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Introduction
Branching processes

Branching processes are stochastic processes describing the
dynamics of a population of individuals which reproduce and die
independently, according to some specific probability distributions.

Branching processes have numerous applications in population
biology and phylogenetics
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Introduction
Branching processes

There are many types of branching processes :

Discrete time (Galton-Watson branching processes)

Continuous time,
with exponential lifetime distributions (Markovian branching
process), or

general lifetime distributions (age-dependent, Bellman-Harris
branching process)

Single type, or multitype (with finitely or ∞ly many types)

Individuals reproduction rules may depend on the actual size of
the population (population size-dependent branching process)

Branching processes can undergo catastrophes or live in a
random environment

. . .
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The Galton-Watson branching process

Time is discrete and represents successive generations

Each individual has a unit lifetime, at the end of which it
might give birth to one or more offsprings simultaneously

The offspring distribution is described by a random variable ξ
taking non-negative integer values with corresponding
probabilities

pk = P[ξ = k], k ≥ 0.

All individuals behave independently of each other
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The Galton-Watson branching process

A realisation of a GW process through 3 generations starting with
a single individual at generation 0 :

Generation n 0 1 3 2 
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The Galton-Watson branching process

The population size at generation n is denoted by Zn

We have the branching process equation

Zn =

Zn−1∑
i=1

ξi , n ≥ 1,

where ξ1, ξ2, . . . are i.i.d. copies of ξ.

The process {Zn, n ≥ 0} is a discrete-time Markov chain on
the state space {0, 1, 2, 3, . . .} where state 0 is absorbing and
all other states are transient.
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Population size distribution

The probability generating function (p.g.f.) of ξ is

P(s) := E[sξ] =
∞∑
k=0

P[ξ = k]sk , s ∈ [0, 1].

If Z0 = 1, then P(s) corresponds to the p.g.f of Z1.

Let Pn(s) denote the p.g.f. of Zn,

Pn(s) :=
∞∑
k=0

P[Zn = k]sk .
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Composition of probability generating functions

Define the random variable SN as

SN :=
N∑
i=1

Xi ,

where Xi are i.i.d. with p.g.f. GX (s), and N is an independent
random variable taking values in Z+, with p.g.f. GN(s).

Then the p.g.f. of SN is given by

GSN = GN(GX (s)).
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Population size distribution

Recall that for all n ≥ 1,

Zn =

Zn−1∑
i=1

ξi

where ξ1, ξ2, . . . are i.i.d. copies of ξ.

Proposition

Conditionally on Z0 = 1, the p.g.f. of Zn satisfies

Pn(s) = Pn−1(P(s))

= P(P(. . .P︸ ︷︷ ︸
n

(s)))

= P(Pn−1(s)), n ≥ 1,

with P1(s) = P(s).
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Examples of progeny distributions

Binary case :

ξ =

{
0 w.p. 1/3,
2 w.p. 2/3

→ P(s) =
∑
k

P[ξ = k]sk =
1

3
+

2

3
s2

Geometric case : ξ ∼ Geom(p),

P[ξ = k] = (1− p)kp → P(s) =
p

1− (1− p)s

Poisson case : ξ ∼ Poisson(λ),

P[ξ = k] = e−λλk/k! → P(s) = eλ(s−1)
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Mean progeny and criticality

The mean progeny is

m := E[ξ] = P ′(1−) ∈ (0,∞).

Corollary

The mean population size at generation n, conditional on Z0 = 1,
is given by

Mn := E[Zn |Z0 = 1] = P ′n(1−) = mn.

m < 1 : subcritical case, Mn ↘ 0 as n→∞
m = 1 : critical case Mn = 1 for all n

m > 1 : supercritical case, Mn ↗∞ as n→∞
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Extinction probability

Let qn = P[Zn = 0] = Pn(0) be the probability that the nth
generation is empty.

If Z0 = 1, then q0 = 0 and

Pn(s) = P(Pn−1(s)) ⇒ qn = P(qn−1), n ≥ 1.

