Matrix Exponential Distributions and their Generalisations

Nigel Bean

School of Mathematical Sciences University of Adelaide

SMMP, UTas, 11/2015

Stochastic Modelling

- Taking a stochastic process and using it to answer questions in the real-world.
- What do we need for a distribution to be useful in stochastic modelling?
 - Efficient techniques for fitting the distribution to collected data.
 - Efficient analysis (numerical, simulation,..)
- Mark Fackrell, Peter Taylor and Bo Friis Nielsen.

Exponential Distributions

• The Exponential Distribution of rate λ is defined by

$$P(X \leq x) = 1 - e^{-\lambda x}.$$

- Too restrictive for many practical purposes.
- In a Markov process the time between events is given by the Exponential Distribution.
- Need greater flexibility, but don't want to lose tractability!

Absorbing Finite-state Markov Processes

- *m* + 1 states: state 0 is absorbing
- $m \times m$ transition matrix T governs transitions between non-absorbing states

•
$$Q = \begin{pmatrix} 0 & 0 \\ -T e & T \end{pmatrix}$$

• $[-Te]_i$ is the rate of moving from state *i* to the absorbing state 0

Phase-Type Distributions

- The distribution of time to absorption for an absorbing finite-state Markov process.
- Described by a matrix *T* and a vector *α* detailing the probability of starting in each of the states.
- The phase-type distribution with representation (α, T) is given by

$$P(X \leq x) = 1 - \alpha e^{Tx} e$$

with density $f(x) = \alpha e^{Tx} (-T e)$

Obvious multi-state analogue of the exponential distribution.

Phase-Type Distributions: Properties

- Dense in all distributions on the nonnegative real numbers.
- Highly flexible.
- Highly tractable: keep the Markov structure.
- Easy to take a physical description and determine if it represents a Phase-Type distribution.
- Hard to determine a representation from a distribution function or data.

Phase-Type Distributions: Fitting

- Many representations for the one distribution.
- Different orders for the one distribution.
- What is the minimal order? Can be really high.
- Objective function is not uni-modal!
- Problem of determining a representation from a distribution.
- Summary: fitting phase-type distributions to data is difficult to do well.

Phase-Type Distributions: Analysis

- Remains a Markov chain
- Increased size of state space
- Sometimes efficient algorithms can exploit the structure, e.g. QBD, SFM

Phase-Type Distributions Matrix Exponential Distributions

Matrix Exponential Distributions: What are they

The matrix-exponential (ME) distribution with representation (α, *T*, *s*) is given by

$$P(X \leq x) = 1 + \alpha e^{Tx} T^{-1} s,$$

with density $f(x) = \alpha e^{Tx} \mathbf{s}$.

- If *s* = -*Te* then reduces to the algebraic form of the Phase-type expressions.
- Phase-type distributions are a proper subset of matrix exponential distributions.
- Equivalent to Cox's class of distributions with rational Laplace transform.

ME Distributions - Restrictions

• What restrictions do we impose on α , T and **s**?

Answer: $f(x) \ge 0$, for all $x \ge 0$.

- Don't need α to represent a probability distribution.
- Don't need T to represent an absorbing Markov process.
- Don't need $\boldsymbol{s} = -T\boldsymbol{e}$.
- Generalization of phase-type distributions away from the natural physical description.

•

ME Distributions – Example

• order 3
•
$$\alpha = (3, -1, -1).$$

• $T = \begin{pmatrix} -1 & 0 & 0 \\ -2/3 & -1 & 1 \\ 2/3 & -1 & -1 \end{pmatrix}$
• $s = \begin{pmatrix} 1 \\ 2/3 \\ 4/3 \end{pmatrix}.$

ME Distributions: Properties

- Many representations of same/different orders exist for the one distribution.
- Laplace transform of any matrix exponential distribution is a rational function.
- Class of distributions with rational Laplace transforms is identical to the class of matrix exponential distributions.
- Canonical minimal-order representation is trivially deduced from the transform.
- The minimal order is often much lower than for the phase-type representation.

