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OUTLINE
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@ MoTIVATION
© STANDARD STOCHASTIC FLUID MODEL
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@ STocHAsTIC FLUID-FLUID MODELS

© TANDEM

@ TIME-VARYING SFMs



MOVIES
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Matgorzata

e Unbounded 2-D SFM with negative drift in both
Motivation directions:
https://www.youtube.com/watch?v=70gZHmiCwr8

e Unbounded 2-D SFM with zero in both directions:

https://www.youtube.com/watch?v=BMaeGBh_Lnc

e Doubly-Bounded 2-D SFM with negative drift in both
directions:
https://www.youtube.com/watch?v=oWlTEMmnvgE



https://www.youtube.com/watch?v=70gZHmiCwr8
https://www.youtube.com/watch?v=BMaeGBh_Lnc
https://www.youtube.com/watch?v=oWlTEMmnvqE

APPLICATION POTENTIAL

SFMs part Il

e DTMCs «—= CTMCs

Matgorzata

Motivation

o A system that evolves in time is a candidate for
modelling with CTMCs.

e A system that can be modelled with CTMCs is a
candidate for modelling with SFMs (including
time-varying).

e QBDs <= SFMs

e A system that can be modelled with SFMs is a
candidate for modelling with 2-D SFMs and SFFMs.




EMBEDDING: CTMC — DTMC
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Matgorzata

Consider a CTMC {p(t) : t > 0} with state space S and
Motivation generator T.

Define a DTMC {¢,: n=0,1,...} with with state space S
and one-step transition probability matrix P = [P;] such that

T I(Ti #£0)  whenj# i
Py =

I(Ti =0) whenj = .

This DTMC is referred to as the Embedded Chain.
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Motivation

UNIFORMIZATION: CTMC — DTMC

Consider a CTMC {¢(t) : t > 0} with state space S and
generator T. Let ¢ be such that

¥ > maxi{—Ti}.

Define a DTMC {¢,: n=0,1,...} with with state space S
and one-step transition probability matrix

P=1+(1/0)T.

That is,
P_{ T whenj#i
if — 1 Tii .
+ 4 whenj=i.

This DTMC is referred to as the Uniformized Chain.




UNIFORMIZATION: SFM — QBD

MEBl  Let A(x) = 1/nfor some large n,

Motivation ﬁ,(AX) = |ACI)1 .

QBD: State space G = {(k,i) : k€ Z,i € S}.
Generator T(Ax) = [T(AX),iy(m,j)] with off-diagonals

T(AX)(k,i)(m,j) = 19,(AX) m=K-+ 1,] =4ic>0
9i(BX) m=k—1,j=1ic <0

FACT
Asn— oo {(Xax()Ax, pax())} — {(X(1), ¢(1))}



X(t) — Ya(t) FOR n = 10%,105,10°

SFMs part Il

Matgorzata

Motivation

Time, ¢ (x10%s)



STANDARD SFM: INTUITION

SFMs part Il

Standard
Stochastic
Fluid Model

Buffer X

©(t) - phase variable, X(t) - level variable



APPLICATION POTENTIAL OF SFMS
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Matgorzata

Any real-life system where
Standard

Stochastic

Fluid Model

e some continuous quantity X(t) changes
e depending on the state o(f) of

e some underlying physical environment, which
evolves in time.



APPLICATION EXAMPLES
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e Data in a telecommunication buffer

Standard . .
Stochastic e Water level in a reservoir

Fluid Model
o Total net profit earned by some time
e Deterioration level of a machine

e Perimeter of a spreading fire

o Life ‘level’ of a bleached coral



DEFN. OF (UNBOUNDED) SFM

SFMs part Il SFM {(sp(t))X(t)) > 0} isa process

Matgorzata

with parameters S, T, ¢; for all i € S, such that:

Stochasic o (1) is the state of an irreducible CTMC {¢(t), t > 0}
Fluid Model
with some (finite) state space S = {1,...,n}

and generator T = [7}]
dP(e(t) = j | ¢(0) = i)

/

Ti = Pij(o) - at t=0
e and when ¢(t) = i then
/ dX(t)
X (t) = ar Co(t)



GENERATOR T

MASEN  DEFINITION

Matgorzata

Given matrix A, we define matrix exponential

0

Standard A An

Stochastic e’ = R

Fluid Model n!
n=0

FACT
Let P(t) = [P;(t)] be a matrix such that

Pij(t) = P(o(t) = j | ¢(0) = 1) .
We have
e’ = P(t)
and so
[e]; = Plo(t) =j | (0) = 1) .



