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In 1925 the physicist Max Born worked out the correct way to make predictions about
physical systems from their quantum wave functions -- solutions of Schrddinger’s equation
-- using complex probability amplitudes. Apart from some well-publicised ‘thought
experiment’ discussions by the founding figures, a deeper understanding lay dormant

for 40 years (while physicists ‘shut up and calculated’), until Bell formulated his

famous theorem about correlated measurements. These beginnings have led to the field of
quantum information, and potentially a sweeping revision of the mathematics and physics of
probability.

The last few years have seen the first commercial products exploiting quantum science and
its technological possibilities, like secure key distribution encryption systems. As
contradictory as it seems, there may be possibilities ahead for the ‘quantum simulation

of stochastic systems’, which will go faster, further, better than conventional computation
can -- a game changer in the making. Against this backdrop, this talk will investigate a
standard tool of probability and inference -- the likelihood function -- in the context of
a toy model of a quantum random walk on the line.
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Quantum protocols

(9

Shor's factoring algorithm

[prime factorization in polynomial time rather than exponential time classically]

@ Grover's algorithm

[unsorted database search in O(+/n) steps rather than O(n) classically]
@ Quantum random walk

[achieves depth O(n) after n steps, rather than O(y/n) classically]

(9

The data box issue.

¢ Quantum walks galore

>

>
>
>
>

There are general results on target(s) hitting time, return time, asymptotics and all that;

Grover's algorithm can be seen as a special case;

Generically there is always a ‘y/- - - speedup;

You can do quantum walks on a network, on Cayley graphs, in higher dimensions, and lots more - - -
See for example

Mario Szegedy, Quantum speed-up of Markov Chain based algorithms, DOI: 10.1109/FOCS.2004.53
(IEEE transactions);

Salvador Elias Venegas-Andraca, Quantum walks: a comprehensive review Quantum Information
Processing archive Vol 11 #5, Oct 2012 pp 1015-1106
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Complex probability

9 Classical description of probability and stochastic evolution:

— a probability distribution (for a system with discrete states) is a column vector in some

convex (real) space, for example in molecular phylogenetics

PA P a b c d PA
/
pc | Pc | _| e f g h Pc
= —_ = =
P PG P Pe h g f e PG
pT P d ¢ b a pT

— that is, p’ = Mp under some model of time evolution (for example a Markov process) or

an equivalent continuous time version.

9 Quantal description:
— probability is represented via a complex matrix p — the ‘classical’ vector is the real
diagonal, and the whole matrix p undergoes some two-sided change process

pa 0 0 0 ph 7?7 7
0 pc O 0 _ 7 pg ? ?

P — U | C
ZU‘V 0 0 PG 0 : ? pIG ?

0 0 0 opr ? 7

—thatis, p/ = > u v UpV* under some appropriate transformation rules.
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Complex probability — Il

This works, but we need a few rules ...
¢ The density matrix p is hermitean positive semidefinite with unit trace;

@ Given p, the probability of measuring the system in state i is p; = Tr(pP;), where P; is the
projector on to the i'th subspace.

o Dirac notation: this is usually denoted P; = |i)(i|, i € [K] ={0,1,--- ,K — 1}.
{|i}, i € [K]} is the corresponding orthonormal basis (column vectors) and {({i|,i € [K]} is
the dual basis (transposes, row vectors).

@ There are certain admissible time evolutions!
o) = £ ()

best illustrated by examples: - -

1Competely positive trace preserving maps, CPTPM
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Examples of &(p).

¢ Diagonalization map

2mi /K

> let w = ¢ and define the cyclic matrix Q; i1 = w' ,0< i< K-—1. Consider

K—1

1 o

p' = Sding(p) = % E Q'pQ™’
i=0

Result: p’ = Diag(poo, p11, - - - » Pk—1,k—1) — the ‘classical’ diagonal part of p.
@ Unistochastic evolution map
> Let p = Diag(po, p1,- - , Pk—1) be classical, and U a K X K unitary. Then define

p' = Eu(p) = Euog(UpUT).

Result: p’ = Diag(p}, p1, - -+ , Pk_1) is given by p’ = Mp, where M = U o U* is the Hadamard
(component-wise) product of U and U* (M is a doubly stochastic matrix)?.

%

UTAS
2A.W. Marshall and 1. Olkin, Inequalities: Theory of Majorization and its Applications, (Academic, NY, 1979).
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Quantum random walks for pedestrians

@ Classically the state space for a CRW on the line is the Cartesian product Z X Zj — that is,
we have states (m, ¢) where m € Z is the walker location, and ¢ € Z; is the coin state
({H, T} < {0,1} respectively).

@ We can set up a quantum analogue of the walker as follows:
> The corresponding quantal state space is the tensor product

Sy @ o = 02(Z) @ (L)

with basis |[m, ¢) = |m) ® |c).
> The state of the system is described by some total density matrix p. We have to specify the evolution

o7 = ()

and then measure p(") to find the probability distribution of occupation of different sites m.
> Initially p is decomposable, p = py, ® pc, but at intermediate times may not be so expressible.