ME Distributions – Physical Interpretation

- A matrix exponential distribution can be thought of as being generated by a piecewise deterministic Markov process {*A*(*t*)}_{*t*≥0} on a compact subset of {*a* ∈ ℝ^m : *ae* = 1}, such that the lifetime is identical to the time of the first jump in *A*(·).
- $A(\cdot)$ evolves before a jump according to:

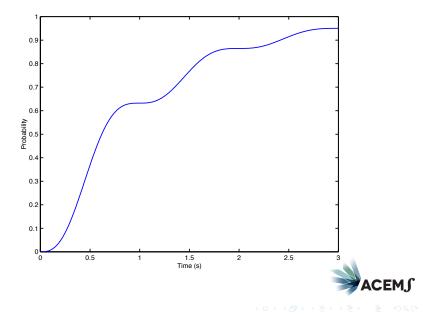
$$\frac{\mathrm{d}\boldsymbol{a}(t)}{\mathrm{d}t} = \boldsymbol{a}(t)T - \boldsymbol{a}(t)T\boldsymbol{e}\cdot\boldsymbol{a}(t)$$

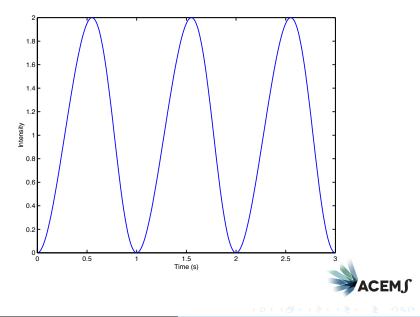
- In state a, a jump occurs with stochastic intensity as.
- After a jump the deterministic Markov process $\{A(t)\}_{t\geq 0}$ expires.

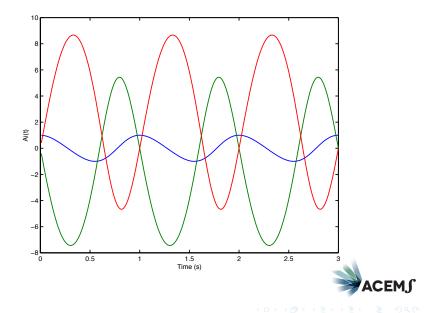
ME Distributions – Example

•
$$\alpha = (1,0,0).$$

• $T = \begin{pmatrix} 0 & -1 - 4\pi^2 & 1 + 4\pi^2 \\ 3 & 2 & -6 \\ 2 & 2 & -5 \end{pmatrix}$ and $\mathbf{s} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$
• Canonical minimal-order representation: $\alpha = (1 + 4\pi^2, 0, 0),$
 $T = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 - 4\pi^2 & -3 - 4\pi^2 & -3 \end{pmatrix}$ and $\mathbf{s} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$







ME Distributions: Analysis

- No longer a discrete-space Markov chain
- Piecewise Deterministic Markov Process
- Sometimes we can exploit the structure, e.g. QBD see later

Poisson Process of rate λ

- Renewal process with exponentially distributed inter-arrival time
- Counting process has finite-dimensional density:

$$f(x_1, x_2, \ldots, x_n) = \lambda e^{-\lambda x_1} \lambda e^{-\lambda x_2} \ldots \lambda e^{-\lambda x_n}$$

 Easily incorporated into models of queueing systems through *M*/*M*/· queues, or Birth-and-Death processes

Phase-type Renewal process — (α, T)

- Renewal process with phase-type distributed inter-arrival time, with representation (α, T)
- Counting process has finite-dimensional density:

$$f(x_1, x_2, \ldots, x_n) = \alpha e^{Tx_1} (-T e) \alpha e^{Tx_2} (-T e) \ldots \alpha e^{Tx_n} (-T e)$$

 Easily incorporated into models of queueing systems in the form of Quasi-Birth-and-Death processes (QBDs)

ME Distributions Process extensions Richard Tweedie Markovian Arrival Process Rational Arrival Markovian Arrival Process (MAP) — (C, D)

- Non-renewal process, but with (conditional) phase-type distributed inter-arrival times
- Counting process has finite-dimensional density:

$$f(x_1, x_2, \ldots, x_n) = \alpha e^{Cx_1} D e^{Tx_2} D \ldots e^{Tx_n} D e^{Tx$$

- If $D = (-Te)\alpha$, then a phase-type renewal process
- Easily incorporated into models of queueing systems in the form of Quasi-Birth-and-Death processes (QBDs)

Quasi-Birth-and-Death Process (QBD)

2-dimemsional Markov chain

- Phase lies on the state space {1,2,..., m} records the state of the MAP/PH distribution/environment
- Level lies on the state space \mathbb{Z}_+ but restricted to changes in $\{-1, 0, 1\}$ records the number in the queue, for example.