The probability of extinction of the branching process is

q = lim
n→∞

P[Zn = 0] = P[ lim
n→∞

Zn = 0] ⇒ q = P(q)

Theorem

The extinction probability q is the minimal nonnegative solution of
the fixed point equation

s = P(s).
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Computation of q

In practice, when s = P(s) cannot be solved explicitly, q is
obtained as the limit of the sequence qn computed using the
functional iteration qn = P(qn−1) with q0 = 0.

Examples :

Binary case : s = (1/3) + (2/3)s2 → q = 1/2

Geometric case : s =
p

1− (1− p)s
→ q = min(p/(1− p), 1),

i.e.

q =

{
1 if p ≥ 1/2
p/(1− p) if p < 1/2

Poisson case : s = eλ(s−1) → the functional iteration is useful
here !

15



Introduction Galton-Watson branching processes Markovian branching processes Markovian binary trees

A closer look at the progeny generating function

P(s) is an increasing, convex function such that P(1) = 1

→ P(s) has at most two fixed points in [0, 1] :

6

-

6

-

r r

r
s s

P(s) P(s)

q = 1 1

1 1

p0 p0

m = P ′(1) ≤ 1 m = P ′(1) > 1

q

→ P(s) has a fixed point q < 1 if and only if m > 1
16
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Extinction criterion

Proposition (Extinction criterion)

q < 1 ⇔ m > 1

Recall

in the supercritical case, m > 1⇒ q < 1

in the critical case, m = 1⇒ q = 1

in the subcritical case, m > 1⇒ q = 1

17
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Dichotomy : extinction or explosion !

Theorem

Regardless the value of m, any state k 6= 0 is transient, so that

lim
n→∞

P[Zn = k] = 0 for any k = 1, 2, . . ..

Moreover,
P[Zn → 0]︸ ︷︷ ︸

q

+P[Zn →∞]︸ ︷︷ ︸
1−q

= 1.

In the supercritical case, conditionally on non-extinction,
limn→∞ Zn = +∞ a.s.

Can we tell more about the growth rate of Zn ?
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Limiting behaviour in the supercritical case 1 < m <∞

Let Wn = Zn/mn. {Wn, n ≥ 0} is a martingale with E[Wn] = 1 for
all n, so it converges a.s. to a nonnegative random variable W ,

W := lim
n→∞

Zn

mn
→ Zn ∼W mn

Theorem (Kesten-Stigum)

Either P[W = 0] = q or P[W = 0] = 1.

The following are equivalent :

(i) E[ξ log+ ξ] <∞

(ii) P[W = 0] = q

(iii) Wn converges in mean (L1)

(iv) E[W ] = 1.
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Quasi-stationary distribution in the subcritical case m < 1

Theorem (Yaglom)

For each j = 1, 2, . . . ,

lim
n→∞

P[Zn = j |Zn 6= 0] = bj

exists, and
∑

j bj = 1.

Moreover, the p.g.f. G (s) =
∑

k bksk satisfies the equation

G (P(s)) = m G (s) + 1−m.

In addition, the vector b = (b1, b2, . . .) satisfies

bQ = m b,

where Q is the truncated probability transition matrix of the GW
restricted to the transient states.
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The critical case m = 1

Theorem (Kesten-Ney-Spitzer)

Assume σ2 :=Var(ξ) <∞. Then we have

Kolmogorov’s estimate

lim
n→∞

nP[Zn 6= 0] =
2

σ2
.

Yaglom’s universal limit law

lim
n→∞

P[Zn/n ≥ x |Zn 6= 0] = exp(−2x/σ2), x > 0.
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Multitype Galton-Watson branching process

Suppose now there are r > 1 types of individuals, each type having
its own reproduction law.

