z Z B TikT ki(x)
jeS_ keS8
Hence,

i (x) = B_T_T(x)
k.i(x) : expected number of visits to level x in phase i € S,
starting from level 0 in phase k € S, “YACEMS
under a taboo of level 0.
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Analysis

Structure of I'(x):

Take i,j € Sy, condition on last visit to level x — y.
level

t_ o ; time

t
= 3 /0 Yk(X = ¥, t =T (¥ 7)dT S ACEMS

keS,
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t
it =3 /0 (X = Yot — Ty, 7)dT

keSy

Take integral from 0 to oc:

Fi(x) = > Ti(x = y)ki(y)

keSt

or
rx)=r(x-yr(y), allo<y<x

Hence, I'(x) = e** for some K.
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So far,

[ (x) 7_(x)] = B_T_ e[ V]

o To be determined: K, 3_and v

@ Focus on V. Once it is known, the rest is easy.
Q B_ [T,, + T,+\U] =0.
o K= T11 +\UT21.

@ Recall: V is the first passage probability from (0, S ) back to
(0,S8-).
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Down

Let Gji(y) be the probability that, starting from level y in phase i € S_,
the fluid hits level 0 in a finite time and does so in phase j € S_.

level

time
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An expression for ¥

level

time

V= / e’ Y T, G(y)dy “JACEMS
0
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Doooooown

level

v time

= Markov process of successive minima. ‘*ACEMJ’
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Doooooown

Only visible phases are in S_ so transitions from j to k occur in one of
two ways:

0 adirect jump from j to k: rate Tj

@ an invisible jump from j to some i € S followed by a return to that
level in phase k: rate ;s TiVik-

Thus,
U — Tff + T,+\Il

and
Gly) =¥
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An equation for W

v / el T,_ G(y)dy
0

[o.¢]
/ eT++y T+_ eUydy,
0

:/OO el T, eT-—+T-+Vy gy
0
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A Ricatti equation for v

vV = /OO eT++y TJr* e(T,,+T,+\U)ydy'
0

Since Y = [;° eV Ce®dy < AY + BY = —C.
This is equivalent to solving the Sylvester Equation
T++‘U + \U [Tff + \UT7+W] - —T+,

Since T, and U = T__ + T_, WV are both generator matrices, V¥ is
also the minimal non-negative solution.
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Times

@ We want to consider time-based performance measures

@ No longer can we just remove horizontal intervals

@ We have to be careful in just rescaling time to achieve unit rates
o This requires a different approach:

In-Out Fluid
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In-Out Fluid

Instead of time, consider the total amount of fluid that has flowed into
or out of the buffer during the time interval (0, t].

t
f(t) :/o |Copyldlt

Then w(y) = inf{t > 0: f(t) = y} is the first time at which the total
in-out fluid reaches y.
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In-Out Fluid

Fori,je S, US_, let

8 (j, 1) = Plw(y) < t,p(w(y)) = jIX(0) = 0,4(0) =]
be the joint probability mass/distribution function that, starting from
level zero in phase i, the the total amount of fluid that has flowed into

or out of the buffer first reaches y at time less than or equal to ¢, and
does so in phase j.

Let AY(t) be the limiting matrix given by

[AY(1)]; = limt — 008 (j, 1)
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The Q matrix

The matrix AY(t) is given by
A (t) = QY
where,

Qry = C'[Tiq — Tio(Too) ' Toul,

Q- = |C_| [T — T_o(Too) ' To_],
Q- = C'[T— — Tio(Too) ' To-l,
Q. = |C_|7 [Ty — T_o(Too) " To4].
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1\

Recall W is the matrix such that [W]; = [ ¢;(1))dt.

Thus, W records the probability of the sample paths that start in phase
i € S, atlevel z and first returns to level z in phase j € S_.

Then V¥ satisfies

Vo= / e [Q,_ +vQ_,v]e%Vdy
0

and is the minimal nonnegative solution to the Ricatti equation

QuiV+VQ__ =—[Q- +VQ V]
¥ ACEMS
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Algorithms

Algorithm 1

Condition on the lowest “valley”:

time

193] piny}
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Algorithm 1

V= / eo++y [Q+_ + \UQ_+W] eo“ydy
0
Consider an iteration, where Vg =0 and, forn=0,1,.. ., let
wn+1 == / eo++y [QJ,-— + Wno_+Wn] eo__ydy
0

This is equivalent to solving the Sylvester Equation

Q++\Iln+1 + \Iln+1 fo - - [Q+7 + \Ian,+\Iln]

o Linearly convergent algorithm.
“¥ACEMS
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Algorithms

Algorithm 2

Condition on the epoch of first decrease:

time
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Algorithm 2

v / T g0y Q, elo-—+0-i ¥y gy
JO

Consider an iteration, where Vg =0 and, forn=0,1,.. ., let

Wooq = W= / T g0y q, elo--+0-iilygy
0

This is equivalent to solving the Sylvester Equation

Q++\Tjn+1 + \Un+1 [fo + \Un07+\|1] = *Q+7

o Linearly convergent algorithm.
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Algorithm 3

Condition on a peak level:
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fluid level

ime
Y= /OO el@++VQ-.ly [Q_ —VQ_. V] e[Q__+Q_+\IJ]ydy
0
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Algorithm 3

v— / Y 0oLl [, —wQ , w]el0—+0-Vlrgy
0
Consider an iteration, where Vg =0 and, forn=0,1,.. ., let
wn+1 _ /oo e[Q+++\|JnQ_+]y [Q+_ _ wno_+wn] e[Q__+Q_+\Ifn]ydy
0
This is equivalent to solving the Sylvester Equation

[Q++ + \UanJr] wn+1 + Wn+1 [fo + Qf+\|;n] = *QJrf + \Uanern

o Can be thought of as an example of Newton’s Method.
o Quadratically convergent algorithm.
o Physical interpretation is quite complicated. FACEMS
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Further Algorithms

@ Can relate the Fluid Model to a range of different QBDs

@ Involves creative ways of observing the evolution of the Fluid
Model.

o The G-matrix of the QBD then looks like

0 ()

G= -
0 f(U(s))

o Use any of the QBD algorithms

o Most appropriate are the family of Stochastic Doubling Algorithms

@ Current work with Giang Nguyen (Adelaide) and Federico Polloni
(Pisa) — so don’t ask questions!!
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