• has Markovian representation:

$$Q = \begin{bmatrix} B_0 & A_1 & 0 & 0 & 0 & \cdots \\ A_{-1} & A_0 & A_1 & 0 & 0 & \ddots \\ 0 & A_{-1} & A_0 & A_1 & 0 & \ddots \\ 0 & 0 & A_{-1} & A_0 & A_1 & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \end{bmatrix}$$

Quasi-Birth-and-Death Process (QBD) – Analysis

• Equilibrium distribution given by

$$\boldsymbol{\pi} = (\pi_0, \pi_1, \pi_2, \ldots)$$

where

$$\pi_n = \pi_{n-1}R$$
$$\pi_0 \left(B_0 + RA_{-1}\right) = \mathbf{0}$$

and *R* is the minimal nonnegative solution to the matrix-quadratic equation

$$A_1 + RA_0 + R^2 A_{-1} = 0$$

Efficient (and stable) algorithms to solve this matrix quadratic equation

Rational Arrival Process (RAP) - fundamentals

- Class of all point processes on a finite state space is the class of MAPs
- Class of all point processes on a finite dimensional space is the class of RAPs

Asmussen and Bladt (1999):

Definition 1.1. We call a point process N a rational arrival process (RAP) if $\mathbb{P}(N(0,\infty) = \infty) = 1$ and there exists a finite-dimensional subspace V of $\mathcal{M}(\mathcal{N})$ such that for any t, $\mathbb{P}(\theta_t N \in \cdot | \mathscr{F}_t)$ has a version $\mu(t, \cdot)$ with $\mu(t, \omega) \in V$ for all $\omega \in \Omega$.

- μ(t,ω) = A(t)W, where the rows of W are the basis vectors of the finite dimensional space V.
- Hence we can focus on $A(\cdot)$ in all our analysis

Rational Arrival Process (RAP) — (C, D)

• Finite-dimensional density given by

$$f(x_1, x_2, \ldots, x_n) = \alpha e^{Cx_1} D e^{Cx_2} D \ldots e^{Cx_n} D e^{Cx$$

- Non-renewal process, but with (conditional) ME distributed inter-arrival times
- Essentially same physical interpretation as for the ME distribution except
 - $A(\cdot)$ evolves before a jump according to:

$$\frac{\mathrm{d}\boldsymbol{a}(t)}{\mathrm{d}t} = \boldsymbol{a}(t)\boldsymbol{C} - \boldsymbol{a}(t)\boldsymbol{C}\boldsymbol{e}\cdot\boldsymbol{a}(t)$$

ΔСΕΜ (

- In state *a*, a jump occurs with stochastic intensity *aDe*.
- After a jump $\mathbf{A}(\cdot)$ jumps to $\frac{\mathbf{a}D}{\mathbf{a}D\mathbf{e}}$

$A(\cdot)$ - fundamentals

- A(·) is a piece-wise deterministic Markov process on a subset of ^m.
- If we embed a RAP in a queueing model, we need to use general state-space Markov process theory to analyse such a process
- or do you??
- Let's consider a special case

QBD with RAP components

- Use the RAP process and ME distributions to define a QBD with RAP components
- Clearly such a process exists since a MAP is a RAP and phase-type distribution is an ME distribution – MAP/PH/1 queue
- Representation could be (C, D_{-1}, D_1) where
 - D_{-1} corresponds to jumps that take the process down one level
 - *D*₁ corresponds to jumps that take the process up one level

QBD with RAP components

- Bean and Nielsen (2010) developed an analysis by exploiting the physical interpretation (above)
- Extended the Matrix-Analytic Methods argument to this domain
- Relied on the fact that $\mathbb{E}[\mathbf{A}(t+s)|\mathcal{F}_t] = \mathbf{A}(t)e^{(C+D_1+D_{-1})s}$
- Essentially, the expectation of A(·) contains all the essential information because of the inherent linearity of the process

Richard Tweedie (1982) - framework

- Considered the QBD concept where the underlying space was a general state space
- Two dimensional state space $\mathbb{Z}_+ \times \mathbb{J}$: Phase $-\mathbb{J} \subset \mathbb{R}^m$
- Kernel (in discrete-time) of the form

$$Q = \begin{bmatrix} B_0(x,J) & A_1(x,J) & 0 & 0 & 0 & \cdots \\ A_{-1}(x,J) & A_0(x,J) & A_1(x,J) & 0 & 0 & \ddots \\ 0 & A_{-1}(x,J) & A_0(x,J) & A_1(x,J) & 0 & \ddots \\ 0 & 0 & A_{-1}(x,J) & A_0(x,J) & A_1(x,J) & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \end{bmatrix}$$

