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Example

Buffer in a telecommunication network.
Bandwidth on the output stream is C
Each source has an on-off pattern: during ON intervals, the
source feeds packets at a constant rate r (much smaller than C),
during OFF intervals, the rate is 0.
Superposition of independent sources: when i sources are in their
ON interval, the total input rate is i × r .
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M/M/1 vs Fluid

M/M/1-type queue Fluid queue

Work in system

↑ ↓↑ ↓↑ ↓↑ ↓

Buffer with C = 1, r = 0.4

↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓

Net input rate = actual input − maximum output
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Markovian assumption

Sources behave in a Markovian manner.
Example:
• total of N sources,
• each source alternates between ON and OFF state,
• ON intervals are exponential with parameter α,
• OFF intervals are exponential with parameter β.

⇒ Number of ON sources is a birth-and-death process, transition
i → i − 1 at rate iα, transition i → i + 1 at rate (N − i)β,
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General Framework

Process {X (t), ϕ(t)}
ϕ ∈ S is the Markovian phase (controlling system)
The generator of ϕ is T , assumed to be irreducible, S is finite.
X ∈ R+ is the level (buffer content); when ϕ(t) = i ,

dX (t)
dt

=

{
ci if X (t) > 0

max(0, ci) if X (t) = 0
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General Framework

time

level
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Density function

Density of (x , i) at time t , x > 0

πi(x , t) =
∂

∂x
P[X (t) ≤ x , ϕ(t) = i],

Flow equations:

∂

∂t
πj(x , t) +

∂

∂x
πj(x , t) cj =

∑
i∈S

πi(x , t)Tij

Stationary equations: πi(x) = limt→∞ πi(x , t)

d
dx
πj(x) cj =

∑
i∈S

πi(x)Tij

written as d
dx π(x)C = π(x)T , C = Diag(ci : i ∈ S).
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Remove horizontal intervals

d
dx

π(x)C = π(x)T (1)

Partition S = S• ∪ S0: ci = 0 in S0.

π(x) = [π•(x),π0(x)] T =

[
T•• T•0
T0• T00

]

Equation (1) becomes

d
dx

π•(x)C• = π•(x)T•• + π0(x)T0• C• = Diag(ci : i ∈ S•)

0 = π•(x)T•0 + π0(x)T00

Replace π0(x) in first equation and obtain an ODE system
for π•(x). Thus, we may assume that ci 6= 0 for all i .
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Approach

Many authors since ’72 have seen the problem mainly in terms of
solving the ODE system

d
dx

π(x)C = π(x)T ,

with suitable boundary conditions. But
the ODE approach is sometimes numerically unstable
(eigenvalues with positive real part . . . )
We like to build algorithmic procedures based on probabilistic
arguments. Equivalently, we are opinionated and want to do
things our own way.
Probabilistic approach has been very fruitful and connections with
Numerical Analysis have flourished.
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More relevant history

Rogers ’94 and Asmussen ’95 use Wiener-Hopf factorization and
time-reverse duality to prove that the stationary distribution is
phase-type, and they suggest resolution algorithms.

Ramaswami ’99 uses renewal arguments leading to a
matrix-exponential form, and uses duality as a basis for a
computational procedure based on QBDs.
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Unit input rates

Change of time scale and input rates

d
dx

π(x)C = π(x)T = π(x)|C||C|−1T ,

where |C| = Diag(|ci | : i ∈ S).

Define T̃ = |C|−1T , and so

d
dx

π(x)|C| = π(x)|C|T̃ .

π(x)|C| is proportional to the stationary density vector of the fluid
queue with infinitesimal generator T̃ and flow rates equal to ±1 only.

Write S = S+ ∪ S−: in S+ rate is +1, in S− it is −1.
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Level x = 0

Steady state probability of the empty buffer

lim
t→∞

P[X (t) = 0, ϕ(t) = i] = 0, i ∈ S+,

lim
t→∞

P[X (t) = 0, ϕ(t) = j] = βj , j ∈ S−.
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j ∈ S−, x > 0

Take X (0) = 0 and condition on last visit to level x .

time

level

x

tt − τ

πj(x , t) =
∑
i∈S+

∫ t

0
πi(x , t − τ)φij(dτ)

where φij(dτ) is the probability that the return to the same
level occurs in (τ, τ + dτ) and in phase j ∈ S−.
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j ∈ S−

πj(x , t) =
∑
i∈S+

∫ t

0
πi(x , t − τ)φij(dτ)

