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MOVIES

Unbounded 2-D SFM with negative drift in both
directions:
https://www.youtube.com/watch?v=70gZHmiCwr8

Unbounded 2-D SFM with zero in both directions:
https://www.youtube.com/watch?v=BMaeGBh_Lnc

Doubly-Bounded 2-D SFM with negative drift in both
directions:
https://www.youtube.com/watch?v=oWlTEMmnvqE
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APPLICATION POTENTIAL

DTMCs ⇐⇒ CTMCs

A system that evolves in time is a candidate for
modelling with CTMCs.

A system that can be modelled with CTMCs is a
candidate for modelling with SFMs (including
time-varying).

QBDs ⇐⇒ SFMs

A system that can be modelled with SFMs is a
candidate for modelling with 2-D SFMs and SFFMs.
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EMBEDDING: CTMC→ DTMC

Consider a CTMC {ϕ(t) : t ≥ 0} with state space S and
generator T.

Define a DTMC {ϕn : n = 0,1, . . .} with with state space S
and one-step transition probability matrix P = [Pij ] such that

Pij =


Tij
−Tii
· I(Tii 6= 0) when j 6= i

I(Tii = 0) when j = i .

This DTMC is referred to as the Embedded Chain.
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UNIFORMIZATION: CTMC→ DTMC

Consider a CTMC {ϕ(t) : t ≥ 0} with state space S and
generator T. Let ϑ be such that

ϑ ≥ maxi{−Tii}.

Define a DTMC {ϕn : n = 0,1, . . .} with with state space S
and one-step transition probability matrix

P = I + (1/ϑ)T.

That is,

Pij =

{
Tij
ϑ when j 6= i

1 + Tii
ϑ when j = i .

This DTMC is referred to as the Uniformized Chain.
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UNIFORMIZATION: SFM→ QBD

Let ∆(x) = 1/n for some large n,

ϑi(∆x) =
|ci |
∆x

.

QBD: State space G = {(k , i) : k ∈ Z, i ∈ S}.

Generator T(∆x) = [T (∆x)(k ,i)(m,j)] with off-diagonals

T (∆x)(k ,i)(m,j) =


Tij m = k , j 6= i

ϑi(∆x) m = k + 1, j = i , ci > 0
ϑi(∆x) m = k − 1, j = i , ci < 0.

FACT

As n→∞ {(X∆x (t)∆x , ϕ∆x (t))} → {(X (t), ϕ(t))}.
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X (t)− Yn(t) FOR n = 104,105,106
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STANDARD SFM: INTUITION

ϕ(t) - phase variable, X (t) - level variable
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APPLICATION POTENTIAL OF SFMS

Any real-life system where

some continuous quantity X (t) changes

depending on the state ϕ(t) of

some underlying physical environment, which
evolves in time.
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APPLICATION EXAMPLES

Data in a telecommunication buffer

Water level in a reservoir

Total net profit earned by some time

Deterioration level of a machine

Perimeter of a spreading fire

Life ‘level’ of a bleached coral
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DEFN. OF (UNBOUNDED) SFM

SFM {(ϕ(t),X (t)) : t ≥ 0} is a process

with parameters S, T, ci for all i ∈ S, such that:

ϕ(t) is the state of an irreducible CTMC {ϕ(t), t ≥ 0}

with some (finite) state space S = {1, . . . ,n}

and generator T = [Tij ]

Tij = P
′

ij(0) =
dP(ϕ(t) = j | ϕ(0) = i)

dt

∣∣∣
t=0

and when ϕ(t) = i then

X
′
(t) =

dX (t)
dt

= cϕ(t) .
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GENERATOR T

DEFINITION

Given matrix A, we define matrix exponential

eA =
∞∑

n=0

An

n!
.

FACT

Let P(t) = [Pij(t)] be a matrix such that

Pij(t) = P(ϕ(t) = j | ϕ(0) = i) .