LEVEL X(t) AT TIME { AS AN INTEGRAL

SFMs part Il

Standard
Stochastic
Fluid Model

we have .

X(t) = X(0) +/ cw(u)du .

u=0



PARTITIONING
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Maltgorzata ) 8+ = {I (S S : C,' > O}
o S_={ieS:c<0}

Standard P
Stochastic o 80 = {I cS: Ci = O}
Fluid Model

e C, =diag(c)) forall i € S4
e C_=diag(|¢i|) forallie S_

o T, =[TjforallieS,,jeS;
o T, =[TjlforallieSy,jeS-
o T o=[Tjlforallic S, ,jeSo
e etc.



FLUID GENERATOR Q(S)

SFMs part Il
Matgorzata DEFINITION

For s with Re(s) > 0 we let

Standard
Q(s) = gigi 8fi§3

where
Q. (s) = Ci'[Tyy —sl—Tyo(Too—sl) 'Toy]
Q () = C'T__ —sl—T_o(Too —sl)"To_]
Q  (s) = C'[Ty  —Tyo(Too—sl) 'To]
Q .(s) = CI'[T  —T o(Too—sl)"Toy].



MEANING OF: —(Tgg — sl)~"
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VelgamE LST of the time spent in Sy given start in S is

Standard
Stovchastic 00 oo
Fluid Model / e SteTotgp — / e(Too—sht 4t
t=0 t=0
o)
= (Too — sl)TeToo—sht
t=0
= _(TOO — SI)_1 .



IN-OuT FLUID Z(t)
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Time uXz) until in—out fluid Z(.) first reaches z

Matgor

X(@®

60l Z(t) ]
Standard

Stochastic

Fluid Model 407

- level z
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IN-OUT LEVEL Z(t) AT TIME { AS AN INTEGRAL
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Standard t

Stochasti —

Fluid Model Z(t) = . ‘Cv(u)ldu
u=

that is, Z(t) is the total amount of fluid that
flowed in or out of the (unbounded) buffer

during the time interval [0, {] .



FIRST HITTING TIME w(2Z2)
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DEFINITION

Standard GI ven t

2(1) = / Cuwldu
u=0

we define first hitting time w(z) as

w(z) =inf{t >0: Z(f) = z} .

Question: What is the distribution of w(z)?

20



SIMULATION EXAMPLE: HISTOGRAM OF w(Z)
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Matgorzata

Histogram of w(z) for z=20

Standard
Stochastic
Fluid Model

count

35

w(z)

21



LAPLACE-STIELTJES TRANSFORM (LST)

MASEN  DEFINITION

Matgorzata

Given a nonnegative r.v. X and its cdf F(x) = P(X < x),
L E(e) = [ eaF(x)
Fluid Model t=0

is the corresponding LST.

FACT
The LST uniquely determines the distribution.
In particular,
K ) 0" —sX
E(X9) = (-1~ E (e ) .

22



CONSIDER THE LST OF w(2)

SFMs part Il
Matgorzata DEFINITION

For any z > 0, and s with Re(s) > 0, we let

Standard

Stochastic AZ(S) = [Az(s)//]

Fluid Model

be matrix such that for all i,j € S US_

A%(s)y = E (5@ - (p((2)) = ) | 9(0) =) .

LEMMA

Forany z > 0,
A?(s) = 9097

23



RELATED LSTS
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Matgorzata eQ++(S)y

Standard [eQ++(3),V]I_j — E(e—sw(z) . /(QO(LU(Z)) = »I)

Stochastic
[ 9(0) = i p(u) € 54,0 < U < w(2))

Fluid Model

eQ** (s)y

(%) = E(em**- I(p(w(2)) =))

[ 6(0) = i, p(u) € 5,0 < U < w(2))

24



SKETCH OF THE PROOF

SFMs part Il (Crossing Argument)

