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Discrete-time Markov chains (DTMCs)

These are named after Andrei Andreevich Markov (1856-1922).

• Secondary education: good in mathematics but performed
poorly in other subjects.

• 1874: PhD, University of Petersburg (under Chebyshev).
• 1878: gold medal for his scientific work.
• Research areas: number theory, the approximation of

functions, the problem of moments, the calculus of finite
differences.

• Best remembered for: a theory of chains of stochastic
processes (Markov chains).

Markov is my academic great-great-grandfather. See the
Mathematics Genealogy Project
(http://genealogy.math.ndsu.nodak.edu/search.php).
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Discrete-time Markov chains

A random sequence {Xn,n ≥ 0} with a countable state space
(for example, {0,1,2, · · · }) forms a DTMC if

P(Xn+1 = k |Xn = j ,Xn−1 = xn−1, · · · ,X0 = x0) = P(Xn+1 = k |Xn = j).

This enables us to write

P(Xn+1 = k |Xn = j) = pjk (n).

Furthermore, we commonly assume that the transition
probabilities pjk (n) do not depend on n, in which case the
DTMC is called homogeneous and we write pjk (n) = pjk .
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Discrete-time Markov chains

For a homogeneous DTMC, the transition matrix is the matrix
with rows and columns corresponding to the states of the
process and whose jk th entry is pjk . So

P =


p11 p12 · · · p1m
p21 p22 · · · p2m
· · · · · · · · · · · ·
pm1 pm2 · · · pmm

 .
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Discrete-time Markov chains

The n-step transition probabilities P(Xm+n = j |Xm = i) of a
homogeneous DTMC do not depend on m. For n = 1,2, · · · , we
denote them by

p(n)
ij = P(Xm+n = j |Xm = i).

It is also convenient to use the notation

p(0)
ij :=

{
1 if j = i
0 if j 6= i .
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Discrete-time Markov chains

The Chapman-Kolmogorov equations show how we can
calculate the p(n)

ij from the pij .

For n = 1,2, · · · and any r = 1,2, · · · ,n,

p(n)
ij =

∑
k

p(r)
ik p(n−r)

kj .
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Discrete-time Markov chains

If we define the n-step transition matrix as

P(n) =


p(n)

11 p(n)
12

. . . . . .

p(n)
21 p(n)

22 p(n)
23

. . .
. . . . . . . . . . . .

 ,

then the Chapman-Kolmogorov equations can be written in the
matrix form

P(n) = P(r)P(n−r)

with P(1) = P. By mathematical induction, it follows that

P(n) = Pn,

the nth power of P.
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Discrete-time Markov chains

If we have
• an initial distribution π0 = (π0

1, . . . , π
0
n), where

π0
j = P(X0 = j), for all j , and

• the transition matrix P,
we can (in principle) use the Markov property to derive the finite
dimensional distributions.

For k ≥ 1 and n1 < · · · < nk ∈ Z+,

P(Xn0 = x0,Xn1 = x1,Xn2 = x2, · · · ,Xnk = xk )

= π0
x0Pn1

x0x1
[Pn2−n1 ]x1x2 , . . . , [P

nk−nk−1 ]xk xk−1 .
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Discrete-time Markov chains

We are often interested in the stationary distribution of a
DTMC. This can be interpreted as giving the long-run
proportion of time that the chain spends in each of its states.

The stationary distribution does not always exist. However if it
does exist, then it is the unique solution to the system of linear
equations

πP = π,

with
∑

j πj = 1.

We often test whether a DTMC has a stationary distribution by
attempting to solve these equations.
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Continuous-time Markov chains (CTMCs)

A non-negative integer valued stochastic process {Xt : t ≥ 0}
in continuous time is said to be a Continuous-Time Markov
Chain if, for all k ≥ 1, t1 < t2 < · · · < tk+1 and non-negative
integers i1, i2, . . . , ik+1,

P(Xtk+1 = ik+1|Xt1 = i1, · · · ,Xtk = ik )

= P(Xtk+1 = ik+1|Xtk = ik ).

If P(Xt+h = k |Xh = j) = P(Xt = k |X0 = j) ≡ p(t)
jk does not

depend on h, we say the CTMC is homogeneous.
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Continuous-time Markov chains

Observe that

p(s+t)
ij =

∑
k

P(Xs+t = j |Xs = k ,X0 = i)P(Xs = k |X0 = i)

=
∑

k

p(s)
ik p(t)

kj .