−→
t→∞

∑
i∈S+

πi(x)

∫ ∞
0

φij(dτ)

=
∑
i∈S+

πi(x)Ψij

where Ψij =
∫∞

0 φij(dτ) is the probability of return to the same level in
finite time, and doing so in phase j ∈ S−. Matrix notation:

π−(x) = π+(x)Ψ.
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So far,

[π+(x) π−(x)] = [π+(x) π+(x)Ψ]

= π+(x)[I Ψ]
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i ∈ S+, x > 0

time

level

x

tt − τ

πi(x , t) =
∑
j∈S−

∑
k∈S+

∫ t

0
βj(t − τ)Tjkγki(x , τ)dτ

βj(t) = probability of being in level 0 and phase j ∈ S− at time t ,
γki(x , τ) = probability of crossing level x at τ

in phase i ∈ S+ while avoiding level 0.
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i ∈ S+

πi(x , t) =
∑
j∈S−

∑
k∈S+

∫ t

0
βj(t − τ)Tjkγki(x , τ)dτ

−→
t→∞

∑
j∈S−

∑
k∈S+

βjTjk

∫ ∞
0

γki(x , τ)dτ

=
∑
j∈S−

∑
k∈S+

βjTjk Γki(x)

Hence,
π+(x) = β−T−+Γ(x)

Γk ,i(x) : expected number of visits to level x in phase i ∈ S+,
starting from level 0 in phase k ∈ S+,

under a taboo of level 0.
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Structure of Γ(x):

Take i , j ∈ S+, condition on last visit to level x − y .

time

level

x

x − y

tt − τ

γij(x , t) =
∑

k∈S+

∫ t

0
γik (x − y , t − τ)γkj(y , τ)dτ
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γij(x , t) =
∑

k∈S+

∫ t

0
γik (x − y , t − τ)γkj(y , τ)dτ

Take integral from 0 to∞:

Γij(x) =
∑

k∈S+

Γik (x − y)Γkj(y)

or
Γ(x) = Γ(x − y)Γ(y), all 0 ≤ y ≤ x

Hence, Γ(x) = eKx for some K .
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So far,

[π+(x) π−(x)] = β−T−+eKx [I Ψ]

To be determined: K , β− and Ψ

Focus on Ψ. Once it is known, the rest is easy.
β− [T−− + T−+Ψ] = 0.
K = T11 + ΨT21.

Recall: Ψ is the first passage probability from (0,S+) back to
(0,S−).
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Down

Let Gij(y) be the probability that, starting from level y in phase i ∈ S−,
the fluid hits level 0 in a finite time and does so in phase j ∈ S−.

time

level

y
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An expression for Ψ

time

level

y

t

Ψ =

∫ ∞
0

eT++y T+−G(y)dy
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Doooooown

time

level

y

⇒ Markov process of successive minima.
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Doooooown

Only visible phases are in S− so transitions from j to k occur in one of
two ways:

a direct jump from j to k : rate Tjk

an invisible jump from j to some i ∈ S+ followed by a return to that
level in phase k : rate

∑
i∈S+

TjiΨik .

Thus,
U = T−− + T−+Ψ

and
G(y) = eUy
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An equation for Ψ

Ψ =

∫ ∞
0

eT++y T+−G(y)dy

=

∫ ∞
0

eT++y T+− eUydy ,

=

∫ ∞
0

eT++y T+− e(T−−+T−+Ψ)ydy .
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A Ricatti equation for Ψ

Ψ =

∫ ∞
0

eT++y T+− e(T−−+T−+Ψ)ydy .

Since Y =
∫∞

0 eAyCeBydy ⇔ AY + BY = −C.

This is equivalent to solving the Sylvester Equation

T++Ψ + Ψ [T−− + ΨT−+Ψ] = −T+−

Since T++ and U = T−− + T−+Ψ are both generator matrices, Ψ is
also the minimal non-negative solution.
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Times

We want to consider time-based performance measures
No longer can we just remove horizontal intervals
We have to be careful in just rescaling time to achieve unit rates
This requires a different approach:

In-Out Fluid
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In-Out Fluid

Instead of time, consider the total amount of fluid that has flowed into
or out of the buffer during the time interval (0, t ].

f (t) =

∫ t

0
|cϕ(t)|dt

Then ω(y) = inf{t > 0 : f (t) = y} is the first time at which the total
in-out fluid reaches y .
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In-Out Fluid

For i , j ∈ S+ ∪ S−, let

δy
i (j , t) = P[ω(y) ≤ t , ϕ(ω(y)) = j |X (0) = 0, ϕ(0) = i]

be the joint probability mass/distribution function that, starting from
level zero in phase i , the the total amount of fluid that has flowed into
or out of the buffer first reaches y at time less than or equal to t , and
does so in phase j .