We have
eTt = P(t)

and so
[eTt ]ij = P(ϕ(t) = j | ϕ(0) = i) .
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LEVEL X (t) AT TIME t AS AN INTEGRAL

Since
cϕ(t) =

dX (t)

dt

we have

X (t) = X (0) +

∫ t

u=0
cϕ(u)du .
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PARTITIONING

S+ = {i ∈ S : ci > 0}
S− = {i ∈ S : ci < 0}
S0 = {i ∈ S : ci = 0}

C+ = diag(ci) for all i ∈ S+

C− = diag(|ci |) for all i ∈ S−

T++ = [Tij ] for all i ∈ S+, j ∈ S+

T+− = [Tij ] for all i ∈ S+, j ∈ S−
T+0 = [Tij ] for all i ∈ S+, j ∈ S0

etc.
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FLUID GENERATOR Q(s)

DEFINITION

For s with Re(s) ≥ 0 we let

Q(s) =

[
Q++(s) Q+−(s)
Q−+(s) Q−−(s)

]
where

Q++(s) = C−1
+ [T++ − sI− T+0(T00 − sI)−1T0+]

Q−−(s) = C−1
− [T−− − sI− T−0(T00 − sI)−1T0−]

Q+−(s) = C−1
+ [T+− − T+0(T00 − sI)−1T0−]

Q−+(s) = C−1
− [T−+ − T−0(T00 − sI)−1T0+] .
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MEANING OF: −(T00 − sI)−1

LST of the time spent in S0 given start in S0 is

∫ ∞
t=0

e−steT00tdt =

∫ ∞
t=0

e(T00−sI)tdt

= (T00 − sI)−1e(T00−sI)t
∣∣∣∞
t=0

= O − (T00 − sI)−1

= −(T00 − sI)−1 .
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IN-OUT FLUID Z (t)
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IN-OUT LEVEL Z (t) AT TIME t AS AN INTEGRAL

We have

Z (t) =

∫ t

u=0
|cϕ(u)|du

that is, Z (t) is the total amount of fluid that

flowed in or out of the (unbounded) buffer

during the time interval [0, t ] .
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FIRST HITTING TIME ω(z)

DEFINITION

Given

Z (t) =

∫ t

u=0
|cϕ(u)|du

we define first hitting time ω(z) as

ω(z) = inf{t ≥ 0 : Z (t) = z} .

Question: What is the distribution of ω(z)?
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SIMULATION EXAMPLE: HISTOGRAM OF ω(z)
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LAPLACE-STIELTJES TRANSFORM (LST)

DEFINITION

Given a nonnegative r.v. X and its cdf F (x) = P(X ≤ x),

E
(

e−sX
)

=

∫ ∞
t=0

e−sxdF (x)

is the corresponding LST.

FACT

The LST uniquely determines the distribution.
In particular,

E(X k ) = (−1)k dk

dsk E
(

e−sX
) ∣∣∣∣∣

s=0

.
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CONSIDER THE LST OF ω(z)

DEFINITION

For any z ≥ 0, and s with Re(s) ≥ 0, we let

∆̂z(s) = [∆̂z(s)ij ]

be matrix such that for all i , j ∈ S+ ∪ S−

∆̂z(s)ij = E
(

e−s·ω(z) · I(ϕ(ω(z)) = j) | ϕ(0) = i
)
.

LEMMA

For any z ≥ 0,
∆̂z(s) = eQ(s)z .
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RELATED LSTS

eQ++(s)y

[eQ++(s)y ]ij = E
(

e−s·ω(z) · I(ϕ(ω(z)) = j)

| ϕ(0) = i , ϕ(u) ∈ S+,0 ≤ u ≤ ω(z)
)

eQ−−(s)y

[eQ−−(s)y ]ij = E
(

e−s·ω(z) · I(ϕ(ω(z)) = j)

| ϕ(0) = i , ϕ(u) ∈ S−,0 ≤ u ≤ ω(z)
)
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SKETCH OF THE PROOF

(Crossing Argument)
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SKETCH OF THE PROOF

(Crossing Argument)

[∆̂y+z(s)]ij = E
(

e−s·ω(y+z) · I(ϕ(ω(y + z)) = j) | ϕ(0) = i
)

=
∑
`∈S+

E
(

e−s·ω(y) · I(ϕ(ω(y)) = `) | ϕ(0) = i
)

E
(

e−s·ω(z) · I(ϕ(ω(z)) = j) | ϕ(0) = `
)

=
∑
`∈S+

[∆̂y (s)]i`[∆̂
z(s)]`j

= [∆̂y (s)∆̂z(s)]ij

so
∆̂y+z(s) = ∆̂y (s)∆̂z(s) .
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SKETCH OF THE PROOF

(Semi-Group Property)

For any y , z ≥ 0,

∆̂y+z(s) = ∆̂y (s)∆̂z(s)

and
∆̂0(s) = I

so
∆̂z(s) = eG(s)z

where

G(s) =
d
dz

∆̂z(s)
∣∣∣
z=0

= lim
h→0+

∆̂h(s)− I
h

.
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SKETCH OF THE PROOF

(Small h argument)

Start with ϕ(0) = i , X (0) = 0.

