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Material of the talk

The material of this talk is taken from the paper

S. Hautphenne, G. Latouche and G. Nguyen. Extinction probabilities of
branching processes with countably infinitely many types. Advances in
Applied Probability, 45(4) : 1068-1082, 2013.

and from the on-going work

P. Braunsteins, G. Decrouez, S. Hautphenne, and G. Nguyen. A coupling
approach to the extinction probability of branching processes with
countably infinitely many types.
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Preliminaries

Each individual has a type i ∈ S = {1, 2, 3, ...}

Each individual has a unit lifetime

At death individuals of type i have children according to the
progeny distribution : pi j : j = (j1, j2, j3, . . .), where

pi j = probability that a type i gives birth to j1 children of type
1, j2 children of type 2, j3 children of type 3,. . .

All individuals are independent

3



Preliminaries

Population size : Zn = (Zn1,Zn2,Zn3, . . .), n ∈ N, where

Zni : # of individuals of type i at the nth generation

In this example Z3 = (0, 1, 1, 2, 1, 0, 0, ...).

{Zn} : ∞-dim Markov process with state space N∞ and an
absorbing state 0 = (0, 0, . . .).
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Preliminaries

Progeny generating vector P(s) = (P1(s),P2(s),P3(s), . . .), where
Pi (s) is the progeny generating function of an individual of type i

Pi (s) =
∑

j∈N|S|

pi j s
j =

∑
j∈N|S|

pi j

|S|∏
k=1

s jkk , si ∈ [0, 1]

Mean progeny matrix M with elements

Mij =
∂Pi (s)

∂sj

∣∣∣∣
s=1

= expected number of direct offspring of type j

born to a parent of type i

Irreducible branching process = M is irreducible
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Global extinction

Global extinction probability vector q = (q1, q2, q3, . . .), with

qi = P
[

lim
n→∞

|Zn| = 0
∣∣ϕ0 = i

]
q = P

[
lim
n→∞

|Zn| = 0
∣∣ϕ0

]
,

where ϕ0 is the type of the first individual in generation 0.

The vector q is the minimal nonnegative solution of

P(s) = s, si ∈ [0, 1], i ∈ S.
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Partial extinction

Partial extinction probability vector q̃ = (q̃1, q̃2, q̃3, . . .), with

q̃i = P
[
∀` : lim

n→∞
Zn` = 0

∣∣ϕ0 = i
]

q̃ = P
[
∀` : lim

n→∞
Zn` = 0

∣∣ϕ0

]
,

We have
0 ≤ q ≤ q̃ ≤ 1.

The vector q̃ also satisfies the fixed point equation

P(s) = s, si ∈ [0, 1], i ∈ S.
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Example where q < q̃ = 1
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Question : How to compute q and q̃ ?
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Computing q̃

Define {Z̃
(k)

n } by modifying {Zn} such that all types > k are sterile
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Computing q̃

Denote q̃(k) : the (global) extinction probability of {Z̃
(k)

n }

q̃(k) ↘ q̃ as k →∞

The proof is an application of the monotone convergence
theorem

For each k , q̃(k) can be computed, for instance using
functional iteration
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Partial extinction criterion

Let M̃(k) be the k × k north west truncation of M

For all k , we have

sp(M̃(k)) > 1⇔ q̃(k) < 1.

Thus, q̃ < 1 if and only if there exists k ∈ N such that
sp(M̃(k)) > 1.
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Computing q

Define {Z(k)
n } by modifying {Zn} such that all types > k are

replaced by an immortal type ∆
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Computing q

Denote q(k) : the (global) extinction probability of {Z(k)
n }

q(k) ↗ q as k →∞

The proof is again an application of the monotone
convergence theorem

For each k , q(k) can be computed, for instance using
functional iteration

It is difficult to use the mean progeny matrix of {Z(k)
n } to

construct a global extinction criterion
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Truncation and fixed-type augmentation

Define {Z̄(k)
n } by modifying {Zn} such that all types > k are

replaced by type 1
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Truncation and fixed-type augmentation

Denote q̄(k) : the (global) extinction probability of {Z̄(k)
n }

When does q̄(k) → q as k →∞ ?