Example with r = 2 :

Generation n 0 1 3 2 
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Multitype Galton-Watson branching process

Population size vector : Zn = (Zn1,Zn2, . . . ,Znr ), n ∈ N, where

Zni : # of individuals of type i at the nth generation

{Zn} is an r -dimensional Markov process with state space Nr and
an absorbing state 0 = (0, 0, . . . , 0)T

Progeny distribution : pi j : j = (j1, j2, . . . , jr ), where

pi j = probability that a type i gives birth to j1 children of type 1,
j2 children of type 2,. . . , jr children of type r .
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Multitype Galton-Watson branching processes

Progeny generating vector P(s) = (P1(s),P2(s), . . . ,Pr (s)), where
Pi (s) is the progeny generating function of an individual of type i

Pi (s) =
∑
j∈Nr

pi j s
j =

∑
j∈Nr

pi j

r∏
k=1

s jkk , si ∈ [0, 1]

Mean progeny matrix M with elements

Mij =
∂Pi (s)

∂sj

∣∣∣∣
s=1

= expected number of direct offsprings of type j

born to a parent of type i

Irreducible branching process ≡ M is irreducible
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Extinction probability

As usual, we assume that the process starts with a single individual

Extinction probability vector q = (q1, q2, . . . , qr )>, with

qi = P
[

lim
n→∞

|Zn| = 0
∣∣ϕ0 = i

]
q = P

[
lim
n→∞

|Zn| = 0
∣∣ϕ0

]
,

where ϕ0 is the type of the first individual in generation 0.

The vector q is the (componentwise) minimal nonnegative solution
of

P(s) = s, si ∈ [0, 1], i ∈ S.

A before, q = limn→∞ qn where q0 = 0 and qn = P(qn−1) for all
n ≥ 1.
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Mean population size and extinction criterion

Proposition

The mean number of individuals of type j at generation n, starting
with a single individual of type i , is given by

E
[
Znj

∣∣ϕ0 = i
]

= (Mn)i j

The extinction criterion simply relies on the Perron-Frobenius
eigenvalue ρ of the mean progeny matrix M : in the irreducible
case,

If ρ > 1, then q < 1 (supercritical case)

If ρ = 1, then q = 1 (critical case)

If ρ < 1, then q = 1 (subcritical case)
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Stable type distribution (irreducible case)

Let u be the (strictly positive) Perron-Frobenius left eigenvector of
M corresponding to ρ, normalized s.t. u1 = 1.

Then, in the long run, we can show that

lim
n→∞

E[Zni ]

E[|Zn|]
= ui .

The vector u is called the stable type distribution.
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Infinitely many types

When r =∞, things become more tricky and very interesting
behaviours can occur.

For instance, there are several types of extinction events to
consider.

M becomes an infinite matrix and the concept of Perron-Frobenius
eigenvalue is replaced by the concept of convergence norm.

More details in the next talk given by Peter B. !
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Markovian branching processes

In a Markovian branching process,

the lifetime of an individual is exponentially distributed with
parameter µ ;

during its lifetime, the individual reproduces according to a
Poisson process with rate λ, giving birth to one child at a
time.

all new individuals behave independently of each other,
following the same rules as their parent.
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Markovian branching processes
Evolution of a population over time

Time 0 
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Markovian branching processes
Population size at time t

Z (t) population size in the branching process at time t

→ {Z (t), t ∈ R+} is a continuous-time Markov chain with
state space {0, 1, 2, 3, . . .}, where state 0 is absorbing, and
with generator

Q =


0 0 0 0 . . .
µ −(µ+ λ) λ 0 . . .
0 2µ −2(µ+ λ) 2λ . . .
0 0 3µ −3(µ+ λ) . . .
...

...
...

...
. . .

 .

Such a Markov chain is also called a linear birth and death
process
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Markovian branching processes
Population size at time t

F (s, t) : probability generating function (p.g.f.) of Z (t) :

F (s, t) =
∑
k≥0

P[Z (t) = k] sk , s ∈ [0, 1].

We assume that P[Z0 = 1] = 1. Therefore, F (s, 0) = s.

Theorem

F (s, t) satisfies the differential equation

∂F (s, t)

∂t
= µ− (µ+ λ) F (s, t) + λF 2(s, t)

with initial condition F (s, 0) = s

This Riccati o.d.e corresponds to the backward Kolmogorov
equation for {Z (t)}, and can be solved explicitly.