In order to cross y+z we first have to cross y

60
Standard
Stochastic
Fluid Model
50 nl
8 401 B
N |levely+z=35 = -~
()
>
QL 301 B
-
3
I level y = 20
o e
10f q
0 L L L L L L L
0 5 10 15 20 25 30 35 40

time t 25



SKETCH OF THE PROOF

SFMs part II (Crossing Argument)

Matgorzata

Standard [Ay+z(s)]ij = E <eis‘W(y+Z) ’ /(QO(CU(y + Z)) :l) ’ 90(0) - I)

Stochastic

Fluid Model _ Z E( e—sw) . I(p(w(y)) =10) | ¢(0) = i)

LeSy
E (efS-w(Z) Me(w(2)) =J) | ¢(0) = 5)
S BB,

leSy
= [A(s)A%(s));

SO
AV+2(s) = AY(s)A?%(s) .

26



SKETCH OF THE PROOF

iz il (Semi-Group Property)

Matgorzata

Forany y,z > 0,

Standard
Pl Mode AV+2(s) = AV (s)A%(s)
and A
A%s) =1
o)
AZ(S) _ eG(s)z
where
d . _ Ah(s) -1
G(s) = —A? = lim
(s) az ( )z—O hl>0+ h

27



SKETCH OF THE PROOF

Sl (Small h argument)
Matgorzata

e Start with ¢(0) =/, X(0) = 0.
Standard e End at time w(h), with p(w(h)) = j.

Stochastic
Fluid Model

What happens during time [0, w(h)]?
© No transitions out of /.
@ Exactly one transition from j to j.
© Transition from j to set Sy, then to j.

@ Everything else has probability o(h), and

lim M

=0.
h—0t+ h

28



CASE 1: NO TRANSITIONS OUT OF |

SFMs part Il
(Assume i,j € S; in Cases 1-3 wlog.)

Matgorzata

Standard In this case time is

w(h) = hie,
the probability is
e_Ai(h/Ci)
and we obtain
d —s(L) ;=x(d) _ _StA
%e e = c
h=0

= [C Ty + 8-

29



CASE 2: ONE TRANSITION | — j

SFMs part In this case time is, for some 0 < u < h,

Matgorzata
w(h) =u/ci+(h—u)/c
Standard. the probability density is

Fluid Model

h—u

Ci

and we obtain

d [ —s(eaiud
— | e
dh Jy—o

h—u

7e_>\i(c£i)77je_>‘f( G )

Ci

Ci C]'

h=0

30



CASE3: | —>Sy—

SUCEAM | this case, forsome 0 < u < hand t > 0, time is
Matgorzata
‘ w(h) = u/ci+t+ (h—u)/c
— the probability density is

Elto'(c:thStijcl 1 u A (h7U)
ul ogel 7}\ u —\(==2
*_e l(ci)[T+OeToofT0+]ije A
1
and we obtain
d [h /oo e_s(cﬂi+t+”c;j“) 1T (L)
t

—— —e i
dh Ju=o0 Jt=o Ci

Toot =5("24)
x[T o€ % Ty )€ /
h=0

= [—C_T_1T+0(T00 — S|)71T0+],’j .

31



RETURN TO LEVEL ZERO (BUSY PERIOD)

SFMs part Il

Matgorzata

Standard
Stochastic
Fluid Model

fluid level

‘ time |
FIGURE : Startin (/,0), end in (j,0) at time 6(0)

32



LST MATRIX W(s) = [V(s);]

MASEN  DEFINITION

We define first hitting time

Matgorzata

Stangarq 9(0) = |nf{t >0: X(t) = 0} .
=

DEFINITION
For s with Re(s) > 0, i with ¢; > 0, j with ¢; < 0, let

V(s); = E(e7*") - I(o(0(0)) = i) | ¢(0) = i, X(0) = 0).
FACT
For s > 0, W(s) is the minimum nonnegative solution of

Q. (5)+ Qi (s)¥W(s) +¥(s)Q__(s)+V¥(s)Q_ W¥(s)=0.
33



G*Y(s) - DRAINING WITH A TABOO LEVEL y

SFMs part Il

Standard
Stochastic
Fluid Model




H*Y(s) - FILLING IN WITH A TABOO LEVEL 0

SFMs part Il

Standard
Stochastic
Fluid Model




DRAINING/FILLING - WITH A TABOO

SFMs part Il

Matgorzata

DEFINITION
Fori,je S;US_,0<x<y

Standard
Stochastic
Fluid Model

[G(s)l; = Ele™*®-1(6(0) < 6(y). £(6(0)) = j)
[Y(0) = X, (0) =]

and

()] = Ele™*'Y) - 1(6(y) < 6(0), 9(6(y)) = J)
[Y(0) = x,(0) =1].