These are the Chapman-Kolomogorov equations for a CTMC.
In matrix form, we write P(t) = (p(t)

jk ). Then, for s, t ≥ 0, the
Chapman-Kolmogorov equations can be expressed in the form

P(t+s) = P(t)P(s).

We can show that P(t) is stochastically continuous in the sense
that P(t+h) → P(t) as h→ 0.
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Continuous-time Markov chains

If t = m (a positive integer), the CChapman-Kolmogorov
equations tell us that P(m) = (P(1))m and our hope is fulfilled.
If t and h are nonnegative real numbers, we can write

P(t+h) − P(t)

h
= P(t)

[
P(h) − I

h

]

=

[
P(h) − I

h

]
P(t)

This suggests that we should investigate the existence of the
derivative

Q ≡ lim
h→0+

Ph) − I
h

.
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Continuous-time Markov chains

The matrix Q is called the generator of the CTMC. In practical
modelling with CTMCs it is taken as the data of the model.

Writing Q = (qjk ), for j 6= k , qjk ≥ 0 is the transition rate from
state j to state k and qjj ≤ 0 is such that −qjj is the total
transition rate leaving state j . We usually take∑

k

qjk = 0

for all j .
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Continuous-time Markov chains

For non-explosive CTMCs, the matrix Q determines the
transition probability completely by solving the Kolmogorov
backward or forward equations to get

P(t) = exp(tQ)

=
∞∑

k=0

1
k !

tkQk ,

subject to P(0) = I.

The stationary distribution π satisfies

πQ = 0,

with
∑

j πj = 1.
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Continuous-time Markov chains

Starting at an initial state X0 = j , a CTMC stays in j for an
exponentially-distributed time with parameter −ajj .

Then it jumps to a state k 6= j with probability −ajk/ajj and stays
there for a random time which is exponentially-distributed with
parameter −akk and independent of anything that has
happened previously, and then it jumps to `, and so on ...

In mathematical biology, this simple observation is often called
Gillespie’s Algorithm, because Gillespie discovered it for
himself in 1976. See

Gillespie D.T., A General Method for Numerically Simulating the
Stochastic Time Evolution of Coupled Chemical Reactions,
Journal of Computational Physics 22, 403–434.
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Matrix Analytic Models

• In the 1970s and 1980s Marcel Neuts proposed a class of
techniques for analysing Markov chains with
block-structured transition matrices that have become
known as matrix-analytic methods.

• More recently, there has been interest in general Markov
additive models, which can be thought of as
Markov-modulated Levy processes.

• The interaction of mathematical analysis and physical
insight has played an important role in the development of
results in this area.

• There is an emphasis on computability of performance
measures and, in particular, on algorithmic development.
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Block-structured Markov chains

A discrete-time Markov chain of GI/M/1-type has a
two-dimensional state space. The first dimension is
countably-infinite and the second dimension is finite. When the
chain is in state (k , i), we say that it is in level k and phase i .
With a suitable ordering of the states, the transition matrix can
be written in the form

P =


Ã1 A0 0 0 · · ·
Ã2 A1 A0 0 · · ·
Ã3 A2 A1 A0 · · ·
Ã4 A3 A2 A1 · · ·
...

...
...

...
. . .

 .
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Block-structured Markov chains

The terminology Markov chain of GI/M/1-type comes from the
fact that the embedded Markov chain generated by a GI/M/1
queue observed at arrival points has a transition matrix of the
form

PG =


ã1 a0 0 0 · · ·
ã2 a1 a0 0 · · ·
ã3 a2 a1 a0 · · ·
ã4 a3 a2 a1 · · ·
...

...
...

...
. . .


where ak is the probability that there are k services during an
inter-arrival interval and ãk =

∑∞
`=k a`.
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Block-structured Markov chains

A discrete-time Markov chain of M/G/1-type has a state space
of identical structure. Rather than being block skip-free to the
right, it is block skip-free to the left, so that its transition matrix
can be written in the form

P =


Ã1 Ã2 Ã3 Ã4 · · ·
A0 A1 A2 A3 · · ·
0 A0 A1 A2 · · ·
0 0 A0 A1 · · ·
...

...
...

...
. . .