Can we use the mean progeny matrix of {Z̄(k)
n } to come with

an extinction criteria for {Zn} ?
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Example where q < limk→∞ q̄(k) < q̃

q1 = 1/3 < lim
k→∞

q̄
(k)
1 ≈ 0.42181 < q̃1 ≈ 0.69707
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Theorem

If {Zn} is irreducible and

inf
i
qi ≥ β > 0,

then limk→∞ q̄(k) → q

We define {Zn}, {Z̃
(k)
n }, {Z

(k)
n } and {Z̄(k)

n } on a common
probability space and prove

q̄
(k)
1 − q

(k)
1 = E

[
1{Z̄(k)

n } dies
− 1{Z(k)

n } dies

]
→ 0

by conditioning on the outcome of {Z̃
(k)

n }.
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Coupling of the branching processes

We force {Zn}, {Z(k)
n }, {Z̃

(k)

n }, and {Z̄(k)
n } to live in the same

probability space, for all k ≥ 1.
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Coupling of the branching processes

We force {Zn}, {Z(k)
n }, {Z̃

(k)

n }, and {Z̄(k)
n } to live in the same

probability space, for all k ≥ 1.
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Case 1 : {Z̃
(k)

n } does not become extinct

Neither {Z(k)
n } or {Z̄(k)

n } die. Thus, 1{Z̄(k)
n } dies

− 1{Z(k)
n } dies

= 0
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Case 1 : {Z̃
(k)

n } does not become extinct

Neither {Z(k)
n } or {Z̄(k)

n } die. Thus, 1{Z̄(k)
n } dies

− 1{Z(k)
n } dies
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Case 2 : {Z̃ (k)
n } dies before producing a sterile type

Both {Z(k)
n } and {Z̄(k)

n } die. Thus, 1{Z̄(k)
n } dies

− 1{Z(k)
n } dies

= 0
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Case 3 : {Z̃ (k)
n } dies after producing a sterile type

{Z(k)
n } does not die, {Z̄(k)

n } might die. 1{Z̄(k)
n } dies

− 1{Z(k)
n } dies

= ?
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Case 3 : {Z̃ (k)
n } dies after producing a sterile type
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Seed process

Define the seed process, {Sk} as follows,

when {Z̃
(k)

n } dies, Sk = the number of individuals with type

> k in {Z̃
(k)

n }

when {Z̃
(k)

n } does not die, Sk = 0.

Lemma (Dichotomy of {Sk})
Suppose inf i qi ≥ β > 0, then with probability 1, either Sk →∞ or
a value of n exists for which Sk = 0 for all k ≥ n.
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Seed process

We have,

E
[
1{Z̄(k)

n } dies
− 1{Z(k)

n } dies

∣∣Sk] =
(
q̄

(k)
1

)Sk
− 1{Sk=0}

so that for any K ≥ 1,

q̄
(k)
1 − q

(k)
1 = E

((
q̄

(k)
1

)Sk
− 1{Sk=0}

)
= E

((
q̄

(k)
1

)Sk ∣∣∣∣ 0 < Sk < K , ϕ0

)
P(0 < Sk < K )

+ E
((

q̄
(k)
1

)Sk ∣∣∣∣ Sk ≥ K

)
P(Sk ≥ K )

→ 0 as k →∞
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Global extinction criteria

Let M̄(k) be the mean progeny matrix of {Z̄(k)
n }. It is also the

north-west truncation of M augmented on the first column.

For all k, we have

sp(M̄(k)) > 1 ⇔ q̄(k) < 1

Under the same conditions as the convergence theorem, if
#{k : sp(M̄(k)) ≤ 1} =∞, then q = 1

We are still investigating under which conditions we have
lim infk→∞ sp(M̄(k)) > 1⇒ q < 1

When
(
lim inf sp(M̄(k)) = 1 & #{k : sp(M̄(k)) ≤ 1} <∞

)
there are cases where q = 1 and q < 1.
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Thank you for your attention
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