End at time ω(h), with ϕ(ω(h)) = j .

What happens during time [0, ω(h)]?

1 No transitions out of i .

2 Exactly one transition from i to j .

3 Transition from i to set S0, then to j .

4 Everything else has probability o(h), and

lim
h→0+

o(h)

h
= 0 .
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CASE 1: NO TRANSITIONS OUT OF i

(Assume i , j ∈ S+ in Cases 1–3 wlog.)

In this case time is
ω(h) = h/ci

the probability is
e−λi (h/ci )

and we obtain

d
dh

e−s( h
ci

)e−λi (
h
ci

)

∣∣∣∣∣
h=0

= −s + λi

ci

= [−C−1
+ (T++ + sI)]ii .
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CASE 2: ONE TRANSITION i → j

In this case time is, for some 0 ≤ u ≤ h,

ω(h) = u/ci + (h − u)/cj

the probability density is

1
ci

e−λi (
u
ci

)Tije
−λj (

h−u
cj

)

and we obtain

d
dh

∫ h

u=0
e
−s( u

ci
+ h−u

cj
) 1
ci

e−λi (
u
ci

)Tije
−λj (

h−u
cj

)

∣∣∣∣∣
h=0

= −
Tij

ci

= [−C−1
+ (T++ + sI)]ij .
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CASE 3: i → S0 → j

In this case, for some 0 ≤ u ≤ h and t ≥ 0, time is

ω(h) = u/ci + t + (h − u)/cj

the probability density is

1
ci

e−λi (
u
ci

)
[T+0eT00tT0+]ije

−λj (
h−u

cj
)

and we obtain

d
dh

∫ h

u=0

∫ ∞
t=0

e
−s( u

ci
+t+ h−u

cj
) 1
ci

e−λi (
u
ci

)

×[T+0eT00tT0+]ije
−λj (

h−u
cj

)

∣∣∣∣∣
h=0

= [−C−1
+ T+0(T00 − sI)−1T0+]ij .

�
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RETURN TO LEVEL ZERO (BUSY PERIOD)

FIGURE : Start in (i ,0), end in (j ,0) at time θ(0)
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LST MATRIX Ψ(s) = [Ψ(s)ij ]

DEFINITION

We define first hitting time

θ(0) = inf{t ≥ 0 : X (t) = 0} .

DEFINITION

For s with Re(s) ≥ 0, i with ci > 0, j with cj < 0, let

Ψ(s)ij = E(e−sθ(0) · I(ϕ(θ(0)) = i) | ϕ(0) = i ,X (0) = 0).

FACT

For s ≥ 0, Ψ(s) is the minimum nonnegative solution of

Q+−(s) + Q++(s)Ψ(s) + Ψ(s)Q−−(s) + Ψ(s)Q−+Ψ(s) = 0.
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Ĝx ,y(s) - DRAINING WITH A TABOO LEVEL y
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Ĥx ,y(s) - FILLING IN WITH A TABOO LEVEL 0
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DRAINING/FILLING - WITH A TABOO

DEFINITION

For i , j ∈ S+ ∪ S−, 0 < x < y

[Ĝx ,y (s)]ij = E [e−sθ(0) · I(θ(0) < θ(y), ϕ(θ(0)) = j)
|Y (0) = x , ϕ(0) = i]

and

[Ĥx ,y (s)]ij = E [e−sθ(y) · I(θ(y) < θ(0), ϕ(θ(y)) = j)
|Y (0) = x , ϕ(0) = i] .