33



Introduction Galton-Watson branching processes Markovian branching processes Markovian binary trees

Markovian branching processes
Population size at time t

M(t) : mean population size at time t :

M(t) =
∂F (s, t)

∂s

∣∣
s=1

→ dM(t)

dt
= (λ− µ) M(t), M(0) = 1.

Therefore
M(t) = e(λ−µ) t .

→ Three types of behaviour :

if λ > µ, then limt→∞ M(t) =∞ (supercritical case),
if λ = µ, then M(t) = 1 for all t (critical case),
if λ < µ, then limt→∞ M(t) = 0 (subcritical case).
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Markovian branching processes
Time until extinction

Te : time until extinction of the branching process

F (t) = P[Te < t] = P[Z (t) = 0] = F (0, t), the distribution of
the time until extinction

Theorem

F (t) satisfies the differential equation

∂F (t)

∂t
= µ− (µ+ λ) F (t) + λF 2(t)

with initial condition F (0) = 0.

This equation can also be solved explicitly.
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Markovian branching processes
Extinction probability

q = P[Te <∞] = limt→∞ F (t) : the probability that the
branching process eventually becomes extinct

q satisfies the quadratic equation

0 = µ− (µ+ λ) s + λ s2,

or equivalently

s =
∑
n≥0

(
λ

µ+ λ

)n ( µ

µ+ λ

)
sn︸ ︷︷ ︸

P(s)

where P(s) is the progeny generating function of an individual

(it can be shown that the progeny is geometrically distributed with
parameter λ/(λ+ µ))
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Markovian branching processes
Extinction probability

Theorem

The extinction probability q is the minimal nonnegative solution of
the fixed-point equation

s = P(s)

where P(s) is the progeny generating function of the individuals.

In our case, we can solve the fixed point equation explicitly, and we
find

q = min(1, µ/λ).

We see that
q < 1⇔ λ > µ,

which again shows that the process has a positive probability to
explode only when λ > µ.
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Extinction criterion

Theorem

Extinction is almost sure if and only if the mean progeny is less
than or equal to one, or in mathematical notation,

q = 1⇔ m = P ′(1) ≤ 1.

For the Markovian branching process, the mean progeny is
m = (1− p)/p where p = µ/(λ+ µ), that is, m = λ/µ.

We thus again have that q = 1⇔ λ ≤ µ.
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Example of multitype Markovian branching process
Yule’s evolutionary process

Two levels of individuals are considered : species and genus (group
of species)

withing a single genus, the collection of species evolve as a
pure birth process with birth rate λs ;

the collection of genera evolve according to a pure birth
process with birth rate λg .

At each ramification, a new genus evolves which has exactly
one species, and the old genus continues unchanged

The process is a branching process within a branching process.
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Example of multitype Markovian branching process
Yule’s evolutionary process

A sample path of Yule’s evolutionary process :

Branching of species is represented by continuous lines. Boundaries of
genera are represented by dotted line ‘tubes’, and branching of genera by
arrows.

Figure taken from Kimmel and Axelrod, 2002
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Example of multitype Markovian branching process
Yule’s evolutionary process

Question : what is the rate of evolution of new genera compared to
the evolution of new species, that is, what is λg/λs ?

Two sample paths of the Yule’s process : low and high value of the λg/λs
ratio.
Figure taken from Kimmel and Axelrod, 2002
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Example of multitype Markovian branching process
Yule’s evolutionary process

The genera process can be seen as a multitype Markovian
branching process with countably infinitely many types, where the
type of a genus is the number of species living in that genus.

We can simplify the model by considering two classes of genera
only :

class 1 genera contain one species only (monotype), and

class 2 genera contain more than one species (polytype).
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Example of multitype Markovian branching process
Yule’s evolutionary process

Using results on multitype Markovian branching processes, we
obtain that the asymptotic expected proportion of monotypic
genera is equal to

p =
1

(λs/λg ) + 1

→ λs/λg can be computed from estimated values of p.
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Trade-off between realism and tractability

Simplest case :

Lifetimes follow an exponential distribution

Reproduction occurs according to a Poisson process

Not realistic enough !

