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Time Allowed: TWO (2) hours.

Instructions:
- Attempt all FIVE (5) questions.

- All questions carry the same number of marks.
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1. Consider a liquid exhibiting horizontal flow at a depth h(z,y). Taking the flow

vector q(r,y) = u(x,y)2+v(r,y)) tobe irrotational, we have

ov  Ou
%_87/ = 0. (1)

For this situation the conservation of mass equation is

O(uh) N d(vh)

=0 2
and Bernoulli’s pressure law rearranges to
2,2
ho— u”+wv 3)
29

where k is constant for all z, y.

(a) Substitute appropriate derivatives of equation (3) into equation (2) and then

show the coefficient matrix of the system of equations is

i ?—u? —uwv  —uw ? — v? ]
( ) (
0 —1 1 0
dx dy 0 0
I 0 0 dz dy |

where ¢? = gh.

(b) Show that real characteristics will only occur when u? + v? > %

Continued . ..
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2. Consider the differential equation

ou ou

y% - x@ = f(:zc,y).

(@) (i) Use the method of characteristics to find the general solution to the ho-

mogeneous equation.
(ii) Find the particular solution to the Cauchy problem with u(1,2) = v/5.
(b) (i) Use the method of characteristics to find the general solution to the non-
homogeneous equation with f(z,y) = 2y — 2z. Refer to your working
in part (a) if you wish.

(ii) Find the particular solution to the Cauchy problem with

u(1,2) =5 — 4.

Continued . ..
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3. (a) Bessel’s equation is

Py dy
2 2 2 _

(i) Determine the nature of any singularities occurring at finite x.
(ii) Explain the process of obtaining a series solution for Bessel’s equation.

(b) If one solution to a linear, homogeneous, 2nd order ODE is known, explain

how a 2nd independent solution can be obtained.
(c) Laguerre’s equation is commonly written as

d? d
x—y+(1—x)

Yy
4+ Xy =0.
dz? dm+ 4

Put the differential equation into self-adjoint form and find the weight func-

tion.

Continued . ..
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4. Consider a string of length 4L initially at rest. The string is fixed at its endpoints,
x=—2L and z =2L.

At time t = 0, the string is given a piecewise velocity:

0 2L <z < —L

-1 —-L<z<0

1 O0<ax<L

0 L <x<?2L

For t > 0 and = € (—2L,2L), the amplitude of the string obeys the wave equa-
tion
o*U  L,0*U

gz o = O

(a) Use D’Alambert’s form of the wave equation solution to determine the ini-
tial piecewise definitions of the left and right travelling waves; i.e. G(z+ct)
and G(x — ct).

(b) Use an «t diagram to show the solution to this vibrating string problem for
t € (0,7L/c]. Only trace out characteristics emanating from discontinuities
in the intial conditions.

Do your best to describe the solution in regions bounded by intersecting char-

acteristics.

Continued . ..
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5. Use the separation of variables technique to solve the following heat equation

problem.

oU 0*U
U0,1) = 0
U(L,{) = 0

3
U(x,0) = 100 sin <7]_Zx) .

Make sure you explore all possibilities for the domain of the separation constant.

END OF EXAM PAPER
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