36



SFMs part II

Małgorzata

Motivation

Standard
Stochastic
Fluid Model

Two-
dimensional
SFMs

Stochastic
Fluid-Fluid
Models

Tandem

Time-Varying
SFMs

Ĝx ,y(s) AND Ĥx ,y(s)

THEOREM

We have [
Ĝx ,y (s) Ĥx ,y (s)

] [ I Ĥy (s)

Ĝy (s) I

]
=

[
Ĝx (s) Ĥy−x (s)

]
where

Ĝx (s) =

[
0 Ψ(s)e(Q−−(s)+Q−+(s)Ψ(s))x

0 e(Q−−(s)+Q−+(s)Ψ(s))x

]

Ĥx (s) =

[
e(Q++(s)+Q+−(s)Ξ(s))x 0

Ξ(s)e(Q++(s)+Q+−(s)Ξ(s))x 0

]
.
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SKETCH OF THE PROOF

The result for Ĝx ,y (s) and Ĥx ,y (s) follows by

Ĝx (s) = Ĝx ,y (s) + Ĥx ,y (s)Ĥy (s)

Ĥy−x (s) = Ĥx ,y (s) + Ĝx ,y (s)Ĥy (s) .

The result for Ĝx (s), Ĥx (s) follows by

Crossing Argument, and

Semi-Group Property.
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REMARK

Using the above building blocks
Q(s), Ψ(s), Ĝx ,y (s) and Ĥx ,y (s),

and arguments based on
appropriate partitioning of sample paths,

the results for
the transient and stationary analysis

of different classes of the SFMs follow.
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2-D SFM: INTUITION

dX (t)
dt

= ci when ϕ(t) = i

dY (t)
dt

= ri when ϕ(t) = i and Y (t) > 0
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DEFN. OF TWO-DIMENSIONAL SFM

2-D SFM {(ϕ(t),X (t),Y (t)) : t ≥ 0} is a process such that:

{ϕ(t) : t ≥ 0} is a CTMC with (finite) state space S and
generator T = [Tij ]

{(ϕ(t),X (t)) : t ≥ 0}, X (t) ∈ R, is an unbounded SFM
with rates ci driven by {ϕ(t) : t ≥ 0}

{(ϕ(t),Y (t)) : t ≥ 0}, Y (t) ≥ 0, is a bounded SFM
with rates ri also driven by {ϕ(t) : t ≥ 0}.
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KEY IDEA: SHIFT IN X (.) AT TIME ω(y)

1 Define shift in X (.) by

W (t) = X (t)− X (0) =

∫ t

u=0
cϕ(u)du .

2 Let Z (t) =
∫ t

u=0 |rϕ(u)|du be the in-out fluid of Y (.) and

ω(y) = inf {t > 0 : Z (t) = y} .

3 Derive the LST of W (ω(y)). Everything else follows.
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PARTITIONING

S+ = {i ∈ S : ri > 0}
S− = {i ∈ S : ri < 0}
S0 = {i ∈ S : ri = 0}

R+ = diag(ri) for all i ∈ S+

R− = diag(|ri |) for all i ∈ S−

T++ = [Tij ] for all i ∈ S+, j ∈ S+

T+− = [Tij ] for all i ∈ S+, j ∈ S−
T+0 = [Tij ] for all i ∈ S+, j ∈ S0

etc
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PARTITIONING

D+ = diag(ci) for all i ∈ S+

D− = diag(ci) for all i ∈ S−

D0 = diag(ci) for all i ∈ S0
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FLUID GENERATOR W(s)

DEFINITION

For s such that χ(T00 − sD0) < 0 we let

W(s) =

[
W++(s) W+−(s)
W−+(s) W−−(s)

]
where

W++(s) = R−1
+ [(T++ − sD+)− T+0(T00 − sD0)−1T0+]

W−−(s) = R−1
− [(T−− − sD−)− T−0(T00 − sD0)−1T0−]

W+−(s) = R−1
+ [T+− − T+0(T00 − sD0)−1T0−]

W−+(s) = R−1
− [T−+ − T−0(T00 − sD0)−1T0+] .
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CONSIDER THE LST OF W (ω(z))

DEFINITION

For any y ≥ 0, and s with Re(s) ≥ 0, we let

∆̂y
X (s) = [∆̂y

X (s)ij ]

be matrix such that for all i , j ∈ S+ ∪ S−

∆̂y
X (s)ij = E

(
e−s·W (ω(y)) · I(ϕ(ω(y)) = j)|ϕ(0) = i

)
.