It is well known in evolutionary biology that molecular evolution
cannot be described by a time-homogeneous Poisson process
(Gillespie and Langley, 1979).
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Trade-off between realism and tractability

Bellman-Harris branching processes :

Lifetimes follow an arbitrary distribution

Reproduction occurs according to a more general process

Not tractable enough !

We introduce a type of branching process, called the Markovian
binary tree (MBT), which is at the same time very general and
tractable.

In an MBT, individuals’ lifetime is structured into phases.
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Phase-structured lifetime
Example 1

Human’s lifetime decomposed into age-classes (e.g. of 5 years)

1 3 2 22 

0 

1 = 0− 4 years,
2 = 5− 9 years,
3 = 10− 14 years,
...
22 = over 100 years,
0 = dead
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Phase-structured lifetime
Example 2

The right whale’s life cycle decomposed into stages

1 = calf,
2 = immature,
3 = mature,
4 = mother,
5 = dead
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Phase-structured lifetime

2 

0 

3 

1 

2 

0 

3 

1 

Parent 

Child 

3 types of transitions: 

-  ``Hidden’’ transitions 
-  Birth 
-  Death 
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The individuals’ lifetime in an MBT

Lifetime controlled by an underlying Markov process with
n transient phases and one absorbing phase ;

αi

i i → j

(D0)ij di

i → 0i → kus
. . .j

Bi ,jk

α : initial phase distribution (1× n vector) ;

D0 : hidden phase transition rates (n × n matrix) ;

B : transition rates associated with a birth (n × n2 matrix) ;

d : transition rates associated with the death (n × 1 vector).
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MBT are generalisations of Markovian branching processes

The lifetime of the individuals is distributed according to a
phase-type (PH) distribution

PH distributions are dense in the class of all distributions with
non-negative support

The reproduction process is a generalisation of the Poisson
process called a (transient) Markovian arrival process.

In such a point process, the inter-arrival times are not
necessarily independent nor identically distributed.

MAPs are dense in the class of all stochastic point-processes.
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MBTs and matrix analytic methods

MBTs are matrix generalisation of Markovian branching processes

→ they are mathematical objects at the intersection of branching
processes and matrix analytic methods.

We use techniques inspired by the matrix analytic methods to
compute the extinction probability of branching processes ;

All the algorithms have a probabilistic interpretation.
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The MBT as a model for the macroevolutionary process

Gillespie (1986) suggested that molecular evolution may be an
episodic process, with bursts of substitutions followed by long
periods with no substitution.

→ MBT is an excellent candidate for modelling evolution ; indeed,
the transient MAP controlling the lifetime and the reproduction of
individuals offers enough flexibility to account for non-constant
speciation and extinction rates.

Kontoleon (2006) showed that the MBT not only subsumes many
macroevolutionary models but is also amenable to simpler analysis.
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Population size at time t in an MBT

Z(t) = (Z1(t), . . . ,Zn(t)) the pop. size vector at time t,

where Zi (t) : # of individuals in phase i at time t

Fi (s, t) : the conditional p.g.f. of the pop. size at time t, given
that the MBT starts with a first individual in phase i

Fi (s, t) =
∑
k∈Nn

P[Z(t) = k |ϕ0 = i ]sk,

where s = (s1, . . . , sn)>, |si | ≤ 1 and sk = sk1
1 · · · sknn .

F(s, t) = (F1(s, t), . . . ,Fn(s, t))>
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Kronecker products

If A is an m × n matrix and B is a p × q matrix, then the
Kronecker product A⊗ B is the mp × nq block matrix defined by

A⊗ B =

 A11 B · · · A1n B
...

. . .
...

Am1 B · · · Amn B

 .
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Population size at time t in an MBT

Theorem

F(s, t) satisfies the following matrix differential equation

∂F(s, t)

∂t
= d + D0 F(s, t) + B (F(s, t)⊗ F(s, t)),

with F(s, 0) = s

This differential equation corresponds to the backward Kolmogorov
equation for the Markov chain {Z(t), t ∈ R+}.