Richard Tweedie (1982) - results

• Invariant measure of the form $\mu = (\mu_0, \mu_1, \mu_2, \ldots)$ where

$$\mu_{n+1}(J) = \int_{\mathbb{J}} \mu_n(\mathrm{d}x) \tilde{\mathcal{S}}(x,J)$$

$$egin{aligned} & ilde{S}(x,J) = A_1(x,J) + \int_{\mathbb{J}} ilde{S}(x,\mathrm{d}y) A_0(y,J) + \int_{\mathbb{J}} ilde{S}^2(x,\mathrm{d}y) A_{-1}(y,J) \ & ilde{S}^2(x,J) = \int_{\mathbb{J}} ilde{S}(x,\mathrm{d}y) ilde{S}(y,J) \end{aligned}$$

and

$$\mu_0(J) = \int_{\mathbb{J}} \mu_0(\mathrm{d}x) B_0(x,J) + \int_{\mathbb{J}} \int_{\mathbb{J}} \mu_0(\mathrm{d}x) S(x,\mathrm{d}y) A_{-1}(y,J)$$

Apply Tweedie to a QBD with RAP components

- Consider the embedded discrete-time chain at changes in level of the QBD with RAP components
- Discrete-time QBD on a general state-space
- Tweedie says we need to find the operator $\tilde{S}(x, J)$
- Numerically essentially imposible
- Provides detailed information that is essentially meaningless/useless
- Recall that all we really need is the expectation of the phase process *A*(·)
- What would happen if we considered the expectation of the kernels?

Γ-linearity

 Let Γ be some linear continuous operator taking values in a topological finite-dimensional vector space V.

Definition (rough)

An operator Π is said to be Γ -linear if $\Gamma(\Pi(\phi)) = \Gamma(\phi)P$ for all measures ϕ and a given matrix P.

What happens to Tweedie's results if the kernels are Γ-linear?

Richard Tweedie (1982) - Γ - linearity

Assume that the kernels are such that

$$\Gamma(A_i(\phi)) = \Gamma(\phi)A_i, i = -1, 0, 1, and \Gamma(B_0(\phi)) = \Gamma(\phi)B_0$$

• Invariant measure $\mu = (\mu_0, \mu_1, \mu_2, ...)$ satisfies

$$\Gamma(\mu_{n+1}) = \Gamma(\mu_n)S$$

where

$$S = A_1 + SA_0 + S^2A_{-1}$$

and

$$\Gamma(\mu_0) = \Gamma(\mu_0) \left(B_0 + SA_{-1} \right)$$

Expectation-linearity of the (embedded) QBD with RAP components

Theorem

- The operators A_i(x, J) are expectation-linear with matrices (−C)⁻¹D_i for i = −1, 1.
- The matrix *S* is a solution to $S = (-C)^{-1}D_1 + S^2(-C)^{-1}D_{-1}$
- Can undo the embedding and determine the expectation (with respect to the continuous phase variable) of the time-stationary distribution of the level variable

Stationary distribution of QBD with RAP components

- Let $\pi(\cdot) = (\pi_0(\cdot), \pi_1(\cdot), ...)$ be the (time) stationary measure of the QBD with RAP components
- Let $\theta_i = \mathbb{E}(\pi_i)$

Theorem

• $\theta_{n+1} = \theta_n R$

• R is a solution to the matrix-quadratic equation

$$0 = A_1 + RA_0 + R^2 A_{-1}$$

 Any algorithm for standard QBDs for solving this matrix-quadratic equation that relies on level-censoring arguments will produce the required solution in the environment of a QBD with RAP components

Conclusions

- Richard Tweedie's operator extension of some Matrix-Analytic Methods results can be directly applied (after embedding at level changes)
- No practical way to compute these results and they provide essentially useless information
- Take the expectation of all results (with respect to the continuous phase-variable) to provide a numerically tractable approach
- Essentially replicates the results of the traditional Matrix-Analytic Methods for a standard QBD
- Equations are identical
- Analysis is very different!

Conclusions

- ME distributions are a generalization of phase-type distributions and are equivalent to Cox's class of distributions with rational Laplace transforms
- ME distributions have some potential practical advantages over phase-type distributions
 - Phase-type distributions have a simpler physical interpretation.
 - Minimal-order representations of matrix exponential distributions are much easier to find.
 - Fitting phase-type distributions to data is difficult: multiple representations, multi-modal objective function,...
 - Fitting matrix exponential distributions is potentially easy via the Laplace Transform: If we can implement Semi-Infinite Programming!
- Rational Arrival Processes are the process extension of ME distributions

Conclusions

Matrix Exponential Distributions versus Phase-type Distributions?

- Can you identify physically the phases to justify the use of phase-type distributions?
- Do you need the extra flexibility of matrix exponential distributions?
- Does the required analysis exist for your model?
 - For some models, the equations are identical so this does not influence the decision.
 - Choose the class that is easier to fit to data in this situation.