 .
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Block-structured Markov chains

Its name comes from the fact that the embedded Markov chain
generated by a M/G/1 queue observed at departure points
has a transition matrix of the form

P =


ã1 ã2 ã3 ã4 · · ·
a0 a1 a2 a3 · · ·
0 a0 a1 a2 · · ·
0 0 a0 a1 · · ·
...

...
...

...
. . .


where ak is the probability that there are k arrivals during a
service time and ãk is the probability that the first service time
in a busy period will finish with k − 1 customers waiting in the
queue. In this simple case, ãk = ak−1.
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Block-structured Markov chains

From a modelling point of view, the second dimension has
many uses. For example, it can be used to denote
• the state of an independently-moving environment,
• a number of transmitting sources,
• the progress of one or more phase-type random variables,
• the number of individuals in an interacting species,
• the underlying state of a hidden Markov chain model,
• etc.

Slide 21



Block-structured Markov chains

Markov chains that are both of GI/M/1-type and M/G/1-type
are known as Quasi-Birth-and-Death Processes (QBDs). Their
transition matrices can be written in the form

P =


Ã1 Ã0 0 0 · · ·
A2 A1 A0 0 · · ·
0 A2 A1 A0 · · ·
0 0 A2 A1 · · ·
...

...
...

...
. . .

 .
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A Quasi-Birth-and-Death Process

PHASE
m

0

1

2

i

1 .

i-1

i+1

32 4 . . .

L
E
V
E
L

Slide 23



Chains of GI/M/1-type

The matrix A ≡
∑∞

k=0 Ak describes transitions in the phase,
independently of the level.

For a discrete-time chain of GI/M/1-type, let x be the solution
to

xA = x .

Then the chain is positive recurrent, null recurrent or transient
according as

xA0e′ − x

[ ∞∑
k=2

(k − 1)Ak

]
e′,

is less than, equal to or greater than zero.

Slide 24



Chains of GI/M/1-type

Write the stationary distribution of a discrete-time positive
recurrent chain of GI/M/1-type as π = (π0,π1, . . .). Then
there exists a matrix R such that

πn = π0Rn.

The vector π0 satisfies

π0

[ ∞∑
k=0

Rk Ãk+1

]
= π0.

This is the well-known matrix-geometric form of the stationary
distribution.
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Chains of GI/M/1-type

The matrix R is the minimal nonnegative solution to the matrix
equation

∞∑
k=0

RkAk = R.

The(i , j)th entry of the matrix R is the expected number of
visits to phase j of level 1 before first return to level 0
conditional on the process starting in phase i of level 0.

In general, R has spectral radius which is less than or equal to
one, and the chain is positive recurrent if and only if the spectral
radius of R is less than one.
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Chains of M/G/1-type

To derive the stationary distribution of chains of M/G/1-type,
we use the fact that π = (π0,π1, . . . ,πn) is proportional to the
stationary distribution of the finite-state Markov chain with
transition matrix

P =



Ã1 Ã2 Ã3 · · · Ãn
∑∞

k=0 Ãk+n+1Gk

A0 A1 A2 A3 · · ·
...

0 A0 A1 A2 · · ·
...

0 0 A0 A1 · · ·
...

...
...

...
...

. . .
∑∞

k=0 Ak+2Gk

0 0 0 · · · A0
∑∞

k=0 Ak+1Gk


.
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Chains of M/G/1-type

The (i , j)th entry of the matrix G is the probability that the chain
hits level k − 1 in finite time, and does so in phase j , given that
it starts in phase i of level k .

Clearly G is substochastic and it is stochastic if and only if the
chain is recurrent.

Elementary arguments show that the matrix G is the minimal
nonnegative solution to the matrix equation

∞∑
k=0

AkGk = G.

Slide 28



Chains of M/G/1-type

G is a matrix of probabilities, rather than a matrix of expected
values (as R is). As such, it is a ‘nicer’ object to work with.
Furthermore, for a QBD, the matrix R can be written in terms of
the matrix G via the relation

R = A2 [I − A1 − A0G]−1

and, for a chain of GI/M/1-type, the matrix R can be written in
terms of the matrix G for the dual chain of M/G/1-type. For this
reason, we concentrate on algorithms for calculating G.

To keep the notation simple, I shall discuss the QBD special
case.
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Calculating the matrix G

In the QBD special case, G is the minimal nonnegative solution
to the matrix quadratic equation

A2 + A1G + A0G2 = G.