36



SFMs part Il THEOREM

Matgorzata

We have
. . I H(s)
Standarq X,y X,y R
ERCREC) [GV(S) | ]
= [&xs) (s |
where
) [0 W(s)e@ —(9+a-+()W(s)x
slEl = 60— (9404 () W(s))x
. [ @910 (9ZE)X g
H(s) = =(5)6@+(1+:- =) @ | -

37



SKETCH OF THE PROOF

SFMs part Il

Matgorzata

The result for G*¥(s) and H*(s) follows by

Standard GX(S) — GX7Y(S) + I:IX"V(S)FIy(S)

Stochastic
Fluid Model

H~X(s) = H*(s)+ G (s)H(s).

The result for G*(s), H*(s) follows by
e Crossing Argument, and

e Semi-Group Property.

38



REMARK

SFMs part Il

Matgorzata

Using the above building blocks
o Q(s), W(s), G*Y(s) and AH*Y(s),

Standard
Stochastic

Fluid Model
and arguments based on

e appropriate partitioning of sample paths,

the results for
e the transient and stationary analysis

of different classes of the SFMs follow.

39



2-D SFM: INTUITION

SFMs part Il

Two-
dimensional
SFMs

Buffer X Buffer Y

aX(t) iy
gt ci when o(t)=1i
%&t) =r when ¢(t)=i and Y(f) >0

40



DEFN. OF TWO-DIMENSIONAL SFM

SFMs part Il

Matgorzata

2-D SFM {(p(1), X(1), Y(t)) : t > 0} is a process such that:

e {(t):t>0}isaCTMC with (finite) state space S and
Two- generator T = [7j]

dimensional
SFMs

o {(p(t),X(t)):t>0}, X(t) € R, is an unbounded SFM
with rates ¢; driven by {p(t) : t > 0}

o {(p(1),Y(t)):t>0}, Y(t) >0,is abounded SFM
with rates r; also driven by {p(t) : t > 0}.

41



KEY IDEA: SHIFT IN X(.) AT TIME w(y)
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Matgorzata

O Define shift in X(.) by

t
W(t) = X(1) — X(0) = / Gyl

u=0
Two-

dimensional

SFMs

@ Let Z(t) = [._, |r,wldu be the in-out fluid of Y(.) and

w(y)=inf{t>0:Z(t)=y} .
@ Derive the LST of W(w(y)). Everything else follows.

42



PARTITIONING

SFMs part Il

Malgorzata e S5, = {i eS: > 0}
oS ={ieS:r<0}
0 So={ieS:r=0}

Two-

dimensional e R =diag(r;) foralli e Sy
e R_ =diag(|r]) forallie S_

o T, =[TjforallieS,,jeS;
o T, =[TjlforallieSy,jeS-
o T o=[Tjlforallic S, ,jeSo
e etc

43



PARTITIONING

SFMs part Il

Matgorzata

e D, =diag(c;) forallie S;

Two-
dimensional

S e D_ =diag(c;) forallie S_

e Dy = diag(c;) forall i € Sy

44



FLUID GENERATOR W(S)

SFMs part Il
Matgorzata DEFINITION

For s such that x(Too — sDg) < 0 we let

W..(s) Wi(s)

W= wi(s) w_(s)

Two-
dimensional

SFMs where

W, (s) = Ry'[(Ty+ —sDy)—Tio(Too — sDo) ' Toy]
W__(s) = RI'[(T-——sD_)—T o(Too — Do) 'To_]
W, (s) = Ry'[Ti — T o(Too — Do) 'To_]

W_,(s) = RZ'[T_4 —T o(Too —SDo) 'To,] .

45



CONSIDER THE LST oF W(w(2))

SFMs part Il
Matgorzata DEFINITION

For any y > 0, and s with Re(s) > 0, we let

A (s) = [B%(s)i]

Two-

dmensional be matrix such that for all i,j € S US_

AY(s)y = E (WD (p(w(y)) = Ii(0) = i) -

LEMMA

Foranyy >0,
A (s) = eVl .