It has no explicit solution in general !
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Population size at time t in an MBT

Mij(t) = E[Zj(t) |ϕ0 = i ] : mean population size in phase j at
time t starting with one individual in phase i at time t = 0

→ M(t) = (Mij(t)) with

Mij(t) =

(
∂Fi (s, t)

∂sj

)∣∣∣∣
s=1

.

We obtain the matrix differential equation for M(t) :

∂M(t)

∂t
= Ω M(t), M(0) = I ,

where Ω = D0 + B (1⊗ I + I ⊗ 1).

→ M(t) = eΩt .

ω = P-F eigenvalue of Ω, plays a similar role as λ− µ
57
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Time until extinction

Fi (t) : conditional probability that the population becomes
extinct before time t, given that it started at time t = 0 with
one individual in phase i ,

→ F(t) = (F1(t), . . . ,Fn(t))T = F(0, t)

Theorem

F(t) satisfies the following matrix differential equation

∂F(t)

∂t
= d + D0 F(t) + B (F(t)⊗ F(t)),

with F(0) = 0.

As for F(s, t), no explicit solution in general !
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Extinction probability

qi : conditional probability that the population eventually
becomes extinct, given that it started at time t = 0 with one
individual in phase i

→ q = (q1, . . . , qn)T = limt→∞ F(t) is the minimal
non-negative solution of

0 = d + D0 s + B (s⊗ s).

Let θ = (−D0)−1 d and Ψ = (−D0)−1 B.

→ s = θ + Ψ(s⊗ s),

or equivalently

s = [I −Ψ(s⊗ I )]−1 θ or s = [I −Ψ(I ⊗ s)]−1 θ.
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Extinction probability

s = θ + Ψ (s⊗ s)

≡

s = [I −Ψ (I ⊗ s)]−1 θ

≡

s = [I −Ψ (s⊗ I )]−1 θ

1 The Depth and the Order algorithms (linear)
(Bean et al., 2008)

2 The Thicknesses algorithm (linear)
(Hautphenne et al., 2011).

3 The Newton algorithms (quadratic)
(Hautphenne et al., 2008 ; Hautphenne and van Houdt, 2010)
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The Depth algorithm

s0 = θ

sk = θ + Ψ (sk−1 ⊗ sk−1), k ≥ 1

For k ≥ 0,

Mk = the set of MBTs considered at stage k

sk = P[Mk |ϕ0] = the kth approximation of q.

M0 =

Mk = for k ≥ 1.∪
q

Mk−1 Mk−1
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Probabilistic interpretation of the Depth algorithm

s0 = θ

sk = θ + Ψ (sk−1 ⊗ sk−1), k ≥ 1

Depth of an MBT = number of branching points along the longest
branch

For k ≥ 0,

Mk = the set of extinct MBTs with a depth ≤ k
(constraint on the shape of the tree)

Mk ⊆Mk+1 ⊆ · · · ⊆ M = the set of all extinct MBTs.

sk = P[Mk |ϕ0]↗ q as k →∞.
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The Order algorithm

s0 = θ

sk = [I −Ψ (sk−1 ⊗ I )]−1 θ, k ≥ 1

For k ≥ 0,

Mk = the set of MBTs considered at stage k

sk = P[Mk |ϕ0] = the kth approximation of q.

M0 =

Mk = . . . for k ≥ 1.
q

Mk−1

q
Mk−1

q
Mk−1
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Probabilistic interpretation of the Order algorithm

s0 = θ

sk = [I −Ψ (sk−1 ⊗ I )]−1 θ, k ≥ 1

Order of an MBT = total number of children generations

For k ≥ 0,

Mk = the set of extinct MBTs with an order ≤ k
(constraint on the shape of the tree)

Mk ⊆Mk+1 ⊆ · · · ⊆ M = the set of all extinct MBTs.

sk = P[Mk |ϕ0]↗ q as k →∞.
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Application of MBTs in demography

Branching processes have numerous applications in population
biology and in demography.

Here, we use the MBT to model the dynamics of female families in
several countries.

Since our model is asexual, we look at women only.

65



Introduction Galton-Watson branching processes Markovian branching processes Markovian binary trees

Application of MBTs in demography

We structure the lifetime of women in age classes.