This equation has an analytic solution only in a few special
cases.

In general, we have to resort to numerical solution.
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A simple procedure

For an irreducible QBD, A1 is invertible. So, an obvious first
approach to solving this equation is to transform it into a
fixed-point equation:

(I − A1)G = A2 + A0G2

⇒ G = (I − A1)−1
[
A2 + A0G2

]
and use the iterative procedure

Gn+1 = (I − A1)−1
[
A2 + A0G2

n

]
with G0 = 0.
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A simple procedure

Neuts showed that, with this iteration, Gn does converge to G.

Furthermore, except when the QBD is null-recurrent, this
convergence is linear.

That is, there exists a constant γ ∈ (0,1) such that

lim sup
n→∞

||Gn −G||1/n = γ.
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Physical interpretations

The type of question that we shall be interested in is

Can we give a physical interpretation to the nth iterate of
procedures such as the one described above?

For Neuts’ original iteration mentioned above, this question has
not had a precise answer until about ten year’s ago. It can be
understood in terms of iterations for tree-structured QBDs.

In general, to understand physical interpretations of the type
that I shall discuss here, we need to know about censoring.
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Censoring

Consider an irreducible, finite-state discrete-time Markov chain
whose states are partitioned into two sets E1 and E2. This
induces a partitioning of its transition matrix T so that

T =

[
T11 T12
T21 T22

]
.

The stationary distribution π = (π1, π2) that satisfies πT = π
also satisfies

π1 = π1

[
T11 + T12 (I − T22)−1 T21

]
with

π2 = π1T12 (I − T22)−1 .
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Censoring

Note that

(I − T22)−1 =
∞∑

k=0

T k
22

and so

π1

[
T11 + T12 (I − T22)−1 T21

]
= π1

[
T11 + T12

[ ∞∑
k=0

T k
22

]
T21

]

and we can interpret π1 as the stationary distribution of the
discrete-time Markov chain observed only when it is in E1.

Similar comments can be made in the case where E2 is infinite
as long as

∑∞
k=0 T k

22 converges elementwise, which is the case
when it leaves E2 with probability one.
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Censoring

In fact, we can say more:

It is not just the case that π1 is the stationary distribution of the
discrete-time Markov chain, censored so that it is observed only
when it is in E1, but[

T11 + T12

[ ∞∑
k=0

T k
22

]
T21

]

is the transition matrix of this chain.

This is true even if the matrix is substochastic, in which case
there is a positive probability that it may leave E1 and not return.
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Censoring

We can also observe that the (i , j)th entry of

[I − T22]−1 T21 =

[ ∞∑
k=0

T k
22

]
T21

is the probability that the Markov chain first enters E1 in state j
given that it started in state i of E2.
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Another Linear Algorithm

I claimed that it was hard to give a physical interpretation of
Neuts’ original algorithm.

We can, however, easily give a physical interpretation for a
related algorithm due to Latouche.

Write the basic equation for G in a different way:

(I − A1 − A0G)G = A2

⇒ G = (I − A1 − A0G)−1A2,

and use the iteration

Gn+1 = (I − A1 − A0Gn)−1A2,

with G0 = 0.
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Another Linear Algorithm

The matrix G1 = (I − A1)−1A2 =
[∑∞

k=0 A1
]

A2. Its (i , j)th entry
is the probability that the chain hits level k − 1 in finite time,
does so in phase j , and never reaches level k + 1, given that it
starts in phase i of level k .

We can use induction to show that the (i , j)th entry of Gn is the
probability that the chain hits level k − 1 in finite time, and does
so in phase j , and never reaches level k + n, given that it starts
in phase i of level k , given that it starts in phase i of level k .

Thus, the successive iterates of this algorithm have the same
physical interpretation as that of the matrix G, but with a linearly
increasing taboo level.
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A Quadratic Algorithm

In (1993), Latouche and Ramaswami proposed the
logarithmic-reduction algorithm. This works by evaluating the
expression

G =
∞∑
`=0

[
`−1∏
i=0

U i

]
D`.
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A Quadratic Algorithm

where the matrices U` and D` satisfy the recursion

U`+1 =
[
I − U`D` − D`U`

]−1 [
U`
]2

and
D`+1 =

[
I − U`D` − D`U`

]−1 [
D`
]2
,

with U0 = (I − A1)−1A0 and D0 = (I − A1)−1A2.
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A Quadratic Algorithm

If we let

Ĝn =
n∑

`=0

[
`−1∏
i=0

U i

]
D`.

then, except when the QBD is null-recurrent, Ĝn converges to
G quadratically. That is, there exists a constant γ ∈ (0,1) such
that

lim sup
n→∞

||Ĝn −G||1/2n
= γ.
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A Quadratic Algorithm

This algorithm also has a neat physical interpretation in terms
of taboo probabilities.