46



RELATED LSTS

SFMs part Il
Matgorzata ew++ (S)y

[V )y = E(em WU Kp(w(y) = )

[ 2(0) = i, p(u) € 54,0 < U < w(2))
dimensional
SFMs

eW,,(S)y

L G CEOEY)

[ 6(0) = i, p(u) € 5,0 < U < w(2))

47



SKETCH OF THE PROOF

iz il (Semi-Group Property)

Matgorzata
Forany y,z > 0,

AY%(s) = AY(s)A%(s)

Two-

gilr:r:\j;\sional and A
AY(s) =1
SO
Az (S) — eG(s)z
where
d . . Al(s) -1
— 7AZ | X
G(8) = ZAx(8)| _, = Jim =

48



SKETCH OF THE PROOF

Sl (Small h argument)
Matgorzata

e Start with ¢(0) =i, Y(0) = 0.
e End at time w(h), with p(w(h)) = j.

Two- What happens during time [0, w(h)]?
dimensional
SFMs

@ No transitions out of /.

@ Exactly one transition from j to j.

© Transition from j to set Sy, then to j.

@ Everything else has probability o(h), and

lim M

=0.
h—0t+ h

49



CASE 1: NO TRANSITIONS OUT OF |

SFMs part Il
(Assume i,j € S, in Cases 1-3 wlog.)

Matgorzata

In this case time is

w(h) = h/r
e onal the probability is
SFMs e—i(h/n)

shift in X is w(h) = ¢;h/r; and

A s(@f) gulE) SCi+ A

dh ri
h=0
= [-RI' (T4t +sDy))i -

50



CASE 2: ONE TRANSITION | — j

SFMs part I In this case time is, for some 0 < u < h,
Matgorzata
w(h) = u/ri+ (h— u)/n
the probability density is
1 _\(u _\;(h=u
T ~e Al(ri)’]?'je )‘j( r] )

dimensional ri
SFMs

shiftin X'is ¢iu/r; + ¢j(h — u)/r; and

d h s(cid+c i u) 1 -Xi(%) 7)‘1 )
_ e f f : rl 77] r
ah J,—o r, o
_ T
li

51



CASE3: | — Sy — )

SFMs part I In this case, forsome 0 < u < hand t > 0, time is
Matgorzata w(h) _ u/ri + t+ (h _ U)/rj
the probability density is

Two 1ie’\'(z)[T+oeT°°tT0+]ije_/\j(hrjU)
CN it i X is cu/r+ ¢(h— u)/r and
/ / s(eip+t+¢ ,”)1 —N(,ﬂi)
dah Jy—o Jizo fi
[T 40T o, ]; eﬂ\j(h’;iu)
h=0

= [_R4_»1T+O(TOO — SDo)_1T0+]ij .

52



REMARK

SFMs part Il

Matgorzata

Using
e W(s) and related matrices expressed in terms of it
as the building blocks

Two-

dimensional

SFM

° the results for

e the transient analysis of the 2-D SFMs

follow by arguments based on
e appropriate partitioning of sample paths.

53



LST MATRIX Wx(s) = [Wx(S);]

SFMs part Il
Malgorzata DEFINITION
We define first hitting time 0(0) = inf{t > 0: Y(f) =0} .

For s with Re(s) > 0, i with r; > 0, j with r; < 0, let

Two-

il V() = E(e7VO) - (4(0(0)) = ) | #(0) = i, Y(0) = 0).

SFMs
FAcCT

For s > 0, Wx(s) is the minimum nonnegative solution of

Wi —(8) + Wit (s)Wx(s) + Wx(s)W—.(s) + Wx(s)W— Wx(s) = 0.

54



EXAMPLE: SINGLE-SERVER FLUID QUEUE

SFMs part Il

Matgorzata CTMC S — {1 , 27 3} and

-3 1 2
T= 1 -3 2.
11 -2

dimensional
SFMs

Service rate u = 3, arrival rates A\ =6, \o =4, \3 = 0.
Y(t) — queue level attime t, r; = \; — p, with r; = 3,1, —3.