LEMMA

For any y ≥ 0,
∆̂y

X (s) = eW(s)y .
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RELATED LSTS

eW++(s)y

[eW++(s)y ]ij = E
(

e−s·W (ω(y)) · I(ϕ(ω(y)) = j)

| ϕ(0) = i , ϕ(u) ∈ S+,0 ≤ u ≤ ω(z)
)

eW−−(s)y

[eW−−(s)y ]ij = E
(

e−s·W (ω(y)) · I(ϕ(ω(y)) = j)

| ϕ(0) = i , ϕ(u) ∈ S−,0 ≤ u ≤ ω(z)
)
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SKETCH OF THE PROOF

(Semi-Group Property)

For any y , z ≥ 0,

∆̂y+z
X (s) = ∆̂y

X (s)∆̂z
X (s)

and
∆̂0

X (s) = I

so
∆̂z

X (s) = eG(s)z

where

G(s) =
d
dz

∆̂z
X (s)

∣∣∣
z=0

= lim
h→0+

∆̂h
X (s)− I

h
.
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SKETCH OF THE PROOF

(Small h argument)

Start with ϕ(0) = i , Y (0) = 0.

End at time ω(h), with ϕ(ω(h)) = j .

What happens during time [0, ω(h)]?

1 No transitions out of i .

2 Exactly one transition from i to j .

3 Transition from i to set S0, then to j .

4 Everything else has probability o(h), and

lim
h→0+

o(h)

h
= 0 .
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CASE 1: NO TRANSITIONS OUT OF i

(Assume i , j ∈ S+ in Cases 1–3 wlog.)

In this case time is
ω(h) = h/ri

the probability is
e−λi (h/ri )

shift in X is ω(h) = cih/ri and

d
dh

e−s(ci
h
ri

)e−λi (
h
ci

)

∣∣∣∣∣
h=0

= −sci + λi

ri

= [−R−1
+ (T++ + sD+)]ii .
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CASE 2: ONE TRANSITION i → j

In this case time is, for some 0 ≤ u ≤ h,

ω(h) = u/ri + (h − u)/rj

the probability density is

1
ri

e−λi (
u
ri

)Tije
−λj (

h−u
rj

)

shift in X is ciu/ri + cj(h − u)/rj and

d
dh

∫ h

u=0
e
−s(ci

u
ri

+cj
h−u

rj
) 1
ri

e−λi (
u
ri

)Tije
−λj (

h−u
rj

)

∣∣∣∣∣
h=0

= −
Tij

ri

= [−R−1
+ (T++ + sD+)]ij .
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CASE 3: i → S0 → j

In this case, for some 0 ≤ u ≤ h and t ≥ 0, time is

ω(h) = u/ri + t + (h − u)/rj

the probability density is

1
ri

e−λi (
u
ri

)
[T+0eT00tT0+]ije

−λj (
h−u

rj
)

shift in X is ciu/ri + cj(h − u)/rj and

d
dh

∫ h

u=0

∫ ∞
t=0

e
−s(ci

u
ri

+t+cj
h−u

rj
) 1
ri

e−λi (
u
ri

)

×[T+0eT00tT0+]ije
−λj (

h−u
rj

)

∣∣∣∣∣
h=0

= [−R−1
+ T+0(T00 − sD0)−1T0+]ij .

�
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REMARK

Using
W (s) and related matrices expressed in terms of it

as the building blocks

the results for
the transient analysis of the 2-D SFMs

follow by arguments based on
appropriate partitioning of sample paths.
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LST MATRIX ΨX (s) = [ΨX (s)ij ]

DEFINITION

We define first hitting time θ(0) = inf{t ≥ 0 : Y (t) = 0} .

For s with Re(s) ≥ 0, i with ri > 0, j with rj < 0, let

ΨX (s)ij = E(e−sW (θ(0)) · I(ϕ(θ(0)) = i) | ϕ(0) = i ,Y (0) = 0).

FACT

For s ≥ 0, ΨX (s) is the minimum nonnegative solution of

W+−(s) + W++(s)ΨX (s) + ΨX (s)W−+(s) + ΨX (s)W−+ΨX (s) = 0.

54



SFMs part II

Małgorzata

Motivation

Standard
Stochastic
Fluid Model

Two-
dimensional
SFMs

Stochastic
Fluid-Fluid
Models

Tandem

Time-Varying
SFMs

EXAMPLE: SINGLE-SERVER FLUID QUEUE

CTMC: S = {1,2,3} and

T =

 −3 1 2
1 −3 2
1 1 −2

 .

Service rate µ = 3, arrival rates λ1 = 6, λ2 = 4, λ3 = 0.