The (i , j)th entry of the matrix Ĝn is the probability that the QBD
will first enter level k − 1 in phase j and does not visit any level
higher than k + 2n+1 − 2 in between, given that it starts in
phase i of level k .

Notice that the taboo level increases exponentially fast in terms
of the number of iterates, which is consistent with the quadratic
convergence of the algorithm.
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A Quadratic Algorithm

The matrices U0 = (I − A1)−1A0 and D0 = (I − A1)−1A2 are,
respectively the transition matrices of the discrete-time QBD
derived from the original discrete-time QBD by observing it at
the time points at which it changes level.

We can use induction to see that

U`+1 =
[
I − U`D` − D`U`

]−1 [
U`
]2

and
D`+1 =

[
I − U`D` − D`U`

]−1 [
D`
]2
,

are the transition matrices of the discrete-time QBD derived
from the original discrete-time QBD by observing it at the time
points at which it hits levels of the form k + m × 2`+1.

Slide 44



A Quadratic Algorithm

So the summand on the right hand side of

G =
∞∑
`=0

[
`−1∏
i=0

U i

]
D`.

takes into account sample paths that hit levels
k + 1, k + 3, . . . , k + 2` − 1, all with level k − 1 taboo, and then
hits level k − 1 with level k + 2`+1 − 1 taboo.
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Further Work

The numerical analysis community has become interested in
these problems.

In 1995, Bini and Meini adapted the Cyclic Reduction Algorithm
to the calculation of G for processes of M/G/1 type. This
algorithm uses a similar censoring idea to the logarithmic
reduction algorithm, but organises the calculations slightly
differently.

A number of speed-up features, such as transforming the
matrices to move eigenvalues away from the unit circle and
using Fast Fourier Transforms are now included in
implementations. Benny Van Houdt maintains a web-site with
state-of-the-art Matlab code.

Slide 46



Newton’s Method

In deriving Latouche’s linearly-convergent algorithm, we used
the fact that

A2 + A1G + A0G2 = G

is equivalent to

G = (I − A1 − A0G)−1A2.

One thing that we can do is apply Newton’s method to the
solution of this equation. We would expect this to lead to a
quadratically-convergent algorithm.
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Newton’s Method

We obtain the sequence

G(n+1)
N −U(n)A0G(n+1)

N U(n)A2 = U(n)A2−U(n)A0G(n)
N U(n)A2 (†)

where
U(n) = (I − A1 − A0G(n)

N )−1.

and
G(0)

N = 0.

The difficult part of implementing this is solving the Stein
equation (†) above for G(n+1)

N .
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Newton’s Method

In 1994, it was shown by Latouche that, for any initial matrix
G(0)

N with 0 ≤ G(0)
N ≤ G, the sequence G(n)

N converges
monotonically and quadratically to G.

By transforming (†) into a standard linear system by
concatenating the columns of G(n+1)

N and writing the coefficient
matrix as a direct sum involving U(n)A0 and U(n)A2, Latouche
provided an algorithm for evaluating the sequence of matrices
{G(n)

N }.

Using this transformation, he showed that each iteration of the
algorithm has a complexity of order O(m6).
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Newton’s Method

Latouche tested Newton’s algorithm against the
linearly-convergent algorithm presented above and found that,
while Newton’s algorithm required up to an order of magnitude
fewer iterations, it could take up to an order of magnitude
longer in terms of computer time to calculate G to within a
given tolerance.

After that time, it would be fair to say that the conventional
wisdom in the matrix-analytic community was that the
complexity of each iteration of Newton’s method makes it
uncompetitive with other algorithms. This attitude was only
reinforced by the later discovery of the quadratically-convergent
logarithmic-reduction algorithm.
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Newton’s Method

However, in 1992, Gardiner, Laub, Amato and Moler had
provided a O(m3) algorithm for solving the Stein equation (†).
This motivated us to revisit the question of how useful Newton’s
method is in this context.