X(t) — total accumulated reward at time ¢, ¢; = A; > 0.

55



DENSITY GIVEN (¢(0), X(0), Y(0))

SFMs part Il

Matgorzata

Two-
dimensional
SFMs

density of level x

0.05 4

level x
56



SFMs part Il

Mz

Two-
dimensional
SFMs

o
=4
N

0.01

o
o
=3
=3

density of level x

0.004

0.002

0 50 100 150 200 250 300

level x

350

400
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: INTUITION

SFMs part Il

Stochastic
Fluid-Fluid
Models



DEFN. OF STOCHASTIC FLUID-FLUID MODEL

SFMs part Il

Matgorzata

SFFM {(p(1), X(1), Y(t)) : t > 0} is a process such that:

o {p(t): t>0}isa CTMC with a (finite) state space S
and generator T = [Tj]

Stochastic o {(¢(t),X(1)): t >0}, X(t) > 0, is a bounded SFM with

Fluid-Fluid

Models rates c¢; driven by the CTMC {p(t) : t > 0}

o {(p(t),Y(t):t>0}, Y(t) >0, is abounded SFM with
rates r(i, x) driven by the SFM {(p(t), X(t)) : t > 0}.

59



APPLICATION POTENTIAL OF SFFMS

SFMs part Il

Matgorzata

Any real-life system where

e some continuous quantity Y(t) changes

Stochast e depending on the state (¢(t), X(t)) of
Models
e some underlying physical environment, which

evolves in time.

60



APPLICATION POTENTIAL OF SFFMS

SFMs part Il

Malgorzata o (Telecommunications) Tandem network:

©(t) - data flow process, X(t) - level in buffer 1,
Y (t) - level in buffer 2;

e (Engineering) Machine deterioration:
Stochastio ©(t) - operating mode, X(t) - deterioration level,

Fluid-Fluid

Models Y(t) - profit earned by time ¢;

e (Biology) Coral bleaching:

©(t) - environment, X(t) - coral density,
Y (t) - lipids level;

61



PARTITIONING

SFMs part Il

(Bounded case with X(t) > 0)

Matgorzata

e F =[0,00) —the interval of all possible values of X(t)

o F)(k) = {u: r(u) >0}
o FO)(k) = {u: r(u) <0}
Stochastic 4] .F(O)(k) = {U : rk(U) = O}

Fluid-Fluid
Models

o F=FIN(k)UF)(k)UFO(k)forallke S

o S, ={ieS:FH()+ 2}
0o S ={ieS:FON(i)# 2}
o So=1{ieS:FO)+ 2}

62



INITIAL MEASURE

SFMs part Il

Let A=[0,v].

Matgorzata
Assume initial measure p = [uf] such that
¢ Y 0o
W) = [ vieadepl i€ P)
X=

Stochastic where P C S is the set for which the point mass at x = 0
Models. can exist:

P = {ieS:c <0}
1
U{ieS:c,-:Oand [—[0 e](;-oz ;°_> ] >0}
B o i

63



GENERATOR OPERATOR B = [B;jf‘.m

SFMs part Il

Matgorzata

Case1) Forallle{+,—,0}andic S, i# ],

uiB"(A) = Ty v (x)dx
x€ANFO(i)

Stochastic
Fluid-Fluid
Models

+T;ip; (0)/(0 € FO(i)).

64



GENERATOR OPERATOR B = [B;jf‘.m

SFMs part Il

Matgorzata

Case?2) Forall/e {+,—,0},¢+# m,

o WBM(A) = (g > 0)Guf(0)/0 € dmy (FOU)))
Fluid-Fluid
Models

(¢ < O)Cjuf(v)l(v € IR (}_T)(/)))
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GENERATOR OPERATOR B = [B;jf‘.m

SFMs part Il
Case 3) Otherwise

Matgorzata

WPEpmA) =Ty | [ uptadc pro)]

cA

o +1(g; > 0) [e"(0)(0 ¢ a1 (FIM(}))) — G (v)]
+1(6; < 0) [G(0) = " (Vv & O (FIM()))]
~I(g < 0)Gu"(0)/(0 ¢ DA(FM())).
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GENERATOR OPERATOR D(S) = [Df}m(s)]