Y (t) – queue level at time t , ri = λi − µ, with ri = 3,1,−3.

X (t) – total accumulated reward at time t , ci = λi > 0.
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DENSITY GIVEN (ϕ(0),X (0),Y (0)) = (1,0,0)
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DENSITY GIVEN (ϕ(0),X (0),Y (0)) = (3,0,10)
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SFFM: INTUITION

dX (t)
dt

= ci when ϕ(t) = i

dY (t)
dt

= ri(x) when ϕ(t) = i ,X (t) = x and Y (t) > 0
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DEFN. OF STOCHASTIC FLUID-FLUID MODEL

SFFM {(ϕ(t),X (t),Y (t)) : t ≥ 0} is a process such that:

{ϕ(t) : t ≥ 0} is a CTMC with a (finite) state space S
and generator T = [Tij ]

{(ϕ(t),X (t)) : t ≥ 0}, X (t) ≥ 0, is a bounded SFM with
rates ci driven by the CTMC {ϕ(t) : t ≥ 0}

{(ϕ(t),Y (t)) : t ≥ 0}, Y (t) ≥ 0, is a bounded SFM with
rates r(i , x) driven by the SFM {(ϕ(t),X (t)) : t ≥ 0}.
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APPLICATION POTENTIAL OF SFFMS

Any real-life system where

some continuous quantity Y (t) changes

depending on the state (ϕ(t),X (t)) of

some underlying physical environment, which
evolves in time.
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APPLICATION POTENTIAL OF SFFMS

(Telecommunications) Tandem network:

ϕ(t) - data flow process, X (t) - level in buffer 1,
Y (t) - level in buffer 2;

(Engineering) Machine deterioration:

ϕ(t) - operating mode, X (t) - deterioration level,
Y (t) - profit earned by time t ;

(Biology) Coral bleaching:

ϕ(t) - environment, X (t) - coral density,
Y (t) - lipids level;
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PARTITIONING

(Bounded case with X (t) ≥ 0)

F = [0,∞) – the interval of all possible values of X (t)

F (+)(k) = {u : rk (u) > 0}
F (−)(k) = {u : rk (u) < 0}
F (0)(k) = {u : rk (u) = 0}

F = F (+)(k) ∪ F (−)(k) ∪ F (0)(k) for all k ∈ S

S+ = {i ∈ S : F (+)(i) 6= ∅}
S− = {i ∈ S : F (−)(i) 6= ∅}
S0 = {i ∈ S : F (0)(i) 6= ∅}
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INITIAL MEASURE

Let A = [0, v ].

Assume initial measure µ = [µ`i ] such that

µ`i (A) =

∫ v

x=0
ν`i (x)dx + p`i · I(i ∈ P)

where P ⊂ S is the set for which the point mass at x = 0
can exist:

P = {i ∈ S : ci < 0}

∪

{
i ∈ S : ci = 0 and

[
−[0 e]

(
T00 T0−
T−0 T−−

)−1
]

i

> 0

}
.
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GENERATOR OPERATOR B = [B`m
ij ]

Case 1) For all ` ∈ {+,−,0} and i ∈ S`, i 6= j ,

µ`i B
`m
ij (A) = Tij

∫
x∈A∩F (`)(i)

ν`i (x)dx

+Tijp`i (0)I(0 ∈ F (`)(i)).
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GENERATOR OPERATOR B = [B`m
ij ]

Case 2) For all ` ∈ {+,−,0}, ` 6= m,

µ`j B
`m
jj (A) = I(cj > 0)cjν

`
j (0)I(0 ∈ ∂R\L

(
F (`)(j)

)
)

−I(cj < 0)cjν
`
j (v)I(v ∈ ∂L\R

(
F (`)(j)

)
).
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GENERATOR OPERATOR B = [B`m
ij ]

Case 3) Otherwise

µm
j Bmm

jj (A) = Tjj

[∫
x∈A

νm
j (x)dx + pm

j (0)

]

+I(cj > 0)
[
cjν

m
j (0)I(0 /∈ ∂L

(
F (m)(j)

)
)− cjν

m
j (v)

]
+I(cj < 0)

[
cjν

m
j (0)− cjν

m
j (v)I(v /∈ ∂R

(
F (m)(j)

)
)
]