We were also interested in the question of whether we can give
a physical interpretation for Newton’s method, in a similar vein
to the physical interpretations discussed above for the linear
and logarithmic reduction algorithms.
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Physical Interpretation

As with the methods discussed above, the iterates G(n)
N in

Newton’s Method contain the probabilities of certain sets of
sample paths that start in level k and end in level k − 1.

In the physical description that we gave above for the linear and
quadratically-convergent algorithms, these sets were defined in
terms of taboo levels.

In order to understand Newton’s method, we need to look at the
sample paths in a different way.
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Physical Interpretation

Denote the set of sample paths taken into account in G(n)
N by

Ψ(n).

The matrices U(n)A0 and U(n)A2 contain the probabilities of
sets of sample paths that start in level k and end in levels k + 1
and k − 1 respectively. Denote these sets of sample paths by
Φ
(n)
0 and Φ

(n)
2 shifted to level k .
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Physical Interpretation

We have U(0) = (I − A1)−1 and

G(1)
N = U(0)A2 + U(0)A0G(1)

N U(0)A2

=
∞∑
`=1

(
(I − A1)−1A0

)`−1 (
(I − A1)−1A2

)`
where the second equation follows by repeatedly inserting the

left hand side into the right hand side.
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Physical Interpretation

So Ψ(1) accounts for sample paths that start in level one,
increase to some level `, possibly remaining in any level along
the way but never dropping back, and then decrease to level
k − 1, again possibly remaining in any level but never
increasing.

Thus, the sample paths in Ψ(1) are those that have a “single
peak", no matter how high.
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Sample Paths in Ψ(1)

level k

level k-1
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Physical Interpretation

The sets Φ
(1)
0 and Φ

(1)
2 contain sample paths taken into account

by the matrices U(1)A0 and U(1)A2. We have

U(1) = (I − A1 − A0G(1)
N )−1,

so Φ
(1)
0 and Φ

(1)
2 consist of sample paths that have any number

of transitions between states at level k or “single peak"
excursions from level k back to itself, followed respectively by a
single transition to level k + 1 and level k − 1.
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Sample Paths in Φ
(1)
0 and Φ

(1)
2
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Physical Interpretation

The equation for G(2)
N in terms of G(1)

N and U(1) leads to

G(2)
N −G(1)

N

=
∞∑
`=1

(
U(1)A0

)`−1 (
U(1)A2

)`
−
∞∑
`=1

(
U(1)A0

)`
G(1)

N

(
U(1)A2

)`
.
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Physical Interpretation

So, sample paths in Ψ(2) but not in Ψ(1) are made up of a
succession of sample paths that either stay at the same level or
have “single peak" excursions upward, each shifted one level
higher, up to some some level `.

Then a succession of sample paths occurs that either stay at
the same level or have “single peak" excursions upward, each
shifted one level lower occurs, until the process drops to level
k − 1.

The subtraction of the second term on the right hand side of
equation ensures that paths are not counted multiple times.
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Sample Paths in Ψ(2) but not in Ψ(1)
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Physical Interpretation

For general n,

G(n+1)
N −G(n)

N

=
∞∑
`=1

(
U(n)A0

)`−1 (
U(n)A2

)`
−
∞∑
`=1

(
U(n)A0

)`
G(n)

N

(
U(n)A2

)`
.

So, sample paths in Ψ(n+1) but not in Ψ(n) are made up of a
succession of sample paths in Φ

(n)
0 , each shifted one level

higher, up to some some level `, whereupon a succession of
sample paths in Φ

(n)
2 occurs, each shifted one level lower, until

the process drops to level k − 1.
The subtraction of the second term on the right hand side of
equation ensures that paths are not counted multiple times.
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Sample Paths in Ψ(n+1) but not in Ψ(n)
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Physical Interpretation

So, instead of progressively including more sample paths by
relaxing a taboo level, Newton’s method progressively includes
more and more complicated sample paths.

This happens in a ‘fractal’ way: basic units of paths at one
iteration are the sets of paths that were accounted for in the
previous iteration.

Very complicated paths are taken into account within a few
iterations, which intuitively supports the fact that Newton’s
Method converges quadratically.
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