SFMs part Il

Matgorzata

Forall me {+,-},j € Sm,

DiM(s) = [R(@ (B(W — sl + B (s — B(00) B(O'"))] )
if

Stochastic where R = diag(R"),cs, is such that
Viodels 1
R-(Z)X,A: I(x € A).
A= e
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REMARK

SFMs part Il

Matgorzata

Using
e D(s) and related operators expressed in terms of it
as the building blocks

Stochastic the reSUItS for
Fluid-lud e the fransient and stationary analysis of the SFFMs

follow by arguments based on
e appropriate partitioning of sample paths.
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STATIONARY DISTRIBUTION

SFMs part Il If {(p(1), X(), Y(t)),t > 0} is an ergodic process, then the limiting distribution,
given by w0 (y), £ € {+,—,0}, ¥y > 0, and p{™(0), m € {—, 0}, satisfies the
following set of equations:

B B(--) g0 1\
[P PO J=a[g 0] (*[ Bo-)  pgloo) D ,

[ #y) =) ]

. B(—+) R®) 0
_ - 0 K o
Pl Pl = [P P ] { } [e% efv] [ 0 ARG } ’

Models

7O (y) = [ #D(y) =)(y) ] [ g((tg)) ] (75(00))71,

where K = D(+1)(0) + wD(=+)(0) and « is a normalizing constant such that

> Y [T AmneEmey+ XY AT E ) =1

ieS te{+,—-,0} me{—,0} jESm
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CURRENT WORK

SFMs part Il

Matgorzata

e Theoretical expressions (in operator form).

e Transient and stationary analysis. v

Stochastic
Fluid-Fluid

Models
e Efficient algorithms!
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TANDEM: INTUITION

SFMs part Il

Buffer X Buffer Y

Tandem
dy(t) _
at (f)
dy(t) _
at w(f )

> 0 when X(t) >0

< O0when X(t)=0,Y(t) >0
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SFMS WITH CYCLIC PARAMETERS

SFMs part Il
Malgorzata e We assume a cycle of fixed duration 1 (wlog) such that

T(t+k) = T(t) forall k € Z,
ci(t+k) = ci(t) forallk € Z.

@ Theoretical expressions & algorithms. v
Time-Varying e Transient and asymptotic-periodic analysis. v
e Other time-varying models.
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GENERATOR Q(s, t) OF CyCLIC SFMs

SO AN  Forany s, t,with0 <s,t <1,

o o G (st
Qs = @j( ) bi(s,t ’
Qii(s,t) = CIU(S)Ter(8)l(s=1t)+ Tio(s)Un(s, 1) Tos(1)]
Q _(s,t) = CIUS)T-—(s)l(s=t) + T_o(s)Uo(s, ) To_(1)]
Qi-(s.t) = CU(S)Te—(s)l(s =t) + T1o(s)Uo(s, ) To_(1)]
Q (s 1) CZ'(S)[T_1(s)l(s = t) + T_o(s) Un(s, t) To ()]

Time-Varying
SFMs

where Uy(s, t) is a hat function such that

s,0)=> Up(s t+k).
k=0
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FuNcTION (s, t)

~

Sl U (s, 1) is the minimal nonnegative solution of the integral
Malgorzata equation
;

1 ~
Als, u)¥(u, t)du + / (s, u)B(u, ) = — (s, 1)
u=0 u=0
where

1

As.t) = Qui(s, 1) + / (s, u)Q_ (u, tydu,
u=0

1
B(s,t)=Q__(s,t) + / Q_(s,u)¥(u, t)du,
u=0

Time-Varying
SFMs

and

1 1
(s, f) = <O+_(s, ) — / ~ /9 ¥(s,m)Q_. (n,0)¥(6, t)dnd0>

=0
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WE FOUND V!

SFMs part Il

Matgorzata

Time-Varying
SFMs




COLLABORATIONS

SFMs part Il

Matgorzata

Nigel Bean

Time-Varying Peter Taonr

SFMs
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COLLABORATIONS

SFMs part Il

Matgorzata

Time-Varying
SFMs

Barbara Margolius
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SFMs part Il

Matgorzata

Time-Varying
SFMs

Zbigniew Palmowski




COLLABORATIONS

SFMs part Il

Matgorzata

Time-Varying
SFMs

Werner Scheinhardt
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