−I(cj < 0)cjν
m
j (0)I(0 /∈ ∂R(F (m)(j))).
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GENERATOR OPERATOR D(s) = [D`m
ij (s)]

For all m ∈ {+,−}, j ∈ Sm,

D`m
ij (s) =

[
R(`)

(
B(`m) − sI + B(`0)(sI − B(00))−1B(0m)

)]
ij

where R(`) = diag(R(`)
i )i∈S` is such that

R(`)
i (x ,A) =

1
|ri(x)|

I(x ∈ A).
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REMARK

Using
D(s) and related operators expressed in terms of it

as the building blocks

the results for
the transient and stationary analysis of the SFFMs

follow by arguments based on
appropriate partitioning of sample paths.
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STATIONARY DISTRIBUTION

If {(ϕ(t),X(t),Y (t)), t ≥ 0} is an ergodic process, then the limiting distribution,
given by π(`)(y), ` ∈ {+,−, 0}, y > 0, and p(m)(0), m ∈ {−, 0}, satisfies the
following set of equations:

[
p(−) p(0)

]
= α

[
ξ 0

](
−
[

B(−−) B(−0)

B(0−) B(00)

])−1

,

[
π(+)(y) π(−)(y)

]
=

[
p(−) p(0)

] [ B(−+)

B(0+)

] [
eKy eKy Ψ

] [ R(+) 0
0 R(−)

]
,

π(0)(y) =
[

π(+)(y) π(−)(y)
] [ B(+0)

B(−0)

](
−B(00)

)−1
,

where K = D(++)(0) + ΨD(−+)(0) and α is a normalizing constant such that

∑
i∈S

∑
`∈{+,−,0}

∫ ∞
y=0

π
(`)
i (y)(F (`)(i))dy +

∑
m∈{−,0}

∑
j∈Sm

p(m)
j (F (m)(j)) = 1.
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CURRENT WORK

Theoretical expressions (in operator form). X

Transient and stationary analysis. X

Efficient algorithms!
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TANDEM: INTUITION

dY (t)
dt

= c+
ϕ(t) > 0 when X (t) > 0

dY (t)
dt

= c−ϕ(t) < 0 when X (t) = 0,Y (t) > 0
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SFMS WITH CYCLIC PARAMETERS

We assume a cycle of fixed duration 1 (wlog) such that

T(t + k) = T(t) for all k ∈ Z,
ci(t + k) = ci(t) for all k ∈ Z.

Theoretical expressions & algorithms. X

Transient and asymptotic-periodic analysis. X

Other time-varying models.
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GENERATOR Q̂(s, t) OF CYCLIC SFMS

For any s, t , with 0 ≤ s, t ≤ 1,

Q̂(s, t) =

[
Q̂++(s, t) Q̂+−(s, t)
Q̂−+(s, t) Q̂−−(s, t)

]
,

Q̂++(s, t) = C−1
+ (s)[T++(s)I(s = t) + T+0(s)Û0(s, t)T0+(t)]

Q̂−−(s, t) = C−1
− (s)[T−−(s)I(s = t) + T−0(s)Û0(s, t)T0−(t)]

Q̂+−(s, t) = C−1
+ (s)[T+−(s)I(s = t) + T+0(s)Û0(s, t)T0−(t)]

Q̂−−(s, t) = C−1
− (s)[T−+(s)I(s = t) + T−0(s)Û0(s, t)T0+(t)]

where Û0(s, t) is a hat function such that

Û0(s, t) =
∞∑

k=0

U0(s, t + k).
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FUNCTION Ψ̂(s, t)

Ψ̂(s, t) is the minimal nonnegative solution of the integral
equation∫ 1

u=0
Â(s,u)Ψ̂(u, t)du +

∫ 1

u=0
Ψ̂(s,u)B̂(u, t)du = −Ĉ(s, t)

where

Â(s, t) = Q̂++(s, t) +

∫ 1

u=0
Ψ̂(s,u)Q̂−+(u, t)du,

B̂(s, t) = Q̂−−(s, t) +

∫ 1

u=0
Q̂−+(s,u)Ψ̂(u, t)du,

and

Ĉ(s, t) =

(
Q̂+−(s, t)−

∫ 1

η=0

∫ 1

θ=0
Ψ̂(s, η)Q̂−+(η, θ)Ψ̂(θ, t)dηdθ

)
.
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WE FOUND Ψ!
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