Age-specific fertility and mortality rates on UN and WHO mainly
correspond to 5 years age classes → 22 age classes or phases.

1 2 21 3 22 4 

0 1-4 5-9 10-14 95-99 ≥ 100 

We assume exponential sojourn time in each phase
(time unit = 1 year).

D0 =


∗ 1

∗ 1/4
∗ 1/5

. . .

∗ 1/5
∗
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Application of MBTs in demography
Birth rates

4 5 11 6 12 10 

Age-specific fertility rate in age class i = ] living births during the
year, according to the age class i of the mother, for each 1000
women of the same age class i .

→ Female birth rate βi per individual in phase i

=
age-specific fertility rate in i

1000 · (sex ratio + 1)
.

β =
[
04, β5, . . . β11, 011

]′
, and B = (e1 ⊗ diag(β))
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Application of MBTs in demography
Death rates

1 2 21 3 22 

0 

4 

Age-specific mortality rate di in age class i

=
] deaths during the year of women in age class i

population in the age class i

d =
[

d1, d2, . . . d22

]′
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Application of MBTs in demography

m(t) = (M(t)1)1 : Mean total family size generated by a new-born
woman after t units of time :

0 20 40 60 80 100 120 140 160 1800

2

4

6

8

10

12

t

m
(t)

 

 

Congo
Japan
Morocco
South Africa
Turkey
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Application of MBTs in demography

F1(t) : Distribution function of the time until extinction of the
family generated by one new-born woman

0 20 40 60 80 100 120 140 160 1800

0.1

0.2
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0.6
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Application of MBTsx in demography

q : Extinction probability of the family generated by a single
woman as a function of her age class :

0 5 10 15 20 25 30 35 40 45 50 550.2

0.3
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Parameter estimation under complete observation

An MBT is represented by the set of parameters (α,D0,B,d).

Time 0 
α D0 B D0 B D0 d

dD0

D0 B D0 B D0 B D0 d

D0

D0 B d

D0

D0

Complete observation : All birth and death events are observable

BUT phase transitions of the underlying Markov chain are not
observable.
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Parameter estimation under complete observation
Observed variables

Aim : to estimate the parameters θ = (α,D0,B,d) from the
continuous observation of a population during an interval [0,T ].

Remember : phase transitions are not observable.

If individuals are distinguishable, we observe the sequences of

(1) intervals of time between population size changes : {Tk},
(2) population sizes : {Nk},
(3) individuals responsible for each population size change : {Lk}.
→ Y = {(Tk ,Nk , Lk), 1 ≤ k ≤ K}

If individuals are indistinguishable, we only observe (1) and (2)
→ Y = {(Tk ,Nk), 1 ≤ k ≤ K}.
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Parameter estimation under complete observation
Hidden variables

Observable variables : Y = {(Tk ,Nk , Lk), 1 ≤ k ≤ K}.

Hidden variables : Z = {(Hi ,Zi ,Aij ,Ci ,j`,Di ), i , j , ` = 1, . . . , n}
where

Hi : ] MBTs starting in phase i ;

Zi : total cumulated time spent in phase i ;

Aij : total ] jumps from phase i to phase j without accompanying
observable event, for i 6= j ;

Ci,j` : total ] jumps from phase i to phase ` associated with the
birth of a child in phase j ;

Di : ] terminating jumps from phase i
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Parameter estimation under complete observation
Likelihood of a complete sample

Given the parameters θ = (α,D0,B,d) of the MBT, the likelihood
of a complete data sample X = (Y,Z) can be written in the form

Lc(θ|X) =
n∏

i=1

αHi

i

n∏
i=1

exp(D0;ii Zi )
n∏

i=1

n∏
j=1,j 6=i

D0;ij
Aij

n∏
i=1

n∏
j=1

n∏
`=1

Bi,j`
Ci ;j`

n∏
i=1

di
Di
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Complete observation
The maximum likelihood estimator

The MLE is
θ̂ = argmax

θ
log Lc(θ |X),

leading to the maximum likelihood estimates α̂, D̂0, B̂ and d̂ :

α̂i =
Hi

M
, D̂0;ij =

Aij

Zi
, B̂i ,j` =

Ci ,j`

Zi
, d̂i =

Di

Zi
,

D̂0;ii = −

 n∑
j=1,j 6=i

D̂0;ij +
n∑

j=1

n∑
`=1

B̂i ,j` + d̂i


for 1 ≤ i , j , k ≤ n.