Let ∆y (t) be the limiting matrix given by

[∆y (t)]ij = lim t →∞δy
i (j , t)
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The Q matrix

The matrix ∆̂y (t) is given by

∆̂y (t) = eQ(t)y

where,

Q++ = C−1
+ [T++ − T+0(T00)−1T0+],

Q−− = |C−|−1[T−− − T−0(T00)−1T0−],

Q+− = C−1
+ [T+− − T+0(T00)−1T0−],

Q−+ = |C−|−1[T−+ − T−0(T00)−1T0+].
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Ψ

Recall Ψ is the matrix such that [Ψ]ij =
∫∞

0 φij(t))dt .

Thus, Ψ records the probability of the sample paths that start in phase
i ∈ S+ at level z and first returns to level z in phase j ∈ S−.

Then Ψ satisfies

Ψ =

∫ ∞
0

eQ++y [Q+− + ΨQ−+Ψ] eQ−−ydy

and is the minimal nonnegative solution to the Ricatti equation

Q++Ψ + ΨQ−− = − [Q+− + ΨQ−+Ψ] .
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Algorithm 1

Condition on the lowest “valley”:

time

flu
id

 le
ve

l

y 
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Algorithm 1

Ψ =

∫ ∞
0

eQ++y [Q+− + ΨQ−+Ψ] eQ−−ydy

Consider an iteration, where Ψ0 = 0 and, for n = 0,1, . . ., let

Ψn+1 =

∫ ∞
0

eQ++y [Q+− + ΨnQ−+Ψn] eQ−−ydy

This is equivalent to solving the Sylvester Equation

Q++Ψn+1 + Ψn+1Q−− = − [Q+− + ΨnQ−+Ψn]

Linearly convergent algorithm.
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Algorithm 2

Condition on the epoch of first decrease:

time

flu
id

 le
ve

l

y

Ψ =

∫ ∞
0

eQ++yQ+−e[Q−−+ΨQ−+Ψ]ydy
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Algorithm 2

Ψ =

∫ ∞
0

eQ++yQ+−e[Q−−+Q−+Ψ]ydy

Consider an iteration, where Ψ0 = 0 and, for n = 0,1, . . ., let

Ψn+1 = Ψ =

∫ ∞
0

eQ++yQ+−e[Q−−+Q−+Ψn]ydy

This is equivalent to solving the Sylvester Equation

Q++Ψ̂n+1 + Ψn+1 [Q−− + ΨnQ−+Ψ] = −Q+−

Linearly convergent algorithm.
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Algorithm 3

Condition on a peak level:

time

flu
id

 le
ve

l

y 

Ψ =

∫ ∞
0

e[Q+++ΨQ−+]y [Q+− −ΨQ−+Ψ] e[Q−−+Q−+Ψ]ydy
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Algorithm 3

Ψ =

∫ ∞
0

e[Q+++ΨQ−+]y [Q+− −ΨQ−+Ψ] e[Q−−+Q−+Ψ]ydy

Consider an iteration, where Ψ0 = 0 and, for n = 0,1, . . ., let

Ψn+1 =

∫ ∞
0

e[Q+++ΨnQ−+]y [Q+− −ΨnQ−+Ψn] e[Q−−+Q−+Ψn]ydy

This is equivalent to solving the Sylvester Equation

[Q++ + ΨnQ−+] Ψn+1 + Ψn+1 [Q−− + Q−+Ψn] = −Q+− + ΨnQ−+Ψn

Can be thought of as an example of Newton’s Method.
Quadratically convergent algorithm.
Physical interpretation is quite complicated.
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Further Algorithms

Can relate the Fluid Model to a range of different QBDs
Involves creative ways of observing the evolution of the Fluid
Model.
The G-matrix of the QBD then looks like

G =

[
0 Ψ̂(s)

0 f (Û(s))

]

Use any of the QBD algorithms
Most appropriate are the family of Stochastic Doubling Algorithms
Current work with Giang Nguyen (Adelaide) and Federico Polloni
(Pisa) — so don’t ask questions!!
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