%

UTAS
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Quantum random walks — Il

@ Special case: classical Bernoulli process as a QRW
> Define the 2 X 2 coin projection operators on to the heads and tails subspaces as Py, Pr as usual.
Introduce the one step right/left translation operators

Ee =S Im+(ml, B =3 |m—1)(m.
mez mez
> Let Vg =E; @ Py + E_ ® Pr (unitary!). Assume the system evolves as
p(n+1) = gc/(ﬂ(N)) = Vclp(n) VJ .

Take the walker initially at the origin, with density matrix p,, = |0)(0|.
Let the coin be in the mixed state

vy

pe = plH)(H| + (1 — p)|T)(T| .
> The walker state after each step is defined by marginalization (tracing out the coin):
PE:) = Trc(p(")).

@ After n steps, the p.d.f. PJ}, for the location of the walker at position m is

P! = Tr(p&?)IP’m), where Pp, = |m)(m|.

@ It is not hard to establish the following:

Result: P], — the probability for locating the walker at position m — is the
same as in the classical Bernoulli process (with a biassed coin if p # %) based
on the binomial distribution. In particular, the mean distance from the origin

~ O(y/n).
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Quantum random walks — 11

@ The interpretation of V, is as in the standard CRW — if the coin measurement (associated
with the Tre(Py---), Tre(Pr---) part of the evolution) turns up H or T, then the walker is
translated to the right or left, respectively.

Q: what if the coin were able to evolve independently?

@ General case: quantum (non-classical), QRW
> Introduce a coin operator Uc (a 2 X 2 unitary). The time evolution is now

P(n+l) = ‘qu(p(n)) = unp(n) Vqun Vou = Ve - (Id ® Uc)

> We work with a variant allowing k evolution cycles between measurement steps, Vg, — (un)kA

%

UTAS
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Quantum random walks — IV

Theorem: for certain classes® of U, the walk is non-classical, and the mean
distance from the origin is not O(y/n) as usual, but now3 O(n).

Hadamard walk
Number of steps: 100. Initial conditions ((1/sq|’t(2)l(!>c +( i/sqrt(z)l1>c) ® I<:v>p
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3Obviously not U = Id! 3 Source:http://dx.doi.org/10.1007/s11128-012-0432-5
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Likelihood in QRW



Likelihood!!

@ Consider the behaviour of the system in a toy model QRW on the line. We take a quantum
model of the coin evolution operator, for example ‘orthogonal’ type* depending on some
external parameter 6:

cosf —sinf 0o -1
Uco(e):( ); eg. U?(%ﬂ)z( 10 )

sin 6 cos 6

@ Consider the probabilities of the walker being at location m, p,(,f)(()), after a single step, but
in the k-cycle implementation of the QRW, assuming the walker starts at the origin,

pw = |0)(0].
@ We study the likelihood function L(0) for N successive observations of the walker, at walker
positions my, ma, -+, my:

L(0; my, mo, -, my) = ) (0)pS(6) - - - pA) (0)

@ How does this behave under different possible measurement scenarios?

i0 i0
4Or of ‘unitary’ type Uéj(G) =1/v2( _:L/‘e eeiig ) including the ‘Hadamard’ walk (the special case 6 = 0).
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The reluctant quantum walker scenario

@ What happens to this QRW if we take a completely biassed coin, p. = |H)(H| but
nonetheless assume that we have made N successive measurements with the coin back at
the origin? —i.e. the likelihood becomes L(0) = (p(()Zk)(G))N.

UTAS
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The reluctant quantum walker scenario

o Here is the likelihood function (actually just p(()2k)) for the first few (even) numbers of cycles
2k = 2,4,6 (plotted against —1 < cos§ < +1):

¢ Conclusion: given that the walker remains at the origin, and despite the biassed coin, the
likelihood function acquires an ever sharpening maximum with increasing evolution cycles,
implying that the coin shuffling evolution can only be driven by the ‘bit flip" operator with

1
0= 3m.
UTAS
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Demosthenes Ellinas & PDJ :
J Phys A (Mathematical & Theoretical):
Biological Modelling (in preparation)

http:/ /iopscience.iop.org/1751-
8121/page/ biological-modelling
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Greek science haunted by
hydra of problems

Leading researchers hang on despite austerity, but their Herculean efforts me
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ot chemical engineer Athanasios
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of ancient Greece have come to life at
ance. The task ol keeping up top-performing
Greek labssuch as his Aerasol and Particle
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he says, as well as the dogged persistence of
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repeatedly roll aboulder up a hill and watchit
roll down again.
Mortal power has so far maintained the
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measures imposed in the wake of the nation's
debterisis in 2010, But five years on, with
prolonged austerity pushing Greece into yet
anather political crisis, sdentiste are wonder-
ing how lang that out put can be kept up

In 2014, budgets for research centres and
universities in Greece were just one-quarter
of their 2009 levels, and take-home salaries
had been sliced by around ane-third, This
year begins with yet more cuts — even as the
courtry implementsa long-awaited low meant
to reform the rescarch landscape and make it
more competitive. Qualified young prafession-
alsare leaving the cauntry inunprecedented
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