They are expressed in terms of the hidden variables Z.
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Complete observation
The EM agorithm applied to MBTs (Hautphenne and Fackrell, 2014).

Since Z = {(Hi ,Zi ,Aij ,Ci ,j`,Di )} are hidden random variables,
instead of computing

θ̂ = argmax
θ

log Lc(θ |X = (Y,Z)),

we iteratively compute a sequence {θ̂(n)}n≥1 :

θ̂
(n)

= argmax
θ

EZ

[
log Lc(θ|X)

∣∣Y = y, θ̂
(n−1)

]
,

with an arbitrary starting point θ̂
(0)

.

→ 2 steps :

1. E-step : EZ

[
log Lc(θ|X) | y, θ̂(n−1)

]
∝ E

[
Z
∣∣ y, θ̂(n−1)

]
,

2. M-step : θ̂
(n)

= argmaxθEZ

[
log Lc(θ|X)

∣∣ y, θ̂(n−1)
]
.
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Application in phylogenetics

Figure taken from Hautphenne and Fackrell, 2014
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Application in phylogenetics
Estimation of speciation rate

We compare the estimated mean growth rate ω̂ of the species
population for different numbers of phases n :

n ω̂ Loglikelihood

1 0.0256 -32.64
2 0.0211 -30.66
3 0.0268 -29.12
4 0.0281 -28.14
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Complete observation
Future work

Use alternative methods for the parameter estimation, such as

Nonlinear regression methods

Metropolis-Hasting (MH)-algorithm as part of a Monte Carlo
EM-algorithm

Bayesian Markov chain Monte Carlo approach
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Partial observation

This happens for instance

when a population is observed only at discrete time points.
E.g. when the data consist of annual population counts

when only a fraction of the individuals in a population are
sampled.
E.g. in the binomial sampling case, individuals are sampled
with some probability 0 < p < 1, independently of each other.

Future work : Adapt the previous methods and develop new
methods to account for partial observation
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Further reading on branching processes... I
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The Theory of Branching Processes.
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Branching Processes.
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Wiley, London, 1975.
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Further reading on branching processes... II

S. Asmussen and H. Hering.
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Birkhauser, Boston, 1983.

K.B. Athreya and P.Jagers (eds).
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Springer, New York, 1997.

M. Kimmel and D.E. Axelrod.
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Springer, New York, 2002.
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Cambridge University Press, Cambridge, 2005.
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... on phylogenetics...

J.H. Gillespie and C.H. Langley.
Are evolutionary rates really variable ?
Journal of Molecular Evolution, 13(1) :27–34, 1979.

J.H. Gillespie.
Natural Selection and the Molecular Clock.
Molecular Biology and Evolution, 3(2) :138–155, 1986.
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... and on Markovian binary trees I

N. Bean, N. Kontoleon, and P. Taylor.
Markovian trees : Properties and algorithms.
Annals of Operations Research, 160(1) :31–50, 2008.

S. Hautphenne, G. Latouche, and M.-A. Remiche.
Newton’s iteration for the extinction probability of a
Markovian Binary Tree.
Linear Algebra and its Applications, 428(11-12) :2791–2804,
2008.

S. Hautphenne, G. Latouche, and M.-A. Remiche.
Transient features for Markovian binary trees.
Proceedings of the Fourth International ICST Conference on
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18, 2009.
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... and on Markovian binary trees II

S. Hautphenne, G. Latouche, and M.-A. Remiche.
Algorithmic approach to the extinction probability of branching
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Methodology and Computing in Applied Probability,
13(1) :171–192, 2011.

S. Hautphenne and G. Latouche.
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Journal of Mathematical Biology, 64(7) :1109–35, 2012.
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